ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVNanoparticles and Na...Nanoparticles and NanostructuresNEXT

A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity

View Author Information
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
Cite this: J. Phys. Chem. Lett. 2011, 2, 5, 402–406
Publication Date (Web):February 7, 2011
https://doi.org/10.1021/jz200051c
Copyright © 2011 American Chemical Society

    Article Views

    6871

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Stable blue suspensions of 2 nm diameter iridium oxide (IrOx·nH2O) nanoparticles were obtained by hydrolyzing IrCl62− in base at 90 °C to produce [Ir(OH)6]2− and then treating with HNO3 at 0 °C. UV−visible spectra show that acid condensation of [Ir(OH)6]2− results in quantitative conversion to stable, ligand-free IrOx·nH2O nanoparticles, which have an extinction coefficient of 630 ± 50 M−1cm−1 at 580 nm. In contrast, alkaline hydrolysis alone converts only 30% of the sample to IrOx·nH2O at 2 mM concentration. The acidified nanoparticles are stable for at least one month at 2 °C and can be used to make colloidal solutions between pH 1 and 13. At pH 7 and above, some hydrolysis to form [Ir(OH)6]2− occurs. Uniform IrOx·nH2O electrode films were grown anodically from pH 1 solutions, and were found to be highly active for water oxidation between pH 1 and 13.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    UV−visible spectra of acidic IrOx·nH2O colloids prepared using HBF4 and HCl in place of HNO3, TEM images of IrOx·nH2O nanoparticles, photographs of FTO electrodes with colloidal IrOx·nH2O films, and electrochemical data from RDE experiments (5 pp). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 273 publications.

    1. Johannes G. Vos, Amar A. Bhardwaj, Adriaan W. Jeremiasse, Daniel V. Esposito, Marc T. M. Koper. Probing the Effects of Electrode Composition and Morphology on the Effectiveness of Silicon Oxide Overlayers to Enhance Selective Oxygen Evolution in the Presence of Chloride Ions. The Journal of Physical Chemistry C 2022, 126 (48) , 20314-20325. https://doi.org/10.1021/acs.jpcc.2c07116
    2. Jiajian Gao, Yan Liu, Bin Liu, Kuo-Wei Huang. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS Nano 2022, 16 (11) , 17761-17777. https://doi.org/10.1021/acsnano.2c08519
    3. Hui Chen, Lei Shi, Ke Sun, Kexin Zhang, Qi Liu, Junjie Ge, Xiao Liang, Boyuan Tian, Yalan Huang, Zhaoping Shi, Zizhun Wang, Wei Zhang, Mingjie Liu, Xiaoxin Zou. Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catalysis 2022, 12 (14) , 8658-8666. https://doi.org/10.1021/acscatal.2c01241
    4. Oliver Wetzel, Oleg Prymak, Kateryna Loza, Nina Gumbiowski, Marc Heggen, Peter Bayer, Christine Beuck, Claudia Weidenthaler, Matthias Epple. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorganic Chemistry 2022, 61 (12) , 5133-5147. https://doi.org/10.1021/acs.inorgchem.2c00281
    5. Seongeun Park, Meital Shviro, Heinrich Hartmann, Joachim Mayer, Marcelo Carmo, Detlef Stolten. Cation-Exchange Method Enables Uniform Iridium Oxide Nanospheres for Oxygen Evolution Reaction. ACS Applied Nano Materials 2022, 5 (3) , 4062-4071. https://doi.org/10.1021/acsanm.2c00031
    6. Naohiko Kato, Yasuhiko Takeda, Yasuaki Kawai, Natsumi Nojiri, Masahito Shiozawa, Shintaro Mizuno, Ken-ichi Yamanaka, Takeshi Morikawa, Tsuyoshi Hamaguchi. Solar Fuel Production from CO2 Using a 1 m-Square-Sized Reactor with a Solar-to-Formate Conversion Efficiency of 10.5%. ACS Sustainable Chemistry & Engineering 2021, 9 (48) , 16031-16037. https://doi.org/10.1021/acssuschemeng.1c06390
