ACS Publications. Most Trusted. Most Cited. Most Read
Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals
My Activity

Figure 1Loading Img
    Letter

    Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals
    Click to copy article linkArticle link copied!

    View Author Information
    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India
    S. N. Bose National Centre for Basic Sciences, JD Block, Sector 3, Salt Lake, Kolkata 700 098, India
    *To whom correspondence should be addressed. E-mail: [email protected]. Also at JNCASR, Bangalore-560054, India.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2010, 1, 14, 2149–2153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz100698m
    Published June 30, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Internal structures of extraordinarily luminescent semiconductor nanoparticles are probed with photoelectron spectroscopy, establishing a gradient alloy structure as an essential ingredient for the observed phenomenon. Comparative photoluminescence lifetime measurements provide direct evidence for a minimization of nonradiative decay channels because of the removal of interfacial defects due to a progressive change in the lattice parameters in such graded structures, exhibiting a nearly single-exponential decay. Quantum mechanical calculations suggest a differential extent of spatial collapse of the electron and the hole wave functions in a way that helps to enhance the photoluminescence efficiency, while at the same time increasing the lifetime of the excited state, as observed in the experiments.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details of the experiment, decompositions of PES spectra, quantitative modeling for relative Se:S intensity obtained by PES, and theoretical calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 124 publications.

    1. Jeffrey T. DuBose, Prashant V. Kamat. Efficacy of Perovskite Photocatalysis: Challenges to Overcome. ACS Energy Letters 2022, 7 (6) , 1994-2011. https://doi.org/10.1021/acsenergylett.2c00765
    2. Chiao-Yun Chang, Cheng-Li Yu, Chen-An Lin, Hsiang-Ting Lin, Andrew Boyi Lee, Zheng-Zhe Chen, Li-Syuan Lu, Wen-Hao Chang, Hao-Chung Kuo, Min-Hsiung Shih. Hybrid Composites of Quantum Dots, Monolayer WSe2, and Ag Nanodisks for White Light-Emitting Diodes. ACS Applied Nano Materials 2020, 3 (7) , 6855-6862. https://doi.org/10.1021/acsanm.0c01227
    3. Yujuan Xie, Ning Du, Shengping Yu, Li Zhang, Mingli Yang. Unraveling the Structure-Dependent Radiative and Nonradiative Decays in (CdSe)13 Clusters through First-Principles Calculations. The Journal of Physical Chemistry C 2019, 123 (50) , 30714-30722. https://doi.org/10.1021/acs.jpcc.9b09152
    4. Ramesh K. Kokal, Sai Santosh Kumar Raavi, Melepurath Deepa. Quantum Dot Donor–Polymer Acceptor Architecture for a FRET-Enabled Solar Cell. ACS Applied Materials & Interfaces 2019, 11 (20) , 18395-18403. https://doi.org/10.1021/acsami.9b01792
    5. Anamul Haque, Ananya Banik, Rahul Mahavir Varma, Indranil Sarkar, Kanishka Biswas, Pralay K. Santra. Understanding the Chemical Nature of the Buried Nanostructures in Low Thermal Conductive Sb-Doped SnTe by Variable-Energy Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (16) , 10272-10279. https://doi.org/10.1021/acs.jpcc.9b01081
    6. Anamul Haque, Vikash Kumar Ravi, G. Shiva Shanker, Indranil Sarkar, Angshuman Nag, Pralay K. Santra. Internal Heterostructure of Anion-Exchanged Cesium Lead Halide Nanocubes. The Journal of Physical Chemistry C 2018, 122 (25) , 13399-13406. https://doi.org/10.1021/acs.jpcc.7b11118
    7. María Acebrón, Juan F. Galisteo-López, Cefe López, Facundo C. Herrera, Martín Mizrahi, Félix G. Requejo, F. Javier Palomares, Beatriz H. Juárez. Unexpected Optical Blue Shift in Large Colloidal Quantum Dots by Anionic Migration and Exchange. The Journal of Physical Chemistry Letters 2018, 9 (11) , 3124-3130. https://doi.org/10.1021/acs.jpclett.8b00741
    8. Tushar Debnath, Kausturi Parui, Sourav Maiti, Hirendra N. Ghosh. Solar Conversion Efficiency Performance of a High Temperature Alloy over a Low Temperature One: Comprehending Interfaces through Excitonics Study. The Journal of Physical Chemistry C 2018, 122 (21) , 11312-11321. https://doi.org/10.1021/acs.jpcc.8b03502
    9. Junsang Cho, Yun Ku Jung, Jin-Kyu Lee, and Hak-Sung Jung . Surface Coating of Gradient Alloy Quantum Dots with Oxide Layer in White-Light-Emitting Diodes for Display Backlights. Langmuir 2017, 33 (45) , 13040-13050. https://doi.org/10.1021/acs.langmuir.7b03335
    10. Vikash Kumar Ravi, Pralay K. Santra, Niharika Joshi, Jeetender Chugh, Sachin Kumar Singh, Håkan Rensmo, Prasenjit Ghosh, and Angshuman Nag . Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. The Journal of Physical Chemistry Letters 2017, 8 (20) , 4988-4994. https://doi.org/10.1021/acs.jpclett.7b02192
    11. Junsang Cho, Yun Ku Jung, Jin-Kyu Lee, and Hak-Sung Jung . Highly efficient Blue-Emitting CdSe-derived Core/Shell Gradient Alloy Quantum Dots with Improved Photoluminescent Quantum Yield and Enhanced Photostability. Langmuir 2017, 33 (15) , 3711-3719. https://doi.org/10.1021/acs.langmuir.6b04333
    12. Kasinath Ojha, Tushar Debnath, Partha Maity, Mahima Makkar, Siamak Nejati, Kandalam V. Ramanujachary, Pramit Kumar Chowdhury, Hirendra N. Ghosh, and Ashok Kumar Ganguli . Exciton Separation in CdS Supraparticles upon Conjugation with Graphene Sheets. The Journal of Physical Chemistry C 2017, 121 (12) , 6581-6588. https://doi.org/10.1021/acs.jpcc.7b01150
    13. Pralay K Santra, Axel F. Palmstrom, Christopher J. Tassone, and Stacey F. Bent . Molecular Ligands Control Superlattice Structure and Crystallite Orientation in Colloidal Quantum Dot Solids. Chemistry of Materials 2016, 28 (19) , 7072-7081. https://doi.org/10.1021/acs.chemmater.6b03076
    14. Veena Hariharan Iyer, Rekha Mahadevu, and Anshu Pandey . Low Threshold Quantum Dot Lasers. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1244-1248. https://doi.org/10.1021/acs.jpclett.6b00430
    15. Gao-Chao Fan, Hua Zhu, Dan Du, Jian-Rong Zhang, Jun-Jie Zhu, and Yuehe Lin . Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core–Shell Quantum Dots-Sensitized TiO2 Amplified by CuS Nanocrystals Conjugated Signal Antibodies. Analytical Chemistry 2016, 88 (6) , 3392-3399. https://doi.org/10.1021/acs.analchem.6b00144
    16. Kiran G. Sonawane, Kaustubh S. Agarwal, Chinmay Phadnis, Dharmendar Kumar Sharma, Arunasish Layek, Arindam Chowdhury, and Shailaja Mahamuni . Manifestations of Varying Grading Level in CdSe/ZnSe Core–Shell Nanocrystals. The Journal of Physical Chemistry C 2016, 120 (9) , 5257-5264. https://doi.org/10.1021/acs.jpcc.6b01247
    17. Gaoling Yang, Zongwei Ma, Haizheng Zhong, Shuangyang Zou, Cheng Chen, Junbo Han, and Bingsuo Zou . Probing Exciton Move and Localization in Solution-Grown Colloidal CdSexS1–x Alloyed Nanowires by Temperature- and Time-Resolved Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (39) , 22709-22717. https://doi.org/10.1021/acs.jpcc.5b07198
    18. Jingjing Xue, Xinyi Chen, Shanglin Liu, Fenfen Zheng, Li He, Lingling Li, and Jun-Jie Zhu . Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application. ACS Applied Materials & Interfaces 2015, 7 (34) , 19126-19133. https://doi.org/10.1021/acsami.5b04766
    19. Partha Maity, Tushar Debnath, and Hirendra N. Ghosh . Slow Electron Cooling Dynamics Mediated by Electron–Hole Decoupling in Highly Luminescent CdSxSe1–x Alloy Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (19) , 10785-10792. https://doi.org/10.1021/acs.jpcc.5b03603
    20. Pralay K. Santra, Axel F. Palmstrom, Jukka T. Tanskanen, Nuoya Yang, and Stacey F. Bent . Improving Performance in Colloidal Quantum Dot Solar Cells by Tuning Band Alignment through Surface Dipole Moments. The Journal of Physical Chemistry C 2015, 119 (6) , 2996-3005. https://doi.org/10.1021/acs.jpcc.5b00341
    21. Won Hui Doh, Vasiliki Papaefthimiou, Thierry Dintzer, Véronique Dupuis, and Spyridon Zafeiratos . Synchrotron Radiation X-ray Photoelectron Spectroscopy as a Tool To Resolve the Dimensions of Spherical Core/Shell Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (46) , 26621-26628. https://doi.org/10.1021/jp508895u
    22. Sumanta Mukherjee, Abhijit Hazarika, Pralay K. Santra, Ahmed L. Abdelhady, Mohammad Azad Malik, Mihaela Gorgoi, P. O’Brien, O. Karis, and D. D. Sarma . Determination of Internal Structures of Heterogeneous Nanocrystals Using Variable-Energy Photoemission Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (28) , 15534-15540. https://doi.org/10.1021/jp504283m
    23. Youngwoo Choi, Minsu Seol, Wooseok Kim, and Kijung Yong . Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. The Journal of Physical Chemistry C 2014, 118 (11) , 5664-5670. https://doi.org/10.1021/jp411221q
    24. Ashwini P. Alegaonkar, Arvind Kumar, Sagar H. Patil, Kashinath R. Patil, Satish K. Pardeshi, and Prashant S. Alegaonkar . Spin Transport and Magnetic Correlation Parameters for Graphene-like Nanocarbon Sheets Doped with Nitrogen. The Journal of Physical Chemistry C 2013, 117 (51) , 27105-27113. https://doi.org/10.1021/jp407262w
    25. Mingye Sun, Dehua Zhu, Wenyu Ji, Pengtao Jing, Xiuying Wang, Weidong Xiang, and Jialong Zhao . Exploring the Effect of Band Alignment and Surface States on Photoinduced Electron Transfer from CuInS2/CdS Core/Shell Quantum Dots to TiO2 Electrodes. ACS Applied Materials & Interfaces 2013, 5 (23) , 12681-12688. https://doi.org/10.1021/am4040224
    26. Sesha Vempati, Yelda Ertas, and Tamer Uyar . Sensitive Surface States and their Passivation Mechanism in CdS Quantum Dots. The Journal of Physical Chemistry C 2013, 117 (41) , 21609-21618. https://doi.org/10.1021/jp408160h
    27. Douglas A. Hines and Prashant V. Kamat . Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions. The Journal of Physical Chemistry C 2013, 117 (27) , 14418-14426. https://doi.org/10.1021/jp404031s
    28. Xiaolu Zhang, Xiaoming Huang, Yueyong Yang, Shen Wang, Yun Gong, Yanhong Luo, Dongmei Li, and Qingbo Meng . Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSe Cosensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (13) , 5954-5960. https://doi.org/10.1021/am400268j
    29. D. D. Sarma, Pralay K. Santra, Sumanta Mukherjee, and Angshuman Nag . X-ray Photoelectron Spectroscopy: A Unique Tool To Determine the Internal Heterostructure of Nanoparticles. Chemistry of Materials 2013, 25 (8) , 1222-1232. https://doi.org/10.1021/cm303567d
    30. Pralay K. Santra, Pratheesh V. Nair, K. George Thomas, and Prashant V. Kamat . CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. The Journal of Physical Chemistry Letters 2013, 4 (5) , 722-729. https://doi.org/10.1021/jz400181m
    31. Pralay K. Santra and Prashant V. Kamat . Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. Journal of the American Chemical Society 2013, 135 (2) , 877-885. https://doi.org/10.1021/ja310737m
    32. Wenjin Zhang, Hua Zhang, Yaoyu Feng, and Xinhua Zhong . Scalable Single-Step Noninjection Synthesis of High-Quality Core/Shell Quantum Dots with Emission Tunable from Violet to Near Infrared. ACS Nano 2012, 6 (12) , 11066-11073. https://doi.org/10.1021/nn304765k
    33. Kui Yu, Amy Hrdina, Jianying Ouyang, David Kingston, Xiaohua Wu, Donald M. Leek, Xiangyang Liu, and Chunsheng Li . Ultraviolet ZnSe1–xSx Gradient-Alloyed Nanocrystals via a Noninjection Approach. ACS Applied Materials & Interfaces 2012, 4 (8) , 4302-4311. https://doi.org/10.1021/am3009828
    34. Pralay K. Santra and Prashant V. Kamat . Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of the American Chemical Society 2012, 134 (5) , 2508-2511. https://doi.org/10.1021/ja211224s
    35. Johannes Frenzel, Sören Thieme, Gotthard Seifert, and Jan-Ole Joswig . Optical Excitations in CdSe/CdS Core–Shell Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (21) , 10338-10344. https://doi.org/10.1021/jp111474n
    36. Gabriele Rainò, Thilo Stöferle, Iwan Moreels, Raquel Gomes, John S. Kamal, Zeger Hens, and Rainer F. Mahrt . Probing the Wave Function Delocalization in CdSe/CdS Dot-in-Rod Nanocrystals by Time- and Temperature-Resolved Spectroscopy. ACS Nano 2011, 5 (5) , 4031-4036. https://doi.org/10.1021/nn2005969
    37. Angshuman Nag, Abhijit Hazarika, K. V. Shanavas, Surinder M. Sharma, I. Dasgupta, and D. D. Sarma . Crystal Structure Engineering by Fine-Tuning the Surface Energy: The Case of CdE (E = S/Se) Nanocrystals. The Journal of Physical Chemistry Letters 2011, 2 (7) , 706-712. https://doi.org/10.1021/jz200060a
    38. Salim Caliskan, Gill Sang Han, Chu-Yu Cheng, Jun Young Hong, Jung-Kun Lee. Sequential coating of Sb-doped SnO nanowire for photoelectrochemical cells of panchromatic light absorption and low thermalization loss. Journal of Power Sources 2023, 570 , 232989. https://doi.org/10.1016/j.jpowsour.2023.232989
    39. Zhongjie Cui, Dan Yang, Shuaitao Qin, Zhuoqi Wen, Haiyang He, Shiliang Mei, Wanlu Zhang, Guichuan Xing, Chao Liang, Ruiqian Guo. Advances, Challenges, and Perspectives for Heavy‐Metal‐Free Blue‐Emitting Indium Phosphide Quantum Dot Light‐Emitting Diodes. Advanced Optical Materials 2023, 11 (4) https://doi.org/10.1002/adom.202202036
    40. Song Wei, Xiang Luo, Juhong Miao, Lei Zhang. Efficient green quantum dot light-emitting diodes enabled by high-quality alloyed gradient CdSeS/CdS/ZnS core/shell quantum dots. Journal of Materials Science: Materials in Electronics 2022, 33 (35) , 26313-26321. https://doi.org/10.1007/s10854-022-09314-2
    41. Hao Liu, Yixuan Wang, Xinyi Yang, Xiaohui Zhao, Kai Wang, Min Wu, Xiaobing Zuo, Wenge Yang, Yongming Sui, Bo Zou. Pressure-stimulus-responsive behaviors of core–shell InP/ZnSe nanocrystals: remarkable piezochromic luminescence and structural assembly. Nanoscale 2022, 14 (20) , 7530-7537. https://doi.org/10.1039/D2NR00281G
    42. Pendyala Naresh Kumar, Aparajita Das, Ankita Kolay, Melepurath Deepa. Simple strategies deployed for developing efficient and stable solution processed quantum dot solar cells. Materials Advances 2022, 3 (5) , 2249-2267. https://doi.org/10.1039/D1MA00851J
    43. Xin Li, Xin Tong, Shuai Yue, Cheng Liu, Ali Imran Channa, Yimin You, Rui Wang, Zhihang Long, Zheming Zhang, Zhenhuan Zhao, Xin-Feng Liu, Zhiming M. Wang. Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy 2021, 89 , 106392. https://doi.org/10.1016/j.nanoen.2021.106392
    44. Negin Beiraghdar, Hossein Dehghani, Malihe Afrooz. Modification of polysulfide electrolyte by applying various amines, thiourea and urea as efficient additives to improve photovoltaic performance of quantum dot-sensitized solar cells. Solar Energy 2021, 220 , 384-393. https://doi.org/10.1016/j.solener.2021.03.010
    45. Hongxing Xie, Enguo Chen, Yun Ye, Sheng Xu, Tailiang Guo. Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability. Applied Physics Letters 2020, 117 (17) https://doi.org/10.1063/5.0026314
    46. Zahra Shariatinia, Zahra Zolfaghari-Isavandi. Application of ZnxLayFezO4 spinel nanomaterial in quantum dot sensitized solar cells. Optik 2020, 212 , 164682. https://doi.org/10.1016/j.ijleo.2020.164682
    47. Pragnya Satapathy, V. Navyashree, Pralay K. Santra, S. Krishna Prasad. Photoisomerization‐Driven Photoluminescence Modulation in CdSeS Gradient Quantum Dot/Liquid Crystal Nanocomposites. ChemPhotoChem 2020, 4 (6) , 413-419. https://doi.org/10.1002/cptc.201900293
    48. Z. Ghubish, M. Saif, H. Hafez, H. Mahmoud, R. Kamal, M. El-Kemary. Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. Journal of Molecular Structure 2020, 1207 , 127840. https://doi.org/10.1016/j.molstruc.2020.127840
    49. Shao Li, Gang Li, Li-Shuang Yang, Kui-Ying Li. Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO 2 thin film*. Chinese Physics B 2020, 29 (4) , 046104. https://doi.org/10.1088/1674-1056/ab7742
    50. James R. McBride, Sandra J. Rosenthal. Real colloidal quantum dot structures revealed by high resolution analytical electron microscopy. The Journal of Chemical Physics 2019, 151 (16) https://doi.org/10.1063/1.5128366
    51. Sourav Maiti, Pranav Anand, Farazuddin Azlan, Jayanta Dana, Hirendra N. Ghosh. Improving the Power‐Conversion Efficiency through Alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells. ChemPhysChem 2019, 20 (20) , 2662-2667. https://doi.org/10.1002/cphc.201900379
    52. Guh-Hwan Lim, Kyu Seung Lee, Young Jae Park, Jaeho Shim, Jin Woo Choi, Minju Kim, Yeonghoon Jin, Byungkwon Lim, Yeonjin Yi, Chang-Lyoul Lee, Jun Yeon Hwang, Dong Ick Son. Charge transport effect and photovoltaic conversion of two-dimensional CdSeS quantum dot monolayers in inverted polymer solar cells. Journal of Materials Chemistry C 2019, 7 (38) , 11797-11805. https://doi.org/10.1039/C9TC04227J
    53. Yang Deng, Dianqi Li, Xingming Ning, Dongxu Zhang, Shouting Zhang, Zhen Zhang, Duoliang Shan, Zhenyu Wang, Dingbin Liu, Xiang Mao, Xiaoquan Lu. Self‐Assembly of Biocompatible FeSe Hollow Nanostructures and 2D CuFeSe Nanosheets with One‐ and Two‐Photon Luminescence Properties. Small 2019, 15 (31) https://doi.org/10.1002/smll.201900627
    54. Leslie S. Hamachi, Haoran Yang, Ilan Jen-La Plante, Natalie Saenz, Kevin Qian, Michael P. Campos, Gregory T. Cleveland, Iva Rreza, Aisha Oza, Willem Walravens, Emory M. Chan, Zeger Hens, Andrew C. Crowther, Jonathan S. Owen. Precursor reaction kinetics control compositional grading and size of CdSe 1−x S x nanocrystal heterostructures. Chemical Science 2019, 10 (26) , 6539-6552. https://doi.org/10.1039/C9SC00989B
    55. E. Zanazzi, M. Favaro, A. Ficorella, L. Pancheri, G.F. Dalla Betta, A. Quaranta. Radiation-induced optical change of ion-irradiated CdSeS/ZnS core-shell quantum dots embedded in polyvinyl alcohol. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2018, 435 , 327-330. https://doi.org/10.1016/j.nimb.2018.05.027
    56. Najme Firoozi, Hossein Dehghani, Malihe Afrooz, Seyede Sara Khalili. Improvement photovoltaic performance of quantum dot-sensitized solar cells using deposition of metal-doped ZnS passivation layer on the TiO2 photoanode. Microelectronic Engineering 2018, 198 , 8-14. https://doi.org/10.1016/j.mee.2018.06.007
    57. Swapnil Doke, Kiran Sonawane, V. Raghavendra Reddy, Prasun Ganguly, Shailaja Mahamuni. Low power operated highly luminescent ferroelectric liquid crystal doped with CdSe/ZnSe core/shell quantum dots. Liquid Crystals 2018, 45 (10) , 1518-1524. https://doi.org/10.1080/02678292.2018.1449260
    58. Z Zaaboub, N Bel Haj Mohamed, F Hassen, H Maaref. Size effect on carrier dynamics in CdS nanoparticles studied by photoluminescence and picosecond time-resolved photoluminescence measurements. Materials Research Express 2018, 5 (8) , 085002. https://doi.org/10.1088/2053-1591/aad120
    59. Mohammed Panthakkal Abdul Muthalif, Chozhidakath Damodharan Sunesh, Youngson Choe. Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. Journal of Photochemistry and Photobiology A: Chemistry 2018, 358 , 177-185. https://doi.org/10.1016/j.jphotochem.2018.03.013
    60. Yingqi Cui, Xianhui Cui, Li Zhang, Yujuan Xie, Mingli Yang. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters. The Journal of Chemical Physics 2018, 148 (13) https://doi.org/10.1063/1.5023408
    61. Zahra Zolfaghari-Isavandi, Zahra Shariatinia. Enhanced efficiency of quantum dot sensitized solar cells using Cu2O/TiO2 nanocomposite photoanodes. Journal of Alloys and Compounds 2018, 737 , 99-112. https://doi.org/10.1016/j.jallcom.2017.12.036
    62. Qiming Yang, Wen Yang, Jialong Duan, Peizhi Yang. A series of conducting gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells with boosted electron transfer processes. Journal of Energy Chemistry 2018, 27 (2) , 335-341. https://doi.org/10.1016/j.jechem.2017.12.010
    63. Elnaz Jalali-Moghadam, Zahra Shariatinia. Al3+ doping into TiO2 photoanodes improved the performances of amine anchored CdS quantum dot sensitized solar cells. Materials Research Bulletin 2018, 98 , 121-132. https://doi.org/10.1016/j.materresbull.2017.10.008
    64. Zahra Zolfaghari-Isavandi, Zahra Shariatinia. Fabrication of CdS quantum dot sensitized solar cells using nitrogen functionalized CNTs/TiO2 nanocomposites. Diamond and Related Materials 2018, 81 , 1-15. https://doi.org/10.1016/j.diamond.2017.11.004
    65. Yingqi Cui, Pengfei Yin, Xianhui Cui, Deyin Wu, Mingli Yang. Stokes shifts of small ZnSe clusters from first-principles calculations. Molecular Physics 2017, 115 (24) , 3192-3198. https://doi.org/10.1080/00268976.2017.1357857
    66. Qianji Han, Haikuo Zheng, Mingxing Wu. Designing Metal‐Sulfide‐Sphere Counter‐Electrode Catalysts for ZnO‐Nanorod‐Array‐Based Quantum‐Dot‐Sensitized Solar Cells. European Journal of Inorganic Chemistry 2017, 2017 (32) , 3787-3793. https://doi.org/10.1002/ejic.201700595
    67. Chinmay Phadnis, Kiran G Sonawane, V Sudarsan, Shailaja Mahamuni. The implications of grading on the emission line width of core–shell nanocrystals. Journal of Physics D: Applied Physics 2017, 50 (14) , 145302. https://doi.org/10.1088/1361-6463/aa5f25
    68. Archana Subramanian, Dinah Punnoose, Sunkara Srinivasa Rao, Chebrolu Venkata Thulasi Varma, Bandari Naresh, Vivekanandan Raman, Hee-Je Kim. Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New Journal of Chemistry 2017, 41 (13) , 5942-5949. https://doi.org/10.1039/C7NJ00600D
    69. Anshu Pandey, Dipankar Das Sarma. Recent Advances in Manganese Doped II‐VI Semiconductor Quantum Dots. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (23) , 1331-1339. https://doi.org/10.1002/zaac.201600368
    70. Pornpimol Srathongluan, Veeramol Vailikhit, Pichanan Teesetsopon, Supab Choopun, Auttasit Tubtimtae. Effective performance for undoped and boron-doped double-layered nanoparticles-copper telluride and manganese telluride on tungsten oxide photoelectrodes for solar cell devices. Journal of Colloid and Interface Science 2016, 481 , 57-68. https://doi.org/10.1016/j.jcis.2016.07.036
    71. Vikash Kumar Ravi, Abhishek Swarnkar, Rayan Chakraborty, Angshuman Nag. Excellent green but less impressive blue luminescence from CsPbBr 3 perovskite nanocubes and nanoplatelets. Nanotechnology 2016, 27 (32) , 325708. https://doi.org/10.1088/0957-4484/27/32/325708
    72. Charlene R S Matos, Helio O Souza Jr, Luan P M Candido, Luiz P Costa, Francisco A Santos, Marcio A R C Alencar, Luis M G Abegao, Jose J Rodrigues Jr, Eliana Midori Sussuchi, Iara F Gimenez. Spectroscopic and electrochemical study of CdTe nanocrystals capped with thiol mixtures. Materials Research Express 2016, 3 (6) , 065008. https://doi.org/10.1088/2053-1591/3/6/065008
    73. Xinqin Wang, Yingqi Cui, Shengping Yu, Qun Zeng, Mingli Yang. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters. The Journal of Chemical Physics 2016, 144 (13) https://doi.org/10.1063/1.4944985
    74. Najmeh Firoozi, Hossein Dehghani. Interfacial modification of TiO2 nanoparticles by using carbonates of earth alkali metals as an efficient and simple approach for improving quantum dot sensitized solar cell performance. Electrochimica Acta 2016, 191 , 987-995. https://doi.org/10.1016/j.electacta.2016.01.152
    75. Pornpimol Srathongluan, Rattanakorn Kuhamaneechot, Prapatsawan Sukthao, Veeramol Vailikhit, Supab Choopun, Auttasit Tubtimtae. Photovoltaic performances of Cu 2− x Te sensitizer based on undoped and indium 3+ -doped TiO 2 photoelectrodes and assembled counter electrodes. Journal of Colloid and Interface Science 2016, 463 , 222-228. https://doi.org/10.1016/j.jcis.2015.10.052
    76. Sumanta Mukherjee, Pralay K. Santra, D. D. Sarma. Depth Profiling and Internal Structure Determination of Low Dimensional Materials Using X-ray Photoelectron Spectroscopy. 2016, 309-339. https://doi.org/10.1007/978-3-319-24043-5_13
    77. Seyede Sara Khalili, Hossein Dehghani. Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance. RSC Advances 2016, 6 (13) , 10880-10886. https://doi.org/10.1039/C5RA24053K
    78. Amit K. Guria, Gyanaranjan Prusty, Supriya Chacrabarty, Narayan Pradhan. Fixed Aspect Ratio Rod‐to‐Rod Conversion and Localized Surface Plasmon Resonance in Semiconducting I–V–VI Nanorods. Advanced Materials 2016, 28 (3) , 447-453. https://doi.org/10.1002/adma.201504377
    79. V. Kocevski, O. Eriksson, C. Gerard, D. D. Sarma, J. Rusz. Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—A first-principles study. The Journal of Chemical Physics 2015, 143 (16) https://doi.org/10.1063/1.4933058
    80. Seung‐Jin Ryu, Hak‐Sung Jung, Jin‐Kyu Lee. Latent Fingerprint Detection using Semiconductor Quantum Dots as a Fluorescent Inorganic Nanomaterial for Forensic Application. Bulletin of the Korean Chemical Society 2015, 36 (10) , 2561-2564. https://doi.org/10.1002/bkcs.10485
    81. V. Kocevski, J. Rusz, O. Eriksson, D.D. Sarma. First-principles study of the influence of different interfaces and core types on the properties of CdSe/CdS core-shell nanocrystals. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep10865
    82. Yue Wang, Kah Ee Fong, Shancheng Yang, Van Duong Ta, Yuan Gao, Zeng Wang, Venkatram Nalla, Hilmi Volkan Demir, Handong Sun. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers. Laser & Photonics Reviews 2015, 9 (5) , 507-516. https://doi.org/10.1002/lpor.201500063
    83. Yanli Chen, Qiang Tao, Wuyou Fu, Haibin Yang. Synthesis of PbS/Ni 2+ doped CdS quantum dots cosensitized solar cells: Enhanced power conversion efficiency and durability. Electrochimica Acta 2015, 173 , 812-818. https://doi.org/10.1016/j.electacta.2015.05.013
    84. RANJANI VISWANATHA. Effect of transition metal dopants on the optical and magnetic properties of semiconductor nanocrystals. Pramana 2015, 84 (6) , 1055-1064. https://doi.org/10.1007/s12043-015-1001-0
    85. Jialong Duan, Qunwei Tang, Ru Li, Benlin He, Liangmin Yu, Peizhi Yang. Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells. Journal of Power Sources 2015, 284 , 369-376. https://doi.org/10.1016/j.jpowsour.2015.03.060
    86. Xiaolong Zhang, Yu Lin, Biaopeng Fang, Yibing Lin, Ying Hong, Jihuai Wu. Improved photovoltaic performance of CdS/CdSe co-sensitized solar cells by using calcined starch–ZnO mesoporous spheres. Journal of Materials Science: Materials in Electronics 2015, 26 (5) , 2955-2961. https://doi.org/10.1007/s10854-015-2782-0
    87. Yue Wang, Shancheng Yang, Heesun Yang, Handong Sun. Quaternary Alloy Quantum Dots: Toward Low‐Threshold Stimulated Emission and All‐Solution‐Processed Lasers in the Green Region. Advanced Optical Materials 2015, 3 (5) , 652-657. https://doi.org/10.1002/adom.201400528
    88. Banabir Pal, Sumanta Mukherjee, D.D. Sarma. Probing complex heterostructures using hard X-ray photoelectron spectroscopy (HAXPES). Journal of Electron Spectroscopy and Related Phenomena 2015, 200 , 332-339. https://doi.org/10.1016/j.elspec.2015.06.005
    89. Yingbo Liu, Zhen Li, Libo Yu, Shuqing Sun. Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. Journal of Nanoparticle Research 2015, 17 (3) https://doi.org/10.1007/s11051-015-2940-6
    90. Sumanta Mukherjee, Ronny Knut, S. M. Mohseni, T. N. Anh Nguyen, S. Chung, Q. Tuan Le, Johan Åkerman, Johan Persson, Anindita Sahoo, Abhijit Hazarika, Banabir Pal, Sebastian Thiess, Mihaela Gorgoi, P. S. Anil Kumar, Wolfgang Drube, Olof Karis, D. D. Sarma. Role of boron diffusion in CoFeB/MgO magnetic tunnel junctions. Physical Review B 2015, 91 (8) https://doi.org/10.1103/PhysRevB.91.085311
    91. Chandu V. V. M. Gopi, M. Venkata-Haritha, Soo-Kyoung Kim, S. Srinivasa Rao, Dinah Punnoose, Hee-Je Kim. Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. RSC Advances 2015, 5 (4) , 2963-2967. https://doi.org/10.1039/C4RA12968G
    92. Gao-Chao Fan, Hua Zhu, Qingming Shen, Li Han, Ming Zhao, Jian-Rong Zhang, Jun-Jie Zhu. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO 2 @Au nanocomposites. Chemical Communications 2015, 51 (32) , 7023-7026. https://doi.org/10.1039/C5CC01935D
    93. Axel F. Palmstrom, Pralay K. Santra, Stacey F. Bent. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale 2015, 7 (29) , 12266-12283. https://doi.org/10.1039/C5NR02080H
    94. Chandu V. V. M. Gopi, M. Venkata-Haritha, Soo-Kyoung Kim, Hee-Je Kim. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 2015, 7 (29) , 12552-12563. https://doi.org/10.1039/C5NR03291A
    95. Partha Maity, Tushar Debnath, Hirendra Nath Ghosh. Slow Electron Cooling Dynamics of Highly Luminescent CdSxSe1-x Alloy Quantum Dot. 2015, 275-278. https://doi.org/10.1007/978-3-319-13242-6_67
    96. Pralay K. Santra, Yong-Siou Chen. Role of Mn2+ in Doped Quantum Dot Solar Cell. Electrochimica Acta 2014, 146 , 654-658. https://doi.org/10.1016/j.electacta.2014.08.145
    97. Fábio Pereira Ramanery, Alexandra Ancelmo Piscitelli Mansur, Herman Sander Mansur. CdSe/CdS Core/Shell Quantum Dots Synthesized with Water Soluble Polymer for Potential Biosensor Applications. Materials Science Forum 2014, 805 , 83-88. https://doi.org/10.4028/www.scientific.net/MSF.805.83
    98. Gaoling Yang, Haizheng Zhong, Zelong Bai, Ruibin Liu, Bingsuo Zou. Ultralong Homogeneously Alloyed CdSe x S 1‐x Nanowires with Highly Polarized and Color‐Tunable Emissions. Advanced Optical Materials 2014, 2 (9) , 885-891. https://doi.org/10.1002/adom.201400138
    99. Fábio Pereira Ramanery, Alexandra Ancelmo Piscitelli Mansur, Herman Sander Mansur. Synthesis and characterization of water-dispersed CdSe/CdS core-shell quantum dots prepared via layer-by-layer method capped with carboxylic-functionalized poly(vinyl alcohol). Materials Research 2014, 17 (suppl 1) , 133-140. https://doi.org/10.1590/S1516-14392014005000060
    100. . The Preparation of II–VI Semiconductor Nanomaterials. 2014, 1-52. https://doi.org/10.1039/9781782628354-00001
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2010, 1, 14, 2149–2153
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz100698m
    Published June 30, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    2218

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.