ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy

View Author Information
† § ‡ Department of Chemistry, Department of Electrical and Computer Engineering, and §Laboratory for Nanophotonics, Rice University, Houston, Texas, United States
Cite this: J. Phys. Chem. Lett. 2011, 2, 16, 2015–2023
Publication Date (Web):July 22, 2011
https://doi.org/10.1021/jz200702m
Copyright © 2011 American Chemical Society

    Article Views

    2594

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    The plasmonic properties of noble-metal nanoparticles are extremely sensitive to their size and shape. Single particle spectroscopy techniques have therefore become the standard for understanding how the energy of the localized surface plasmon of individual nanoparticles scales with small changes in the morphology. Chemical methods have progressed to the point where researchers can facilely grow and assemble plasmonic nanostructures potentially useful for improving technologies in computing, communication, biomedical imaging and sensing, and therapeutics. Very small and very large nanostructures each present a unique set of challenges, and a separate strategy for each kind of sample is necessary for fully revealing the relationships among size, shape, orientation, and spacing between nanoparticles. This Perspective discusses how different single particle imaging and spectroscopy techniques together with electron microscopy can be applied to reveal the relationships between the plasmonic response and the morphology of individual nanoparticles as well as their assemblies. In particular, we show examples from our own studies that examined large nanostructures and disordered assemblies.

    Cited By

    This article is cited by 76 publications.

    1. Mavilakizhakke Puthiyaveetil Ajaykumar, Ranguwar Rajendra, Reshmi Thomas, Rotti Srinivasamurthy Swathi, K. George Thomas. Single-Particle Investigation of Plexcitons in Bimetallic Nanorods. The Journal of Physical Chemistry C 2023, 127 (29) , 14326-14335. https://doi.org/10.1021/acs.jpcc.3c02860
    2. Zhixuan Lu, Xiang Wu, Ningyu Chen, Maofeng Cao, Matthew M. Sartin, Bin Ren. Photoinduced Charge Transfer from a Semiconductor to a Metal Probed at the Single-Nanoparticle Level. ACS Energy Letters 2021, 6 (10) , 3473-3480. https://doi.org/10.1021/acsenergylett.1c01581
    3. J. Jesús Velázquez-Salazar, Lourdes Bazán-Díaz, Qingfeng Zhang, Rubén Mendoza-Cruz, Luis Montaño-Priede, Grégory Guisbiers, Nicolas Large, Stephan Link, Miguel José-Yacamán. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. ACS Nano 2019, 13 (9) , 10113-10128. https://doi.org/10.1021/acsnano.9b03084
    4. Fabio Medeghini, Romain Rouxel, Aurélien Crut, Paolo Maioli, Francesco Rossella, Francesco Banfi, Fabrice Vallée, Natalia Del Fatti. Signatures of Small Morphological Anisotropies in the Plasmonic and Vibrational Responses of Individual Nano-objects. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5372-5380. https://doi.org/10.1021/acs.jpclett.9b01898
    5. Michel Pellarin, Christophe Bonnet, Jean Lermé, Floriane Perrier, Julien Laverdant, Marie-Ange Lebeault, Sylvain Hermelin, Matthias Hillenkamp, Michel Broyer, Emmanuel Cottancin. Forward and Backward Extinction Measurements on a Single Supported Nanoparticle: Implications of the Generalized Optical Theorem. The Journal of Physical Chemistry C 2019, 123 (24) , 15217-15229. https://doi.org/10.1021/acs.jpcc.9b03245
    6. Rusha Chatterjee, Ilia M. Pavlovetc, Kyle Aleshire, Masaru Kuno. Single Semiconductor Nanostructure Extinction Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (29) , 16443-16463. https://doi.org/10.1021/acs.jpcc.8b00790
    7. Gilad Haran, Lev Chuntonov. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews 2018, 118 (11) , 5539-5580. https://doi.org/10.1021/acs.chemrev.7b00647
    8. Klaus Stallberg, Gerhard Lilienkamp, and Winfried Daum . Plasmon–Exciton Coupling at Individual Porphyrin-Covered Silver Clusters. The Journal of Physical Chemistry C 2017, 121 (25) , 13833-13839. https://doi.org/10.1021/acs.jpcc.7b03879
    9. Kyle W. Smith, Hangqi Zhao, Hui Zhang, Ana Sánchez-Iglesias, Marek Grzelczak, Yumin Wang, Wei-Shun Chang, Peter Nordlander, Luis M. Liz-Marzán, and Stephan Link . Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. ACS Nano 2016, 10 (6) , 6180-6188. https://doi.org/10.1021/acsnano.6b02194
    10. Monalisa Garai, Taishi Zhang, Nengyue Gao, Hai Zhu, and Qing-Hua Xu . Single Particle Studies on Two-Photon Photoluminescence of Gold Nanorod–Nanosphere Heterodimers. The Journal of Physical Chemistry C 2016, 120 (21) , 11621-11630. https://doi.org/10.1021/acs.jpcc.6b02941
    11. Gregory V. Hartland (Senior Editor) . Nanoparticles at SEA: Seeding, Etching, and Applications. The Journal of Physical Chemistry Letters 2016, 7 (4) , 728-729. https://doi.org/10.1021/acs.jpclett.6b00048
    12. Lin-Yung Wang, Kyle W. Smith, Sergio Dominguez-Medina, Nicole Moody, Jana M. Olson, Huanan Zhang, Wei-Shun Chang, Nicholas Kotov, and Stephan Link . Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. ACS Photonics 2015, 2 (11) , 1602-1610. https://doi.org/10.1021/acsphotonics.5b00395
    13. Heesuk Jung, Bonkee Koo, Jae-Yup Kim, Taehee Kim, Hae Jung Son, BongSoo Kim, Jin Young Kim, Doh-Kwon Lee, Honggon Kim, Jinhan Cho, and Min Jae Ko . Enhanced Photovoltaic Properties and Long-Term Stability in Plasmonic Dye-Sensitized Solar Cells via Noncorrosive Redox Mediator. ACS Applied Materials & Interfaces 2014, 6 (21) , 19191-19200. https://doi.org/10.1021/am5051982
    14. Kevin G. Stamplecoskie and Joseph S. Manser . Facile SILAR Approach to Air-Stable Naked Silver and Gold Nanoparticles Supported by Alumina. ACS Applied Materials & Interfaces 2014, 6 (20) , 17489-17495. https://doi.org/10.1021/am502185g
    15. Simon P. Hastings, Pattanawit Swanglap, Zhaoxia Qian, Ying Fang, So-Jung Park, Stephan Link, Nader Engheta, and Zahra Fakhraai . Quadrupole-Enhanced Raman Scattering. ACS Nano 2014, 8 (9) , 9025-9034. https://doi.org/10.1021/nn5022346
    16. Stephan Link . Surface Plasmons as Versatile Analytical Tools. The Journal of Physical Chemistry Letters 2014, 5 (17) , 3007-3008. https://doi.org/10.1021/jz501665j
    17. Mary Sajini Devadas, Zhongming Li, and Gregory V. Hartland . Imaging and Analysis of Single Optically Trapped Gold Nanoparticles Using Spatial Modulation Spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (16) , 2910-2915. https://doi.org/10.1021/jz501409q
    18. Kevin D. Heylman, Kassandra A. Knapper, and Randall H. Goldsmith . Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. The Journal of Physical Chemistry Letters 2014, 5 (11) , 1917-1923. https://doi.org/10.1021/jz500781g
    19. Edward W. Malachosky and Philippe Guyot-Sionnest . Gold Bipyramid Nanoparticle Dimers. The Journal of Physical Chemistry C 2014, 118 (12) , 6405-6412. https://doi.org/10.1021/jp412409u
    20. Jacob A. Faucheaux, Alexandria L. D. Stanton, and Prashant K. Jain . Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. The Journal of Physical Chemistry Letters 2014, 5 (6) , 976-985. https://doi.org/10.1021/jz500037k
    21. Jacob A. Faucheaux, Jiayi Fu, and Prashant K. Jain . Unified Theoretical Framework for Realizing Diverse Regimes of Strong Coupling between Plasmons and Electronic Transitions. The Journal of Physical Chemistry C 2014, 118 (5) , 2710-2717. https://doi.org/10.1021/jp412157c
    22. Anneli Hoggard, Lin-Yung Wang, Lulu Ma, Ying Fang, Ge You, Jana Olson, Zheng Liu, Wei-Shun Chang, Pulickel M. Ajayan, and Stephan Link . Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene. ACS Nano 2013, 7 (12) , 11209-11217. https://doi.org/10.1021/nn404985h
    23. Vikram Kulkarni, Emil Prodan, and Peter Nordlander . Quantum Plasmonics: Optical Properties of a Nanomatryushka. Nano Letters 2013, 13 (12) , 5873-5879. https://doi.org/10.1021/nl402662e
    24. David Solis, Jr., Aniruddha Paul, Jana Olson, Liane S. Slaughter, Pattanawit Swanglap, Wei-Shun Chang, and Stephan Link . Turning the Corner: Efficient Energy Transfer in Bent Plasmonic Nanoparticle Chain Waveguides. Nano Letters 2013, 13 (10) , 4779-4784. https://doi.org/10.1021/nl402358h
    25. Christopher J. DeSantis, Rebecca G. Weiner, Andjela Radmilovic, Matthew M. Bower, and Sara E. Skrabalak . Seeding Bimetallic Nanostructures as a New Class of Plasmonic Colloids. The Journal of Physical Chemistry Letters 2013, 4 (18) , 3072-3082. https://doi.org/10.1021/jz4011866
    26. Kun Liu, Aftab Ahmed, Siyon Chung, Kota Sugikawa, Gaoxiang Wu, Zhihong Nie, Reuven Gordon, and Eugenia Kumacheva . In Situ Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano 2013, 7 (7) , 5901-5910. https://doi.org/10.1021/nn402363p
    27. Zhenping Guan, Nengyue Gao, Xiao-Fang Jiang, Peiyan Yuan, Fei Han, and Qing-Hua Xu . Huge Enhancement in Two-Photon Photoluminescence of Au Nanoparticle Clusters Revealed by Single-Particle Spectroscopy. Journal of the American Chemical Society 2013, 135 (19) , 7272-7277. https://doi.org/10.1021/ja400364f
    28. Jun Hee Yoon, Yong Zhou, Martin G. Blaber, George C. Schatz, and Sangwoon Yoon . Surface Plasmon Coupling of Compositionally Heterogeneous Core–Satellite Nanoassemblies. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1371-1378. https://doi.org/10.1021/jz400602f
    29. Yang Li, Ke Zhao, Heidar Sobhani, Kui Bao, and Peter Nordlander . Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1352-1357. https://doi.org/10.1021/jz4004137
    30. Vighter Iberi, Nasrin Mirsaleh-Kohan, and Jon P. Camden . Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations. The Journal of Physical Chemistry Letters 2013, 4 (7) , 1070-1078. https://doi.org/10.1021/jz302140h
    31. Kenneth L. Knappenberger, Jr., Anne-Marie Dowgiallo, Manabendra Chandra, and Jeremy W. Jarrett . Probing the Structure–Property Interplay of Plasmonic Nanoparticle Transducers Using Femtosecond Laser Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4 (7) , 1109-1119. https://doi.org/10.1021/jz4001906
    32. Wei-Shun Chang, Britain Willingham, Liane S. Slaughter, Sergio Dominguez-Medina, Pattanawit Swanglap, and Stephan Link . Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies. Accounts of Chemical Research 2012, 45 (11) , 1936-1945. https://doi.org/10.1021/ar200337u
    33. Gayatri K. Joshi, Phillip J. McClory, Barry B. Muhoberac, Amar Kumbhar, Kimberly A. Smith, and Rajesh Sardar . Designing Efficient Localized Surface Plasmon Resonance-Based Sensing Platforms: Optimization of Sensor Response by Controlling the Edge Length of Gold Nanoprisms. The Journal of Physical Chemistry C 2012, 116 (39) , 20990-21000. https://doi.org/10.1021/jp302674h
    34. Liane S. Slaughter, Britain A. Willingham, Wei-Shun Chang, Maximilian H. Chester, Nathan Ogden, and Stephan Link . Toward Plasmonic Polymers. Nano Letters 2012, 12 (8) , 3967-3972. https://doi.org/10.1021/nl3011512
    35. Mustafa Yorulmaz, Saumyakanti Khatua, Peter Zijlstra, Alexander Gaiduk, and Michel Orrit . Luminescence Quantum Yield of Single Gold Nanorods. Nano Letters 2012, 12 (8) , 4385-4391. https://doi.org/10.1021/nl302196a
    36. Katherine A. Koen, Maggie L. Weber, Kathryn M. Mayer, Estefania Fernandez, and Katherine A. Willets . Spectrally-Resolved Polarization Anisotropy of Single Plasmonic Nanoparticles Excited by Total Internal Reflection. The Journal of Physical Chemistry C 2012, 116 (30) , 16198-16206. https://doi.org/10.1021/jp301878e
    37. Amanda J. Neukirch, Zhenyu Guo, and Oleg V. Prezhdo . Time-Domain Ab Initio Study of Phonon-Induced Relaxation of Plasmon Excitations in a Silver Quantum Dot. The Journal of Physical Chemistry C 2012, 116 (28) , 15034-15040. https://doi.org/10.1021/jp303361y
    38. Takashi Tachikawa and Tetsuro Majima . Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir 2012, 28 (24) , 8933-8943. https://doi.org/10.1021/la300177h
    39. Hyunbong Choi, Wei Ta Chen, and Prashant V. Kamat . Know Thy Nano Neighbor. Plasmonic versus Electron Charging Effects of Metal Nanoparticles in Dye-Sensitized Solar Cells. ACS Nano 2012, 6 (5) , 4418-4427. https://doi.org/10.1021/nn301137r
    40. Wei-Shun Chang and Stephan Link . Enhancing the Sensitivity of Single-Particle Photothermal Imaging with Thermotropic Liquid Crystals. The Journal of Physical Chemistry Letters 2012, 3 (10) , 1393-1399. https://doi.org/10.1021/jz300342p
    41. Robert M. Dickson (Senior Editor) . Structure Determines Function in Nanoparticles, Their Interfaces, and Their Assemblies. The Journal of Physical Chemistry Letters 2011, 2 (16) , 2044-2045. https://doi.org/10.1021/jz200981k
    42. Xiaohu Mi, Huan Chen, Jinping Li, Haifa Qiao. Plasmonic Au–Cu nanostructures: Synthesis and applications. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1153936
    43. Mees Dieperink, Francesca Scalerandi, Wiebke Albrecht. Correlating structure, morphology and properties of metal nanostructures by combining single-particle optical spectroscopy and electron microscopy. Nanoscale 2022, 14 (20) , 7460-7472. https://doi.org/10.1039/D1NR08130F
    44. Satyendra Nath Gupta, Ora Bitton, Tomas Neuman, Ruben Esteban, Lev Chuntonov, Javier Aizpurua, Gilad Haran. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21539-z
    45. Jung-Dae Kim, Dong Uk Kim, Chan Bae Jeong, Ilkyu Han, Ji Yong Bae, Hwan Hur, Ki-Hwan Nam, Sangwon Hyun, I Jong Kim, Kye-Sung Lee, Ki Soo Chang. Wide-field photothermal reflectance spectroscopy for single nanoparticle absorption spectrum analysis. Nanophotonics 2021, 10 (13) , 3433-3440. https://doi.org/10.1515/nanoph-2021-0203
    46. Jaeran Lee, Geun Wan Kim, Ji Won Ha. Single-particle spectroscopy and defocused imaging of anisotropic gold nanorods by total internal reflection scattering microscopy. The Analyst 2020, 145 (18) , 6038-6044. https://doi.org/10.1039/D0AN01071E
    47. Chenggong Yang, Xingfu Tao, Yang Yang, Kun Liu. Patterning of polyoxometalate rings on gold nanorods. Chemical Communications 2020, 56 (11) , 1677-1680. https://doi.org/10.1039/C9CC06968B
    48. Chengye Yu, Zhengwen Yang, Jingyuan Zhao, Anjun Huang, Jianbei Qiu, Zhiguo Song, Dacheng Zhou, Bitao Liu. Preparation and photoluminescence enhancement of Au nanoparticles with ultra‐broad plasmonic absorption in glasses. Journal of the American Ceramic Society 2019, 102 (7) , 4200-4212. https://doi.org/10.1111/jace.16300
    49. Junho Lee, Ji Won Ha. Single‐Particle Study: Chemical Effect on Surface Plasmon Damping in Two‐Dimensional Gold Nanoprisms. Bulletin of the Korean Chemical Society 2019, 40 (5) , 461-464. https://doi.org/10.1002/bkcs.11705
    50. Abdulrahman K. Ali, Sule Erten-Ela, Khaleel I. Hassoon, Çagatay Ela. Plasmonic enhancement as selective scattering of gold nanoparticles based dye sensitized solar cells. Thin Solid Films 2019, 671 , 127-132. https://doi.org/10.1016/j.tsf.2018.12.033
    51. Hui Been Jeon, Ji Won Ha. Single‐Particle Study: Plasmon Damping of Gold Nanocubes with Vertices by Adsorbate Molecules. Bulletin of the Korean Chemical Society 2018, 39 (9) , 1117-1119. https://doi.org/10.1002/bkcs.11558
    52. Hao Li, Haw Yang. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy. The Journal of Chemical Physics 2018, 148 (12) https://doi.org/10.1063/1.5009134
    53. B. Amorim, P. A. D. Gonçalves, M. I. Vasilevskiy, N. M. R. Peres. Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green’s Function Study. Applied Sciences 2017, 7 (11) , 1158. https://doi.org/10.3390/app7111158
    54. Kyle W. Smith, Stephan Link, Wei-Shun Chang. Optical characterization of chiral plasmonic nanostructures. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2017, 32 , 40-57. https://doi.org/10.1016/j.jphotochemrev.2017.05.004
    55. E. Michman, R. Shenhar. Directed self‐assembly of block copolymer‐based nanocomposites in thin films. Polymers for Advanced Technologies 2017, 28 (5) , 613-622. https://doi.org/10.1002/pat.3850
    56. Liane S Slaughter, Kevin M Cheung, Sami Kaappa, Huan H Cao, Qing Yang, Thomas D Young, Andrew C Serino, Sami Malola, Jana M Olson, Stephan Link, Hannu Häkkinen, Anne M Andrews, Paul S Weiss. Patterning of supported gold monolayers via chemical lift-off lithography. Beilstein Journal of Nanotechnology 2017, 8 , 2648-2661. https://doi.org/10.3762/bjnano.8.265
    57. Jun Ma, Yue Liu, Peng Fei Gao, Hong Yan Zou, Cheng Zhi Huang. Precision improvement in dark-field microscopy imaging by using gold nanoparticles as an internal reference: a combined theoretical and experimental study. Nanoscale 2016, 8 (16) , 8729-8736. https://doi.org/10.1039/C5NR08837B
    58. Vitor Brasiliense, Pascal Berto, Catherine Combellas, Robert Kuszelewicz, Gilles Tessier, Frédéric Kanoufi. Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy. Faraday Discussions 2016, 193 , 339-352. https://doi.org/10.1039/C6FD00098C
    59. D Talaga, M Comesaña-Hermo, S Ravaine, R A L Vallée, S Bonhommeau. Colocalized dark-field scattering, atomic force and surface-enhanced Raman scattering microscopic imaging of single gold nanoparticles. Journal of Optics 2015, 17 (11) , 114006. https://doi.org/10.1088/2040-8978/17/11/114006
    60. Diego J. Gavia, Young-Seok Shon. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem 2015, 7 (6) , 892-900. https://doi.org/10.1002/cctc.201402865
    61. Niccolò Michieli, Boris Kalinic, Carlo Scian, Tiziana Cesca, Giovanni Mattei. Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors. Biosensors and Bioelectronics 2015, 65 , 346-353. https://doi.org/10.1016/j.bios.2014.10.064
    62. Jana Olson, Sergio Dominguez-Medina, Anneli Hoggard, Lin-Yung Wang, Wei-Shun Chang, Stephan Link. Optical characterization of single plasmonic nanoparticles. Chemical Society Reviews 2015, 44 (1) , 40-57. https://doi.org/10.1039/C4CS00131A
    63. Kun Liu, Ariella Lukach, Kouta Sugikawa, Siyon Chung, Jemma Vickery, Heloise Therien-Aubin, Bai Yang, Michael Rubinstein, Eugenia Kumacheva. Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers. Angewandte Chemie 2014, 126 (10) , 2686-2691. https://doi.org/10.1002/ange.201309718
    64. Kun Liu, Ariella Lukach, Kouta Sugikawa, Siyon Chung, Jemma Vickery, Heloise Therien-Aubin, Bai Yang, Michael Rubinstein, Eugenia Kumacheva. Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers. Angewandte Chemie International Edition 2014, 53 (10) , 2648-2653. https://doi.org/10.1002/anie.201309718
    65. N. E. Motl, A. F. Smith, C. J. DeSantis, S. E. Skrabalak. Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 2014, 43 (11) , 3823-3834. https://doi.org/10.1039/C3CS60347D
    66. Liane S. Slaughter, Lin-Yung Wang, Britain A. Willingham, Jana M. Olson, Pattanawit Swanglap, Sergio Dominguez-Medina, Stephan Link. Plasmonic polymers unraveled through single particle spectroscopy. Nanoscale 2014, 6 (19) , 11451-11461. https://doi.org/10.1039/C4NR02839B
    67. Qi Xu, Fang Liu, Yuxiang Liu, Kaiyu Cui, Xue Feng, Wei Zhang, Yidong Huang. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02112
    68. Maneesh K. Gupta, Tobias König, Rachel Near, Dhriti Nepal, Lawrence F. Drummy, Sushmita Biswas, Swati Naik, Richard A. Vaia, Mostafa A. El-Sayed, Vladimir V. Tsukruk. Surface Assembly and Plasmonic Properties in Strongly Coupled Segmented Gold Nanorods. Small 2013, 9 (17) , 2979-2990. https://doi.org/10.1002/smll.201300248
    69. Hae Mi Lee, Jung-Hoon Lee, Hyung Min Kim, Seung Min Jin, Hyo Sun Park, Jwa-Min Nam, Yung Doug Suh. High-precision measurement-based correlation studies among atomic force microscopy, Rayleigh scattering, and surface-enhanced Raman scattering at the single-molecule level. Physical Chemistry Chemical Physics 2013, 15 (12) , 4243. https://doi.org/10.1039/c3cp43817a
    70. Qi Xu, Fang Liu, Weisi Meng, Yidong Huang. Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Optics Express 2012, 20 (S6) , A898. https://doi.org/10.1364/OE.20.00A898
    71. Naomi J. Halas, Surbhi Lal, Stephan Link, Wei-Shun Chang, Douglas Natelson, Jason H. Hafner, Peter Nordlander. A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University. Advanced Materials 2012, 24 (36) , 4842-4877. https://doi.org/10.1002/adma.201202331
    72. Vaclav Ranc, Jana Hruzikova, Kamil Maitner, Robert Prucek, David Milde, Libor Kvítek. Quantification of purine basis in their mixtures at femto‐molar concentration levels using FT‐SERS. Journal of Raman Spectroscopy 2012, 43 (8) , 971-976. https://doi.org/10.1002/jrs.3124
    73. M. S. Bootharaju, Kamalesh Chaudhari, T. Pradeep. Real time plasmonic spectroscopy of the interaction of Hg2+ with single noble metal nanoparticles. RSC Advances 2012, 2 (26) , 10048. https://doi.org/10.1039/c2ra21384b
    74. Daryoush Mortazavi, Abbas Z. Kouzani, Akif Kaynak, Wei Duan. DEVELOPING LSPR DESIGN GUIDELINES. Progress In Electromagnetics Research 2012, 126 , 203-235. https://doi.org/10.2528/PIER12011810
    75. Wei-Shun Chang, Britain A. Willingham, Liane S. Slaughter, Bishnu P. Khanal, Leonid Vigderman, Eugene R. Zubarev, Stephan Link. Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proceedings of the National Academy of Sciences 2011, 108 (50) , 19879-19884. https://doi.org/10.1073/pnas.1113563108
    76. Stephan Link. Collective plasmon modes in nanoparticle assemblies. 2011, 1-2. https://doi.org/10.1109/ISDRS.2011.6135178

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect