A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic ActivityClick to copy article linkArticle link copied!
Abstract
Stable blue suspensions of 2 nm diameter iridium oxide (IrOx·nH2O) nanoparticles were obtained by hydrolyzing IrCl62− in base at 90 °C to produce [Ir(OH)6]2− and then treating with HNO3 at 0 °C. UV−visible spectra show that acid condensation of [Ir(OH)6]2− results in quantitative conversion to stable, ligand-free IrOx·nH2O nanoparticles, which have an extinction coefficient of 630 ± 50 M−1cm−1 at 580 nm. In contrast, alkaline hydrolysis alone converts only 30% of the sample to IrOx·nH2O at 2 mM concentration. The acidified nanoparticles are stable for at least one month at 2 °C and can be used to make colloidal solutions between pH 1 and 13. At pH 7 and above, some hydrolysis to form [Ir(OH)6]2− occurs. Uniform IrOx·nH2O electrode films were grown anodically from pH 1 solutions, and were found to be highly active for water oxidation between pH 1 and 13.
Cited By
This article is cited by 288 publications.
- Miklós Márton Kovács, Birk Fritsch, Leopold Lahn, Julien Bachmann, Olga Kasian, Karl J. J. Mayrhofer, Andreas Hutzler, Dominik Dworschak. Electrospun Iridium-Based Nanofiber Catalysts for Oxygen Evolution Reaction: Influence of Calcination on Activity–Stability Relation. ACS Applied Materials & Interfaces 2024, 16
(39)
, 52179-52190. https://doi.org/10.1021/acsami.4c07831
- Naohiko Kato, Yasuaki Kawai, Natsumi Nojiri, Masahito Shiozawa, Yoshihiro Kikuzawa, Nobuaki Suzuki, Satoru Kosaka, Yuichi Kato, Juntaro Seki, Tsuyoshi Hamaguchi, Yasuhiko Takeda. Enhancing Long-Term Durability of Electrochemical Reactors Producing Formate from CO2 and Water Designed for Integration with Solar Cells. ACS Omega 2024, 9
(10)
, 11646-11657. https://doi.org/10.1021/acsomega.3c08911
- Brianna N. Ruggiero, Andrew R. Weidner, Justin M. Notestein, Linsey C. Seitz. Observing Local pH Changes Using a Rotating Ring-Disk Electrode Functionalized with a Potentiometric pH-Sensing Probe. The Journal of Physical Chemistry C 2023, 127
(42)
, 20640-20651. https://doi.org/10.1021/acs.jpcc.3c04390
- Johannes G. Vos, Amar A. Bhardwaj, Adriaan W. Jeremiasse, Daniel V. Esposito, Marc T. M. Koper. Probing the Effects of Electrode Composition and Morphology on the Effectiveness of Silicon Oxide Overlayers to Enhance Selective Oxygen Evolution in the Presence of Chloride Ions. The Journal of Physical Chemistry C 2022, 126
(48)
, 20314-20325. https://doi.org/10.1021/acs.jpcc.2c07116
- Jiajian Gao, Yan Liu, Bin Liu, Kuo-Wei Huang. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS Nano 2022, 16
(11)
, 17761-17777. https://doi.org/10.1021/acsnano.2c08519
- Hui Chen, Lei Shi, Ke Sun, Kexin Zhang, Qi Liu, Junjie Ge, Xiao Liang, Boyuan Tian, Yalan Huang, Zhaoping Shi, Zizhun Wang, Wei Zhang, Mingjie Liu, Xiaoxin Zou. Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catalysis 2022, 12
(14)
, 8658-8666. https://doi.org/10.1021/acscatal.2c01241
- Oliver Wetzel, Oleg Prymak, Kateryna Loza, Nina Gumbiowski, Marc Heggen, Peter Bayer, Christine Beuck, Claudia Weidenthaler, Matthias Epple. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorganic Chemistry 2022, 61
(12)
, 5133-5147. https://doi.org/10.1021/acs.inorgchem.2c00281
- Seongeun Park, Meital Shviro, Heinrich Hartmann, Joachim Mayer, Marcelo Carmo, Detlef Stolten. Cation-Exchange Method Enables Uniform Iridium Oxide Nanospheres for Oxygen Evolution Reaction. ACS Applied Nano Materials 2022, 5
(3)
, 4062-4071. https://doi.org/10.1021/acsanm.2c00031
- Naohiko Kato, Yasuhiko Takeda, Yasuaki Kawai, Natsumi Nojiri, Masahito Shiozawa, Shintaro Mizuno, Ken-ichi Yamanaka, Takeshi Morikawa, Tsuyoshi Hamaguchi. Solar Fuel Production from CO2 Using a 1 m-Square-Sized Reactor with a Solar-to-Formate Conversion Efficiency of 10.5%. ACS Sustainable Chemistry & Engineering 2021, 9
(48)
, 16031-16037. https://doi.org/10.1021/acssuschemeng.1c06390
- Federica Mariani, Martina Serafini, Isacco Gualandi, Danilo Arcangeli, Francesco Decataldo, Luca Possanzini, Marta Tessarolo, Domenica Tonelli, Beatrice Fraboni, Erika Scavetta. Advanced Wound Dressing for Real-Time pH Monitoring. ACS Sensors 2021, 6
(6)
, 2366-2377. https://doi.org/10.1021/acssensors.1c00552
- Debraj Chandra, Tomohiro Katsuki, Takeshi Masaki, Naoto Abe, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Highly Efficient Electrocatalytic Water Oxidation by a Transparent Ordered Mesoporous Film of Intermediate IrOx(OH)y. ACS Applied Energy Materials 2021, 4
(5)
, 4355-4364. https://doi.org/10.1021/acsaem.0c03125
- Junjie Zhu, Jónína B. Guđmundsdóttir, Ragnar Strandbakke, Kevin G. Both, Thomas Aarholt, Patricia A. Carvalho, Magnus H. Sørby, Ingvild J. T. Jensen, Matylda N. Guzik, Truls Norby, Halvard Haug, Athanasios Chatzitakis. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. ACS Applied Materials & Interfaces 2021, 13
(17)
, 20313-20325. https://doi.org/10.1021/acsami.1c01900
- Ronghuang Zhang, Paul E. Pearce, Vanessa Pimenta, Jordi Cabana, Heifang Li, Daniel Alves Dalla Corte, Artem M. Abakumov, Gwenaëlle Rousse, Domitille Giaume, Michael Deschamps, Alexis Grimaud. First Example of Protonation of Ruddlesden–Popper Sr2IrO4: A Route to Enhanced Water Oxidation Catalysts. Chemistry of Materials 2020, 32
(8)
, 3499-3509. https://doi.org/10.1021/acs.chemmater.0c00432
- Bas van Dijk, Gabriel Menendez Rodriguez, Longfei Wu, Jan P. Hofmann, Alceo Macchioni, Dennis G. H. Hetterscheid. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catalysis 2020, 10
(7)
, 4398-4410. https://doi.org/10.1021/acscatal.0c00531
- Jonathan Ruiz Esquius, David J. Morgan, Ioannis Spanos, Daniel G. Hewes, Simon J. Freakley, Graham J. Hutchings. Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrOx Oxygen Evolution Catalysts. ACS Applied Energy Materials 2020, 3
(1)
, 800-809. https://doi.org/10.1021/acsaem.9b01642
- Wenping Si, Zahra Pourmand Tehrani, Fatima Haydous, Nicola Marzari, Ivano E. Castelli, Daniele Pergolesi, Thomas Lippert. Yttrium Tantalum Oxynitride Multiphases as Photoanodes for Water Oxidation. The Journal of Physical Chemistry C 2019, 123
(43)
, 26211-26217. https://doi.org/10.1021/acs.jpcc.9b05590
- Hui Su, Xu Zhao, Weiren Cheng, Hui Zhang, Yuanli Li, Wanlin Zhou, Meihuan Liu, Qinghua Liu. Hetero-N-Coordinated Co Single Sites with High Turnover Frequency for Efficient Electrocatalytic Oxygen Evolution in an Acidic Medium. ACS Energy Letters 2019, 4
(8)
, 1816-1822. https://doi.org/10.1021/acsenergylett.9b01129
- Kai S. Exner, Herbert Over. Beyond the Rate-Determining Step in the Oxygen Evolution Reaction over a Single-Crystalline IrO2(110) Model Electrode: Kinetic Scaling Relations. ACS Catalysis 2019, 9
(8)
, 6755-6765. https://doi.org/10.1021/acscatal.9b01564
- Daniel Opalka, Christoph Scheurer, Karsten Reuter. Ab Initio Thermodynamics Insight into the Structural Evolution of Working IrO2 Catalysts in Proton-Exchange Membrane Electrolyzers. ACS Catalysis 2019, 9
(6)
, 4944-4950. https://doi.org/10.1021/acscatal.9b00796
- Kaustuv Mittra, Michael T. Green. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C–H Bond Activation. Journal of the American Chemical Society 2019, 141
(13)
, 5504-5510. https://doi.org/10.1021/jacs.9b00242
- Taishi Kimura, Shunsuke Sato, Keita Kataoka, Takeshi Morikawa, Daisuke Nakamura. Self-Assembled Single-Crystalline GaN Having a Bimodal Meso/Macropore Structure To Enhance Photoabsorption and Photocatalytic Reactions. ACS Applied Materials & Interfaces 2019, 11
(4)
, 4233-4241. https://doi.org/10.1021/acsami.8b18088
- Hongyu Guo, Hao Li, Karalee Jarvis, Haiqin Wan, Pranaw Kunal, Samuel G. Dunning, Yulu Liu, Graeme Henkelman, Simon M. Humphrey. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. ACS Catalysis 2018, 8
(12)
, 11386-11397. https://doi.org/10.1021/acscatal.8b02103
- Johannes
G. Vos, Tim A. Wezendonk, Adriaan W. Jeremiasse, Marc T. M. Koper. MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society 2018, 140
(32)
, 10270-10281. https://doi.org/10.1021/jacs.8b05382
- Hua Wang, Mei Ming, Min Hu, Caili Xu, Yi Wang, Yun Zhang, Daojiang Gao, Jian Bi, Guangyin Fan, Jin-Song Hu. Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting. ACS Applied Materials & Interfaces 2018, 10
(26)
, 22340-22347. https://doi.org/10.1021/acsami.8b07639
- Denise Capoferri, Ruslan Álvarez-Diduk, Michele Del Carlo, Dario Compagnone, Arben Merkoçi. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry 2018, 90
(9)
, 5850-5856. https://doi.org/10.1021/acs.analchem.8b00389
- Lin Ma, Sung-Fu Hung, Liping Zhang, Weizheng Cai, Hong Bin Yang, Hao Ming Chen, and Bin Liu . High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Industrial & Engineering Chemistry Research 2018, 57
(5)
, 1441-1445. https://doi.org/10.1021/acs.iecr.7b04812
- Miao Kan, Xufang Qian, Taiyang Zhang, Dongting Yue, and Yixin Zhao . Highly Active IrOx Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO2 Interface Engineering. ACS Sustainable Chemistry & Engineering 2017, 5
(11)
, 10940-10946. https://doi.org/10.1021/acssuschemeng.7b02850
- Dawei Shao, Yahui Cheng, Jie He, Deqiang Feng, Lingcheng Zheng, Lijun Zheng, Xinghua Zhang, Jianping Xu, Weichao Wang, Weihua Wang, Feng Lu, Hong Dong, Luyan Li, Hui Liu, Rongkun Zheng, and Hui Liu . A Spatially Separated Organic–Inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting. ACS Catalysis 2017, 7
(8)
, 5308-5315. https://doi.org/10.1021/acscatal.7b01002
- Olivier Matz and Monica Calatayud . Periodic DFT Study of Rutile IrO2: Surface Reactivity and Catechol Adsorption. The Journal of Physical Chemistry C 2017, 121
(24)
, 13135-13143. https://doi.org/10.1021/acs.jpcc.7b01990
- Shusaku Shoji, Akira Yamaguchi, Etsuo Sakai, and Masahiro Miyauchi . Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO2 Reduction Using Water as an Electron Donor. ACS Applied Materials & Interfaces 2017, 9
(24)
, 20613-20619. https://doi.org/10.1021/acsami.7b05197
- Kuldeep Mamtani, Deeksha Jain, Anne C. Co, and Umit S. Ozkan . Nitrogen-Coordinated Iron−Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy & Fuels 2017, 31
(6)
, 6541-6547. https://doi.org/10.1021/acs.energyfuels.7b00242
- Jianmei Wang, Xiao Ma, Fengli Qu, Abdullah M. Asiri, and Xuping Sun . Fe-Doped Ni2P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation. Inorganic Chemistry 2017, 56
(3)
, 1041-1044. https://doi.org/10.1021/acs.inorgchem.6b02808
- Paul A. DeSario, Christopher N. Chervin, Eric S. Nelson, Megan B. Sassin, and Debra R. Rolison . Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO2. ACS Applied Materials & Interfaces 2017, 9
(3)
, 2387-2395. https://doi.org/10.1021/acsami.6b12984
- Zoran Pavlovic, Chinmoy Ranjan, Qiang Gao, Maurice van Gastel, and Robert Schlögl . Probing the Structure of a Water-Oxidizing Anodic Iridium Oxide Catalyst using Raman Spectroscopy. ACS Catalysis 2016, 6
(12)
, 8098-8105. https://doi.org/10.1021/acscatal.6b02343
- Toshihiro Takashima, Koki Ishikawa, and Hiroshi Irie . Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements. The Journal of Physical Chemistry C 2016, 120
(43)
, 24827-24834. https://doi.org/10.1021/acs.jpcc.6b07978
- Daniel F. Abbott, Dmitry Lebedev, Kay Waltar, Mauro Povia, Maarten Nachtegaal, Emiliana Fabbri, Christophe Copéret, and Thomas J. Schmidt . Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chemistry of Materials 2016, 28
(18)
, 6591-6604. https://doi.org/10.1021/acs.chemmater.6b02625
- Nagaraju Shilpa, Joydeb Manna, Parasmani Rajput, and Rohit Kumar Rana . Water Oxidation Catalyst via Heterogenization of Iridium Oxides on Silica: A Polyamine-Mediated Route To Achieve Activity and Stability. ACS Catalysis 2016, 6
(9)
, 5699-5705. https://doi.org/10.1021/acscatal.6b00966
- Debraj Chandra, Daisuke Takama, Takeshi Masaki, Tsubasa Sato, Naoto Abe, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui, and Masayuki Yagi . Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrOx(OH)y Nanoparticle Films for Water Oxidation. ACS Catalysis 2016, 6
(6)
, 3946-3954. https://doi.org/10.1021/acscatal.6b00621
- Wei Sun, Ya Song, Xue-Qing Gong, Li-mei Cao, and Ji Yang . Hollandite Structure Kx≈0.25IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8
(1)
, 820-826. https://doi.org/10.1021/acsami.5b10159
- Megan E. Strayer, Thomas P. Senftle, Jonathan P. Winterstein, Nella M. Vargas-Barbosa, Renu Sharma, Robert M. Rioux, Michael J. Janik, and Thomas E. Mallouk . Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support. Journal of the American Chemical Society 2015, 137
(51)
, 16216-16224. https://doi.org/10.1021/jacs.5b11230
- Liang-Liang Feng, Guangtao Yu, Yuanyuan Wu, Guo-Dong Li, Hui Li, Yuanhui Sun, Tewodros Asefa, Wei Chen, and Xiaoxin Zou . High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. Journal of the American Chemical Society 2015, 137
(44)
, 14023-14026. https://doi.org/10.1021/jacs.5b08186
- Dongniu Wang, Jigang Zhou, Yongfeng Hu, Jinli Yang, Na Han, Yanguang Li, and Tsun-Kong Sham . In Situ X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH)x Electrocatalyst on Carbon Paper for Water Oxidation. The Journal of Physical Chemistry C 2015, 119
(34)
, 19573-19583. https://doi.org/10.1021/acs.jpcc.5b02685
- Di Xu, Peng Diao, Tao Jin, Qingyong Wu, Xiaofang Liu, Xin Guo, Hongyu Gong, Fan Li, Min Xiang, and Yu Ronghai . Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces 2015, 7
(30)
, 16738-16749. https://doi.org/10.1021/acsami.5b04504
- Katherine E. Michaux, Alessa A. Gambardella, Leila Alibabaei, Dennis L. Ashford, Benjamin D. Sherman, Robert A. Binstead, Thomas J. Meyer, and Royce W. Murray . Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst. The Journal of Physical Chemistry C 2015, 119
(29)
, 17023-17027. https://doi.org/10.1021/acs.jpcc.5b05711
- Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137
(27)
, 8749-8757. https://doi.org/10.1021/jacs.5b03470
- Mariachiara Pastore and Filippo De Angelis . First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation. Journal of the American Chemical Society 2015, 137
(17)
, 5798-5809. https://doi.org/10.1021/jacs.5b02128
- Miao Zhong, Takashi Hisatomi, Yongbo Kuang, Jiao Zhao, Min Liu, Akihide Iwase, Qingxin Jia, Hiroshi Nishiyama, Tsutomu Minegishi, Mamiko Nakabayashi, Naoya Shibata, Ryo Niishiro, Chisato Katayama, Hidetaka Shibano, Masao Katayama, Akihiko Kudo, Taro Yamada, and Kazunari Domen . Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society 2015, 137
(15)
, 5053-5060. https://doi.org/10.1021/jacs.5b00256
- Helmut Schäfer, Seyyed Mohsen Beladi-Mousavi, Lorenz Walder, Joachim Wollschläger, Olga Kuschel, Sachar Ichilmann, Shamaila Sadaf, Martin Steinhart, Karsten Küpper, and Lilli Schneider . Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. ACS Catalysis 2015, 5
(4)
, 2671-2680. https://doi.org/10.1021/acscatal.5b00221
- Lizhi Tao Troy A. Stich Hugues Jaccard R. David Britt William H. Casey . Manganese-Oxide Solids as Water-Oxidation Electrocatalysts: The Effect of Intercalating Cations. 2015, 135-153. https://doi.org/10.1021/bk-2015-1197.ch007
- Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114
(24)
, 11863-12001. https://doi.org/10.1021/cr400572f
- Hong Bin Yang, Jianwei Miao, Sung-Fu Hung, Fengwei Huo, Hao Ming Chen, and Bin Liu . Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano 2014, 8
(10)
, 10403-10413. https://doi.org/10.1021/nn503751s
- Julianne M. Thomsen, Stafford W. Sheehan, Sara M. Hashmi, Jesús Campos, Ulrich Hintermair, Robert H. Crabtree, and Gary W. Brudvig . Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society 2014, 136
(39)
, 13826-13834. https://doi.org/10.1021/ja5068299
- Xingxing Yu, Tianyi Hua, Xiang Liu, Zhiping Yan, Peng Xu, and Pingwu Du . Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces 2014, 6
(17)
, 15395-15402. https://doi.org/10.1021/am503938c
- Michal Bledowski, Lidong Wang, Susann Neubert, Dariusz Mitoraj, and Radim Beranek . Improving the Performance of Hybrid Photoanodes for Water Splitting by Photodeposition of Iridium Oxide Nanoparticles. The Journal of Physical Chemistry C 2014, 118
(33)
, 18951-18961. https://doi.org/10.1021/jp506434a
- Youssef Lattach, Juan Francisco Rivera, Tahya Bamine, Alain Deronzier, and Jean-Claude Moutet . Iridium Oxide–Polymer Nanocomposite Electrode Materials for Water Oxidation. ACS Applied Materials & Interfaces 2014, 6
(15)
, 12852-12859. https://doi.org/10.1021/am5027852
- Wooyul Kim, Guangbi Yuan, Beth Anne McClure, and Heinz Frei . Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCoII Unit Coupled to Ir Oxide Nanocluster Catalyst. Journal of the American Chemical Society 2014, 136
(31)
, 11034-11042. https://doi.org/10.1021/ja504753g
- John R. Swierk, Nicholas S. McCool, Timothy P. Saunders, Greg D. Barber, Megan E. Strayer, Nella M. Vargas-Barbosa, and Thomas E. Mallouk . Photovoltage Effects of Sintered IrO2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. The Journal of Physical Chemistry C 2014, 118
(30)
, 17046-17053. https://doi.org/10.1021/jp500589n
- Ali Han, Haotian Wu, Zijun Sun, Hongxing Jia, Zhiping Yan, Hao Ma, Xiang Liu, and Pingwu Du . Green Cobalt Oxide (CoOx) Film with Nanoribbon Structures Electrodeposited from the BF2-Annulated Cobaloxime Precursor for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2014, 6
(14)
, 10929-10934. https://doi.org/10.1021/am500830z
- Diego J. Gavia, Yeonjin Do, Jiyeong Gu, and Young-Seok Shon . Mechanistic Insights into the Formation of Dodecanethiolate-Stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs Thiol Ligands. The Journal of Physical Chemistry C 2014, 118
(26)
, 14548-14554. https://doi.org/10.1021/jp504239x
- Christopher R. Turlington, Peter S. White, Maurice Brookhart, and Joseph L. Templeton . Oxygen Atom Transfer to a Half-Sandwich Iridium Complex: Clean Oxidation Yielding a Molecular Product. Journal of the American Chemical Society 2014, 136
(10)
, 3981-3994. https://doi.org/10.1021/ja413023f
- Rodney D. L. Smith, Barbora Sporinova, Randal D. Fagan, Simon Trudel, and Curtis P. Berlinguette . Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation Catalysis. Chemistry of Materials 2014, 26
(4)
, 1654-1659. https://doi.org/10.1021/cm4041715
- Heejin Kim and Kijung Yong . Highly Efficient Photoelectrochemical Hydrogen Generation Using a Quantum Dot Coupled Hierarchical ZnO Nanowires Array. ACS Applied Materials & Interfaces 2013, 5
(24)
, 13258-13264. https://doi.org/10.1021/am404259y
- Charles C. L. McCrory, Suho Jung, Jonas C. Peters, and Thomas F. Jaramillo . Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135
(45)
, 16977-16987. https://doi.org/10.1021/ja407115p
- Katherine E. Michaux and Royce W. Murray . Formation of Iridium(IV) Oxide (IrOX) Films by Electroflocculation. Langmuir 2013, 29
(39)
, 12254-12258. https://doi.org/10.1021/la4025876
- Ulrich Hintermair, Stafford W. Sheehan, Alexander R. Parent, Daniel H. Ess, David T. Richens, Patrick H. Vaccaro, Gary W. Brudvig, and Robert H. Crabtree . Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. Journal of the American Chemical Society 2013, 135
(29)
, 10837-10851. https://doi.org/10.1021/ja4048762
- Kiran P. Kadlag, M. Jagadeeswara Rao, and Angshuman Nag . Ligand-Free, Colloidal, and Luminescent Metal Sulfide Nanocrystals. The Journal of Physical Chemistry Letters 2013, 4
(10)
, 1676-1681. https://doi.org/10.1021/jz4007096
- Shannon C. Riha, Benjamin M. Klahr, Eric C. Tyo, Sönke Seifert, Stefan Vajda, Michael J. Pellin, Thomas W. Hamann, and Alex B. F. Martinson . Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano 2013, 7
(3)
, 2396-2405. https://doi.org/10.1021/nn305639z
- Laura Badia-Bou, Elena Mas-Marza, Pau Rodenas, Eva M. Barea, Francisco Fabregat-Santiago, Sixto Gimenez, Eduardo Peris, and Juan Bisquert . Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. The Journal of Physical Chemistry C 2013, 117
(8)
, 3826-3833. https://doi.org/10.1021/jp311983n
- James D. Blakemore, Michael W. Mara, Maxwell N. Kushner-Lenhoff, Nathan D. Schley, Steven J. Konezny, Ivan Rivalta, Christian F. A. Negre, Robert C. Snoeberger, Oleksandr Kokhan, Jier Huang, Andrew Stickrath, Lan Anh Tran, Maria L. Parr, Lin X. Chen, David M. Tiede, Victor S. Batista, Robert H. Crabtree, and Gary W. Brudvig . Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors. Inorganic Chemistry 2013, 52
(4)
, 1860-1871. https://doi.org/10.1021/ic301968j
- Minsu Seol, Ji-Wook Jang, Seungho Cho, Jae Sung Lee, and Kijung Yong . Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation. Chemistry of Materials 2013, 25
(2)
, 184-189. https://doi.org/10.1021/cm303206s
- Toshihiro Takashima, Kazuhito Hashimoto, and Ryuhei Nakamura . Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions. Journal of the American Chemical Society 2012, 134
(44)
, 18153-18156. https://doi.org/10.1021/ja306499n
- James Landon, Ethan Demeter, Nilay İnoğlu, Chris Keturakis, Israel E. Wachs, Relja Vasić, Anatoly I. Frenkel, and John R. Kitchin . Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis 2012, 2
(8)
, 1793-1801. https://doi.org/10.1021/cs3002644
- James D. Blakemore, Nathan D. Schley, Maxwell N. Kushner-Lenhoff, Andrew M. Winter, Francis D’Souza, Robert H. Crabtree, and Gary W. Brudvig . Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors. Inorganic Chemistry 2012, 51
(14)
, 7749-7763. https://doi.org/10.1021/ic300764f
- Ulrich Hintermair, Sara M. Hashmi, Menachem Elimelech, and Robert H. Crabtree . Particle Formation during Oxidation Catalysis with Cp* Iridium Complexes. Journal of the American Chemical Society 2012, 134
(23)
, 9785-9795. https://doi.org/10.1021/ja3033026
- Prashant V. Kamat . Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. The Journal of Physical Chemistry Letters 2012, 3
(5)
, 663-672. https://doi.org/10.1021/jz201629p
- Meng Zhou, David Balcells, Alexander R. Parent, Robert H. Crabtree, and Odile Eisenstein . Cp* Iridium Precatalysts for Selective C–H Oxidation via Direct Oxygen Insertion: A Joint Experimental/Computational Study. ACS Catalysis 2012, 2
(2)
, 208-218. https://doi.org/10.1021/cs2005899
- Youngmin Lee, Jin Suntivich, Kevin J. May, Erin E. Perry, and Yang Shao-Horn . Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3
(3)
, 399-404. https://doi.org/10.1021/jz2016507
- Toshihiro Takashima, Kazuhito Hashimoto, and Ryuhei Nakamura . Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts. Journal of the American Chemical Society 2012, 134
(3)
, 1519-1527. https://doi.org/10.1021/ja206511w
- Douglas B. Grotjahn, Derek B. Brown, Jessica K. Martin, David C. Marelius, Marie-Caline Abadjian, Hai N. Tran, Gregory Kalyuzhny, Kenneth S. Vecchio, Zephen G. Specht, Sara A. Cortes-Llamas, Valentin Miranda-Soto, Christoffel van Niekerk, Curtis E. Moore, and Arnold L. Rheingold . Evolution of Iridium-Based Molecular Catalysts during Water Oxidation with Ceric Ammonium Nitrate. Journal of the American Chemical Society 2011, 133
(47)
, 19024-19027. https://doi.org/10.1021/ja203095k
- Alessa A. Gambardella, Natalie S. Bjorge, V. Katherine Alspaugh, and Royce W. Murray . Voltammetry of Diffusing 2 nm Iridium Oxide Nanoparticles. The Journal of Physical Chemistry C 2011, 115
(44)
, 21659-21665. https://doi.org/10.1021/jp206987z
- Benjamin H. Meekins and Prashant V. Kamat . Role of Water Oxidation Catalyst IrO2 in Shuttling Photogenerated Holes Across TiO2 Interface. The Journal of Physical Chemistry Letters 2011, 2
(18)
, 2304-2310. https://doi.org/10.1021/jz200852m
- Raghunandan Sharma, Per Morgen, Shuang Ma Andersen. Dissolution of nanoparticulate IrO2 in dilute acidic baths through a pre-reduction step: A method to recover Ir from electrocatalytic/catalytic bodies. Applied Surface Science 2025, 681 , 161553. https://doi.org/10.1016/j.apsusc.2024.161553
- Swapnil Sanjay Karade, Raghunandan Sharma, Per Morgen, Rebecca K. Pittkowski, Kirsten M. Ø. Jensen, Shuang Ma Andersen. Intrinsic oxygen evolution reaction activity and stability enhancement of IrOx electrocatalysts by microwave irradiation. Applied Surface Science 2025, 682 , 161758. https://doi.org/10.1016/j.apsusc.2024.161758
- Chenlu Yang, Wenhui Ling, Yanping Zhu, Yunxiao Yang, Shu Dong, Chengyu Wu, Zhangrui Wang, Shuai Yang, Jun Li, Guoliang Wang, Yifan Huang, Bo Yang, Qingqing Cheng, Zhi Liu, Hui Yang. Surface hydroxylation engineering to boost oxygen evolution reaction on IrO2/TiO2 for PEM water electrolyzer. Applied Catalysis B: Environment and Energy 2024, 358 , 124462. https://doi.org/10.1016/j.apcatb.2024.124462
- Tong Ji, Wen Ye, Weiyu Xiao, Graham Dawson, Qiuchen Dong, Christopher Gwenin. Iridium oxide-modified reference screen-printed electrodes for point-of-care portable electrochemical cortisol detection. Talanta 2024, 280 , 126776. https://doi.org/10.1016/j.talanta.2024.126776
- Shangheng Liu, Xiaocan Wang, Wei‐Hsiang Huang, Qiugen Zhang, Jiajia Han, Yingtian Zhang, Chih‐Wen Pao, Zhiwei Hu, Yong Xu, Xiaoqing Huang. Solvation Effect‐Determined Mechanisms of Cation Exchange Reactions for Efficient Multicomponent Nanocatalysts. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202418248
- Shangheng Liu, Xiaocan Wang, Wei-Hsiang Huang, Qiugen Zhang, Jiajia Han, Yingtian Zhang, Chih-Wen Pao, Zhiwei Hu, Yong Xu, Xiaoqing Huang. Solvation Effect‐Determined Mechanisms of Cation Exchange Reactions for Efficient Multicomponent Nanocatalysts. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202418248
- Swapnil Sanjay Karade, Raghunandan Sharma, Martin Aage Barsøe Hedegaard, Shuang Ma Andersen. Stepwise Understanding on Hydrolysis Formation of the IrOx Nanoparticles as Highly Active Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis 2024, 15
(4)
, 291-300. https://doi.org/10.1007/s12678-024-00874-x
- Himanshi Dhawan, Xuehai Tan, Jing Shen, James Woodford, Marc Secanell, Natalia Semagina. Strong Metal‐Support Interactions in ZrO
2
‐Supported IrO
x
Catalyst for Efficient Oxygen Evolution Reaction. ChemCatChem 2024, 16
(1)
https://doi.org/10.1002/cctc.202300668
- Kuang-Chih Tso, Tzu-Ying Chan, Tsung-Chun Yu, Yu-Jen Tao, Chao-Yi Chu, San-Yuan Chen, Jyh-Fu Lee, Jun Ohta, Po-Chun Chen, Pu-Wei Wu. A robust bendable IrOx thin film via mild alkaline solution process for neuron stimulating electrodes. Surfaces and Interfaces 2024, 44 , 103785. https://doi.org/10.1016/j.surfin.2023.103785
- Khaja Wahab, Hicham Idriss. Water Oxidation over Au-Pd/TiO2 as a Substitute for Iridium-Based Catalysts. Catalysts 2024, 14
(1)
, 87. https://doi.org/10.3390/catal14010087
- Lamei Li, Zifang Cheng, Jiaqi Su, Beibei Song, Hao Yu, Yujin Ji, Qi Shao, Jianmei Lu. One-dimensional amorphous porous iridium–ruthenium oxide for efficient acidic oxygen evolution reaction. Journal of Materials Chemistry A 2023, 11
(46)
, 25268-25274. https://doi.org/10.1039/D3TA04597H
- Rafael A. Prato M., Jan Fransaer, Xochitl Dominguez-Benetton. Self-limiting thin film deposition of amorphous metal oxides from aprotic solvents for oxygen evolution electrocatalysis. Journal of Materials Chemistry A 2023, 11
(38)
, 20824-20838. https://doi.org/10.1039/D3TA02647G
- Marko Malinovic, Paul Paciok, Ezra Shanli Koh, Moritz Geuß, Jisik Choi, Philipp Pfeifer, Jan Philipp Hofmann, Daniel Göhl, Marc Heggen, Serhiy Cherevko, Marc Ledendecker. Size‐Controlled Synthesis of IrO
2
Nanoparticles at High Temperatures for the Oxygen Evolution Reaction. Advanced Energy Materials 2023, 13
(28)
https://doi.org/10.1002/aenm.202301450
- Lu-Yu Chueh, Chun-Han Kuo, Ren-Hao Yang, Ding-Huei Tsai, Meng-Hsuan Tsai, Chueh-Cheng Yang, Han-Yi Chen, Chia-Hsin Wang, Yung-Tin Pan. WOx nanowire supported ultra-fine Ir-IrOx nanocatalyst with compelling OER activity and durability. Chemical Engineering Journal 2023, 464 , 142613. https://doi.org/10.1016/j.cej.2023.142613
- Marius Gollasch, Jasmin Schmeling, Corinna Harms, Michael Wark. Comparative Analysis of Synthesis Routes for Antimony‐Doped Tin Oxide‐Supported Iridium and Iridium oxide Catalysts for OER in PEM Water Electrolysis. Advanced Materials Interfaces 2023, 10
(15)
https://doi.org/10.1002/admi.202300036
- Hairus Abdullah, Hardy Shuwanto, Jenni Lie, Mika Sillanpää. Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering 2023, 11
(2)
, 109356. https://doi.org/10.1016/j.jece.2023.109356
- Tsuyoshi Takata, Kazunari Domen, Sayuri Okunaka, Hiromasa Tokudome, Naohiko Kato, Takeshi Morikawa, Yasuhiko Takeda. Scaling Up Photocatalysts and New Devices for Solar Water Splitting and CO2 Reduction. 2023, 331-362. https://doi.org/10.1039/9781839167768-00331
- Shih-Cheng Chou, Yi-Chieh Hsieh, Wai-Hong Cheang, Bo-Yao Sun, Chao-Yi Chu, San-Yuan Chen, Jung-Chih Chiao, Pu-Wei Wu. A flexible IrO2 membrane for pH sensing. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-15961-6
- Hyunho Noh, James M. Mayer. Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes. Chem 2022, 8
(12)
, 3324-3345. https://doi.org/10.1016/j.chempr.2022.08.018
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.