    7. Federica Mariani, Martina Serafini, Isacco Gualandi, Danilo Arcangeli, Francesco Decataldo, Luca Possanzini, Marta Tessarolo, Domenica Tonelli, Beatrice Fraboni, Erika Scavetta. Advanced Wound Dressing for Real-Time pH Monitoring. ACS Sensors 2021, 6 (6) , 2366-2377. https://doi.org/10.1021/acssensors.1c00552
    8. Debraj Chandra, Tomohiro Katsuki, Takeshi Masaki, Naoto Abe, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Highly Efficient Electrocatalytic Water Oxidation by a Transparent Ordered Mesoporous Film of Intermediate IrOx(OH)y. ACS Applied Energy Materials 2021, 4 (5) , 4355-4364. https://doi.org/10.1021/acsaem.0c03125
    9. Junjie Zhu, Jónína B. Guđmundsdóttir, Ragnar Strandbakke, Kevin G. Both, Thomas Aarholt, Patricia A. Carvalho, Magnus H. Sørby, Ingvild J. T. Jensen, Matylda N. Guzik, Truls Norby, Halvard Haug, Athanasios Chatzitakis. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (17) , 20313-20325. https://doi.org/10.1021/acsami.1c01900
    10. Ronghuang Zhang, Paul E. Pearce, Vanessa Pimenta, Jordi Cabana, Heifang Li, Daniel Alves Dalla Corte, Artem M. Abakumov, Gwenaëlle Rousse, Domitille Giaume, Michael Deschamps, Alexis Grimaud. First Example of Protonation of Ruddlesden–Popper Sr2IrO4: A Route to Enhanced Water Oxidation Catalysts. Chemistry of Materials 2020, 32 (8) , 3499-3509. https://doi.org/10.1021/acs.chemmater.0c00432
    11. Bas van Dijk, Gabriel Menendez Rodriguez, Longfei Wu, Jan P. Hofmann, Alceo Macchioni, Dennis G. H. Hetterscheid. The Influence of the Ligand in the Iridium Mediated Electrocatalyic Water Oxidation. ACS Catalysis 2020, 10 (7) , 4398-4410. https://doi.org/10.1021/acscatal.0c00531
    12. Jonathan Ruiz Esquius, David J. Morgan, Ioannis Spanos, Daniel G. Hewes, Simon J. Freakley, Graham J. Hutchings. Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrOx Oxygen Evolution Catalysts. ACS Applied Energy Materials 2020, 3 (1) , 800-809. https://doi.org/10.1021/acsaem.9b01642
    13. Wenping Si, Zahra Pourmand Tehrani, Fatima Haydous, Nicola Marzari, Ivano E. Castelli, Daniele Pergolesi, Thomas Lippert. Yttrium Tantalum Oxynitride Multiphases as Photoanodes for Water Oxidation. The Journal of Physical Chemistry C 2019, 123 (43) , 26211-26217. https://doi.org/10.1021/acs.jpcc.9b05590
    14. Hui Su, Xu Zhao, Weiren Cheng, Hui Zhang, Yuanli Li, Wanlin Zhou, Meihuan Liu, Qinghua Liu. Hetero-N-Coordinated Co Single Sites with High Turnover Frequency for Efficient Electrocatalytic Oxygen Evolution in an Acidic Medium. ACS Energy Letters 2019, 4 (8) , 1816-1822. https://doi.org/10.1021/acsenergylett.9b01129
    15. Kai S. Exner, Herbert Over. Beyond the Rate-Determining Step in the Oxygen Evolution Reaction over a Single-Crystalline IrO2(110) Model Electrode: Kinetic Scaling Relations. ACS Catalysis 2019, 9 (8) , 6755-6765. https://doi.org/10.1021/acscatal.9b01564
    16. Daniel Opalka, Christoph Scheurer, Karsten Reuter. Ab Initio Thermodynamics Insight into the Structural Evolution of Working IrO2 Catalysts in Proton-Exchange Membrane Electrolyzers. ACS Catalysis 2019, 9 (6) , 4944-4950. https://doi.org/10.1021/acscatal.9b00796
    17. Kaustuv Mittra, Michael T. Green. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C–H Bond Activation. Journal of the American Chemical Society 2019, 141 (13) , 5504-5510. https://doi.org/10.1021/jacs.9b00242
    18. Taishi Kimura, Shunsuke Sato, Keita Kataoka, Takeshi Morikawa, Daisuke Nakamura. Self-Assembled Single-Crystalline GaN Having a Bimodal Meso/Macropore Structure To Enhance Photoabsorption and Photocatalytic Reactions. ACS Applied Materials & Interfaces 2019, 11 (4) , 4233-4241. https://doi.org/10.1021/acsami.8b18088
    19. Hongyu Guo, Hao Li, Karalee Jarvis, Haiqin Wan, Pranaw Kunal, Samuel G. Dunning, Yulu Liu, Graeme Henkelman, Simon M. Humphrey. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. ACS Catalysis 2018, 8 (12) , 11386-11397. https://doi.org/10.1021/acscatal.8b02103
    20. Johannes G. Vos, Tim A. Wezendonk, Adriaan W. Jeremiasse, Marc T. M. Koper. MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society 2018, 140 (32) , 10270-10281. https://doi.org/10.1021/jacs.8b05382
    21. Hua Wang, Mei Ming, Min Hu, Caili Xu, Yi Wang, Yun Zhang, Daojiang Gao, Jian Bi, Guangyin Fan, Jin-Song Hu. Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (26) , 22340-22347. https://doi.org/10.1021/acsami.8b07639
    22. Denise Capoferri, Ruslan Álvarez-Diduk, Michele Del Carlo, Dario Compagnone, Arben Merkoçi. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Analytical Chemistry 2018, 90 (9) , 5850-5856. https://doi.org/10.1021/acs.analchem.8b00389
    23. Lin Ma, Sung-Fu Hung, Liping Zhang, Weizheng Cai, Hong Bin Yang, Hao Ming Chen, and Bin Liu . High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Industrial & Engineering Chemistry Research 2018, 57 (5) , 1441-1445. https://doi.org/10.1021/acs.iecr.7b04812
    24. Miao Kan, Xufang Qian, Taiyang Zhang, Dongting Yue, and Yixin Zhao . Highly Active IrOx Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO2 Interface Engineering. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 10940-10946. https://doi.org/10.1021/acssuschemeng.7b02850
    25. Dawei Shao, Yahui Cheng, Jie He, Deqiang Feng, Lingcheng Zheng, Lijun Zheng, Xinghua Zhang, Jianping Xu, Weichao Wang, Weihua Wang, Feng Lu, Hong Dong, Luyan Li, Hui Liu, Rongkun Zheng, and Hui Liu . A Spatially Separated Organic–Inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting. ACS Catalysis 2017, 7 (8) , 5308-5315. https://doi.org/10.1021/acscatal.7b01002
    26. Olivier Matz and Monica Calatayud . Periodic DFT Study of Rutile IrO2: Surface Reactivity and Catechol Adsorption. The Journal of Physical Chemistry C 2017, 121 (24) , 13135-13143. https://doi.org/10.1021/acs.jpcc.7b01990
    27. Shusaku Shoji, Akira Yamaguchi, Etsuo Sakai, and Masahiro Miyauchi . Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO2 Reduction Using Water as an Electron Donor. ACS Applied Materials & Interfaces 2017, 9 (24) , 20613-20619. https://doi.org/10.1021/acsami.7b05197
    28. Kuldeep Mamtani, Deeksha Jain, Anne C. Co, and Umit S. Ozkan . Nitrogen-Coordinated Iron−Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy & Fuels 2017, 31 (6) , 6541-6547. https://doi.org/10.1021/acs.energyfuels.7b00242
    29. Jianmei Wang, Xiao Ma, Fengli Qu, Abdullah M. Asiri, and Xuping Sun . Fe-Doped Ni2P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation. Inorganic Chemistry 2017, 56 (3) , 1041-1044. https://doi.org/10.1021/acs.inorgchem.6b02808
    30. Paul A. DeSario, Christopher N. Chervin, Eric S. Nelson, Megan B. Sassin, and Debra R. Rolison . Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO2. ACS Applied Materials & Interfaces 2017, 9 (3) , 2387-2395. https://doi.org/10.1021/acsami.6b12984
    31. Zoran Pavlovic, Chinmoy Ranjan, Qiang Gao, Maurice van Gastel, and Robert Schlögl . Probing the Structure of a Water-Oxidizing Anodic Iridium Oxide Catalyst using Raman Spectroscopy. ACS Catalysis 2016, 6 (12) , 8098-8105. https://doi.org/10.1021/acscatal.6b02343
    32. Toshihiro Takashima, Koki Ishikawa, and Hiroshi Irie . Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements. The Journal of Physical Chemistry C 2016, 120 (43) , 24827-24834. https://doi.org/10.1021/acs.jpcc.6b07978
    33. Daniel F. Abbott, Dmitry Lebedev, Kay Waltar, Mauro Povia, Maarten Nachtegaal, Emiliana Fabbri, Christophe Copéret, and Thomas J. Schmidt . Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chemistry of Materials 2016, 28 (18) , 6591-6604. https://doi.org/10.1021/acs.chemmater.6b02625
    34. Nagaraju Shilpa, Joydeb Manna, Parasmani Rajput, and Rohit Kumar Rana . Water Oxidation Catalyst via Heterogenization of Iridium Oxides on Silica: A Polyamine-Mediated Route To Achieve Activity and Stability. ACS Catalysis 2016, 6 (9) , 5699-5705. https://doi.org/10.1021/acscatal.6b00966
    35. Debraj Chandra, Daisuke Takama, Takeshi Masaki, Tsubasa Sato, Naoto Abe, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui, and Masayuki Yagi . Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrOx(OH)y Nanoparticle Films for Water Oxidation. ACS Catalysis 2016, 6 (6) , 3946-3954. https://doi.org/10.1021/acscatal.6b00621
    36. Wei Sun, Ya Song, Xue-Qing Gong, Li-mei Cao, and Ji Yang . Hollandite Structure Kx≈0.25IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2016, 8 (1) , 820-826. https://doi.org/10.1021/acsami.5b10159
    37. Megan E. Strayer, Thomas P. Senftle, Jonathan P. Winterstein, Nella M. Vargas-Barbosa, Renu Sharma, Robert M. Rioux, Michael J. Janik, and Thomas E. Mallouk . Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support. Journal of the American Chemical Society 2015, 137 (51) , 16216-16224. https://doi.org/10.1021/jacs.5b11230
    38. Liang-Liang Feng, Guangtao Yu, Yuanyuan Wu, Guo-Dong Li, Hui Li, Yuanhui Sun, Tewodros Asefa, Wei Chen, and Xiaoxin Zou . High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. Journal of the American Chemical Society 2015, 137 (44) , 14023-14026. https://doi.org/10.1021/jacs.5b08186
    39. Dongniu Wang, Jigang Zhou, Yongfeng Hu, Jinli Yang, Na Han, Yanguang Li, and Tsun-Kong Sham . In Situ X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH)x Electrocatalyst on Carbon Paper for Water Oxidation. The Journal of Physical Chemistry C 2015, 119 (34) , 19573-19583. https://doi.org/10.1021/acs.jpcc.5b02685
    40. Di Xu, Peng Diao, Tao Jin, Qingyong Wu, Xiaofang Liu, Xin Guo, Hongyu Gong, Fan Li, Min Xiang, and Yu Ronghai . Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol. ACS Applied Materials & Interfaces 2015, 7 (30) , 16738-16749. https://doi.org/10.1021/acsami.5b04504
    41. Katherine E. Michaux, Alessa A. Gambardella, Leila Alibabaei, Dennis L. Ashford, Benjamin D. Sherman, Robert A. Binstead, Thomas J. Meyer, and Royce W. Murray . Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst. The Journal of Physical Chemistry C 2015, 119 (29) , 17023-17027. https://doi.org/10.1021/acs.jpcc.5b05711
    42. Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137 (27) , 8749-8757. https://doi.org/10.1021/jacs.5b03470
    43. Mariachiara Pastore and Filippo De Angelis . First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation. Journal of the American Chemical Society 2015, 137 (17) , 5798-5809. https://doi.org/10.1021/jacs.5b02128
    44. Miao Zhong, Takashi Hisatomi, Yongbo Kuang, Jiao Zhao, Min Liu, Akihide Iwase, Qingxin Jia, Hiroshi Nishiyama, Tsutomu Minegishi, Mamiko Nakabayashi, Naoya Shibata, Ryo Niishiro, Chisato Katayama, Hidetaka Shibano, Masao Katayama, Akihiko Kudo, Taro Yamada, and Kazunari Domen . Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society 2015, 137 (15) , 5053-5060. https://doi.org/10.1021/jacs.5b00256
    45. Helmut Schäfer, Seyyed Mohsen Beladi-Mousavi, Lorenz Walder, Joachim Wollschläger, Olga Kuschel, Sachar Ichilmann, Shamaila Sadaf, Martin Steinhart, Karsten Küpper, and Lilli Schneider . Surface Oxidation of Stainless Steel: Oxygen Evolution Electrocatalysts with High Catalytic Activity. ACS Catalysis 2015, 5 (4) , 2671-2680. https://doi.org/10.1021/acscatal.5b00221
    46. Lizhi Tao Troy A. Stich Hugues Jaccard R. David Britt William H. Casey . Manganese-Oxide Solids as Water-Oxidation Electrocatalysts: The Effect of Intercalating Cations. 2015, 135-153. https://doi.org/10.1021/bk-2015-1197.ch007
    47. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
    48. Hong Bin Yang, Jianwei Miao, Sung-Fu Hung, Fengwei Huo, Hao Ming Chen, and Bin Liu . Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano 2014, 8 (10) , 10403-10413. https://doi.org/10.1021/nn503751s
    49. Julianne M. Thomsen, Stafford W. Sheehan, Sara M. Hashmi, Jesús Campos, Ulrich Hintermair, Robert H. Crabtree, and Gary W. Brudvig . Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society 2014, 136 (39) , 13826-13834. https://doi.org/10.1021/ja5068299
    50. Xingxing Yu, Tianyi Hua, Xiang Liu, Zhiping Yan, Peng Xu, and Pingwu Du . Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces 2014, 6 (17) , 15395-15402. https://doi.org/10.1021/am503938c
    51. Michal Bledowski, Lidong Wang, Susann Neubert, Dariusz Mitoraj, and Radim Beranek . Improving the Performance of Hybrid Photoanodes for Water Splitting by Photodeposition of Iridium Oxide Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (33) , 18951-18961. https://doi.org/10.1021/jp506434a
    52. Youssef Lattach, Juan Francisco Rivera, Tahya Bamine, Alain Deronzier, and Jean-Claude Moutet . Iridium Oxide–Polymer Nanocomposite Electrode Materials for Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (15) , 12852-12859. https://doi.org/10.1021/am5027852
    53. Wooyul Kim, Guangbi Yuan, Beth Anne McClure, and Heinz Frei . Light Induced Carbon Dioxide Reduction by Water at Binuclear ZrOCoII Unit Coupled to Ir Oxide Nanocluster Catalyst. Journal of the American Chemical Society 2014, 136 (31) , 11034-11042. https://doi.org/10.1021/ja504753g
    54. John R. Swierk, Nicholas S. McCool, Timothy P. Saunders, Greg D. Barber, Megan E. Strayer, Nella M. Vargas-Barbosa, and Thomas E. Mallouk . Photovoltage Effects of Sintered IrO2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 17046-17053. https://doi.org/10.1021/jp500589n
    55. Ali Han, Haotian Wu, Zijun Sun, Hongxing Jia, Zhiping Yan, Hao Ma, Xiang Liu, and Pingwu Du . Green Cobalt Oxide (CoOx) Film with Nanoribbon Structures Electrodeposited from the BF2-Annulated Cobaloxime Precursor for Efficient Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (14) , 10929-10934. https://doi.org/10.1021/am500830z
    56. Diego J. Gavia, Yeonjin Do, Jiyeong Gu, and Young-Seok Shon . Mechanistic Insights into the Formation of Dodecanethiolate-Stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs Thiol Ligands. The Journal of Physical Chemistry C 2014, 118 (26) , 14548-14554. https://doi.org/10.1021/jp504239x
    57. Christopher R. Turlington, Peter S. White, Maurice Brookhart, and Joseph L. Templeton . Oxygen Atom Transfer to a Half-Sandwich Iridium Complex: Clean Oxidation Yielding a Molecular Product. Journal of the American Chemical Society 2014, 136 (10) , 3981-3994. https://doi.org/10.1021/ja413023f
    58. Rodney D. L. Smith, Barbora Sporinova, Randal D. Fagan, Simon Trudel, and Curtis P. Berlinguette . Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation Catalysis. Chemistry of Materials 2014, 26 (4) , 1654-1659. https://doi.org/10.1021/cm4041715
    59. Heejin Kim and Kijung Yong . Highly Efficient Photoelectrochemical Hydrogen Generation Using a Quantum Dot Coupled Hierarchical ZnO Nanowires Array. ACS Applied Materials & Interfaces 2013, 5 (24) , 13258-13264. https://doi.org/10.1021/am404259y
    60. Charles C. L. McCrory, Suho Jung, Jonas C. Peters, and Thomas F. Jaramillo . Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135 (45) , 16977-16987. https://doi.org/10.1021/ja407115p
    61. Katherine E. Michaux and Royce W. Murray . Formation of Iridium(IV) Oxide (IrOX) Films by Electroflocculation. Langmuir 2013, 29 (39) , 12254-12258. https://doi.org/10.1021/la4025876
    62. Ulrich Hintermair, Stafford W. Sheehan, Alexander R. Parent, Daniel H. Ess, David T. Richens, Patrick H. Vaccaro, Gary W. Brudvig, and Robert H. Crabtree . Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. Journal of the American Chemical Society 2013, 135 (29) , 10837-10851. https://doi.org/10.1021/ja4048762
    63. Kiran P. Kadlag, M. Jagadeeswara Rao, and Angshuman Nag . Ligand-Free, Colloidal, and Luminescent Metal Sulfide Nanocrystals. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1676-1681. https://doi.org/10.1021/jz4007096
    64. Shannon C. Riha, Benjamin M. Klahr, Eric C. Tyo, Sönke Seifert, Stefan Vajda, Michael J. Pellin, Thomas W. Hamann, and Alex B. F. Martinson . Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano 2013, 7 (3) , 2396-2405. https://doi.org/10.1021/nn305639z
    65. Laura Badia-Bou, Elena Mas-Marza, Pau Rodenas, Eva M. Barea, Francisco Fabregat-Santiago, Sixto Gimenez, Eduardo Peris, and Juan Bisquert . Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. The Journal of Physical Chemistry C 2013, 117 (8) , 3826-3833. https://doi.org/10.1021/jp311983n
    66. James D. Blakemore, Michael W. Mara, Maxwell N. Kushner-Lenhoff, Nathan D. Schley, Steven J. Konezny, Ivan Rivalta, Christian F. A. Negre, Robert C. Snoeberger, Oleksandr Kokhan, Jier Huang, Andrew Stickrath, Lan Anh Tran, Maria L. Parr, Lin X. Chen, David M. Tiede, Victor S. Batista, Robert H. Crabtree, and Gary W. Brudvig . Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors. Inorganic Chemistry 2013, 52 (4) , 1860-1871. https://doi.org/10.1021/ic301968j
    67. Minsu Seol, Ji-Wook Jang, Seungho Cho, Jae Sung Lee, and Kijung Yong . Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation. Chemistry of Materials 2013, 25 (2) , 184-189. https://doi.org/10.1021/cm303206s
    68. Toshihiro Takashima, Kazuhito Hashimoto, and Ryuhei Nakamura . Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions. Journal of the American Chemical Society 2012, 134 (44) , 18153-18156. https://doi.org/10.1021/ja306499n
    69. James Landon, Ethan Demeter, Nilay İnoğlu, Chris Keturakis, Israel E. Wachs, Relja Vasić, Anatoly I. Frenkel, and John R. Kitchin . Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis 2012, 2 (8) , 1793-1801. https://doi.org/10.1021/cs3002644
    70. James D. Blakemore, Nathan D. Schley, Maxwell N. Kushner-Lenhoff, Andrew M. Winter, Francis D’Souza, Robert H. Crabtree, and Gary W. Brudvig . Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors. Inorganic Chemistry 2012, 51 (14) , 7749-7763. https://doi.org/10.1021/ic300764f
    71. Ulrich Hintermair, Sara M. Hashmi, Menachem Elimelech, and Robert H. Crabtree . Particle Formation during Oxidation Catalysis with Cp* Iridium Complexes. Journal of the American Chemical Society 2012, 134 (23) , 9785-9795. https://doi.org/10.1021/ja3033026
    72. Prashant V. Kamat . Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. The Journal of Physical Chemistry Letters 2012, 3 (5) , 663-672. https://doi.org/10.1021/jz201629p
    73. Meng Zhou, David Balcells, Alexander R. Parent, Robert H. Crabtree, and Odile Eisenstein . Cp* Iridium Precatalysts for Selective C–H Oxidation via Direct Oxygen Insertion: A Joint Experimental/Computational Study. ACS Catalysis 2012, 2 (2) , 208-218. https://doi.org/10.1021/cs2005899
    74. Youngmin Lee, Jin Suntivich, Kevin J. May, Erin E. Perry, and Yang Shao-Horn . Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3 (3) , 399-404. https://doi.org/10.1021/jz2016507
    75. Toshihiro Takashima, Kazuhito Hashimoto, and Ryuhei Nakamura . Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts. Journal of the American Chemical Society 2012, 134 (3) , 1519-1527. https://doi.org/10.1021/ja206511w
    76. Douglas B. Grotjahn, Derek B. Brown, Jessica K. Martin, David C. Marelius, Marie-Caline Abadjian, Hai N. Tran, Gregory Kalyuzhny, Kenneth S. Vecchio, Zephen G. Specht, Sara A. Cortes-Llamas, Valentin Miranda-Soto, Christoffel van Niekerk, Curtis E. Moore, and Arnold L. Rheingold . Evolution of Iridium-Based Molecular Catalysts during Water Oxidation with Ceric Ammonium Nitrate. Journal of the American Chemical Society 2011, 133 (47) , 19024-19027. https://doi.org/10.1021/ja203095k
    77. Alessa A. Gambardella, Natalie S. Bjorge, V. Katherine Alspaugh, and Royce W. Murray . Voltammetry of Diffusing 2 nm Iridium Oxide Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (44) , 21659-21665. https://doi.org/10.1021/jp206987z
    78. Benjamin H. Meekins and Prashant V. Kamat . Role of Water Oxidation Catalyst IrO2 in Shuttling Photogenerated Holes Across TiO2 Interface. The Journal of Physical Chemistry Letters 2011, 2 (18) , 2304-2310. https://doi.org/10.1021/jz200852m
    79. Marko Malinovic, Paul Paciok, Ezra Shanli Koh, Moritz Geuß, Jisik Choi, Philipp Pfeifer, Jan Philipp Hofmann, Daniel Göhl, Marc Heggen, Serhiy Cherevko, Marc Ledendecker. Size‐Controlled Synthesis of IrO 2 Nanoparticles at High Temperatures for the Oxygen Evolution Reaction. Advanced Energy Materials 2023, 13 (28) https://doi.org/10.1002/aenm.202301450
    80. Lu-Yu Chueh, Chun-Han Kuo, Ren-Hao Yang, Ding-Huei Tsai, Meng-Hsuan Tsai, Chueh-Cheng Yang, Han-Yi Chen, Chia-Hsin Wang, Yung-Tin Pan. WOx nanowire supported ultra-fine Ir-IrOx nanocatalyst with compelling OER activity and durability. Chemical Engineering Journal 2023, 464 , 142613. https://doi.org/10.1016/j.cej.2023.142613
    81. Marius Gollasch, Jasmin Schmeling, Corinna Harms, Michael Wark. Comparative Analysis of Synthesis Routes for Antimony‐Doped Tin Oxide‐Supported Iridium and Iridium oxide Catalysts for OER in PEM Water Electrolysis. Advanced Materials Interfaces 2023, 10 (15) https://doi.org/10.1002/admi.202300036
    82. Hairus Abdullah, Hardy Shuwanto, Jenni Lie, Mika Sillanpää. Critical parameters and essential strategies in designing photoanodes to overcome the sluggish water oxidation reaction. Journal of Environmental Chemical Engineering 2023, 11 (2) , 109356. https://doi.org/10.1016/j.jece.2023.109356
    83. Tsuyoshi Takata, Kazunari Domen, Sayuri Okunaka, Hiromasa Tokudome, Naohiko Kato, Takeshi Morikawa, Yasuhiko Takeda. Scaling Up Photocatalysts and New Devices for Solar Water Splitting and CO2 Reduction. 2023, 331-362. https://doi.org/10.1039/9781839167768-00331
    84. Rafael A. Prato M., Jan Fransaer, Xochitl Dominguez-Benetton. Self-limiting thin film deposition of amorphous metal oxides from aprotic solvents for oxygen evolution electrocatalysis. Journal of Materials Chemistry A 2023, 103 https://doi.org/10.1039/D3TA02647G
    85. Shih-Cheng Chou, Yi-Chieh Hsieh, Wai-Hong Cheang, Bo-Yao Sun, Chao-Yi Chu, San-Yuan Chen, Jung-Chih Chiao, Pu-Wei Wu. A flexible IrO2 membrane for pH sensing. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-15961-6
    86. Hyunho Noh, James M. Mayer. Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes. Chem 2022, 8 (12) , 3324-3345. https://doi.org/10.1016/j.chempr.2022.08.018
    87. Masahito Shiozawa, Kosuke Kitazumi, Mina Iwai, Shintaro Mizuno, Naohiko Kato, Yasuhiko Takeda, Tsuyoshi Hamaguchi. Improved Durability of Highly Active IrOx Electrodes for Electrocatalytic Oxygen Evolution Reaction. Electrocatalysis 2022, 13 (6) , 830-837. https://doi.org/10.1007/s12678-022-00764-0
    88. Mattia Benedet, Gian Andrea Rizzi, Alberto Gasparotto, Oleg I. Lebedev, Leonardo Girardi, Chiara Maccato, Davide Barreca. Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization. Chemical Engineering Journal 2022, 448 , 137645. https://doi.org/10.1016/j.cej.2022.137645
    89. Carlos Díaz, Marjorie Segovia, Maria Luisa Valenzuela. Solid State Nanostructured Metal Oxides as Photocatalysts and Their Application in Pollutant Degradation: A Review. Photochem 2022, 2 (3) , 609-627. https://doi.org/10.3390/photochem2030041
    90. Danilo González, Mariona Sodupe, Luis Rodríguez-Santiago, Xavier Solans-Monfort. Metal coordination determines the catalytic activity of IrO2 nanoparticles for the oxygen evolution reaction. Journal of Catalysis 2022, 412 , 78-86. https://doi.org/10.1016/j.jcat.2022.05.023
    91. Mahmoud A. El-Jemni, Hesham S. Abdel-Samad, Mohamed H. AlKordi, Hamdy H. Hassan. Normalization of the EOR catalytic efficiency measurements based on RRDE study for simply fabricated cost-effective Co/graphite electrode for DAEFCs. Journal of Electroanalytical Chemistry 2022, 918 , 116488. https://doi.org/10.1016/j.jelechem.2022.116488
    92. Dunyuan Jin, Fen Qiao, Wenjie Liu, Yanzhen Liu, Yi Xie, Haitao Li. One-step fabrication of MoS 2 /Ni 3 S 2 with P-doping for efficient water splitting. CrystEngComm 2022, 24 (22) , 4057-4062. https://doi.org/10.1039/D2CE00493C
    93. Jonathan Quinson. Iridium and IrOx nanoparticles: an overview and review of syntheses and applications. Advances in Colloid and Interface Science 2022, 303 , 102643. https://doi.org/10.1016/j.cis.2022.102643
    94. Mei Fan, Shunling Li, Hui Deng, Xiaoguo Zhang, Guoting Luo, Zhangjie Huang, Muhan Chen. Separation and recovery of iridium(IV) from simulated secondary resource leachate by extraction - electrodeposition. Separation and Purification Technology 2022, 289 , 120765. https://doi.org/10.1016/j.seppur.2022.120765
    95. Shangheng Liu, Yingtian Zhang, Xinnan Mao, Ling Li, Ying Zhang, Leigang Li, Yu Pan, Xingang Li, Lu Wang, Qi Shao, Yong Xu, Xiaoqing Huang. Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy & Environmental Science 2022, 15 (4) , 1672-1681. https://doi.org/10.1039/D1EE03687D
    96. Hongzhi Wang, Chunxiao Wang, Weiguo Zhang, Suwei Yao. A nano-spherical structure Ni3S2/Ni(OH)2 electrocatalyst prepared by one-step fast electrodeposition for efficient and durable water splitting. International Journal of Hydrogen Energy 2022, 47 (33) , 14916-14929. https://doi.org/10.1016/j.ijhydene.2022.03.014
    97. Qi Zhang, Hui Chen, Lan Yang, Xiao Liang, Lei Shi, Qing Feng, Yongcun Zou, Guo-Dong Li, Xiaoxin Zou. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts. Chinese Journal of Catalysis 2022, 43 (3) , 885-893. https://doi.org/10.1016/S1872-2067(21)63983-9
    98. Carlos Diaz, Maria Luisa Valenzuela, Miguel Á. Laguna-Bercero. Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation. International Journal of Molecular Sciences 2022, 23 (3) , 1093. https://doi.org/10.3390/ijms23031093
    99. Seonghan Jo, Jiseok Kwon, Seunggun Choi, Tianchi Lu, Yunki Byeun, HyukSu Han, Taeseup Song. Engineering [Fe(CN)6]3− vacancy via free-chelating agents in Prussian blue analogues on reduced graphene oxide for efficient oxygen evolution reaction. Applied Surface Science 2022, 574 , 151620. https://doi.org/10.1016/j.apsusc.2021.151620
    100. Hui Su, Mikhail A. Soldatov, Victor Roldugin, Qinghua Liu. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2 (1) , 102-109. https://doi.org/10.1016/j.esci.2021.12.007
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect