ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVSurfaces, Interfaces...Surfaces, Interfaces, CatalysisNEXT

Charge Transfer between Water Molecules As the Possible Origin of the Observed Charging at the Surface of Pure Water

View Author Information
National Centre for Biomolecular Research, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
§ Department of Chemistry and Biochemistry and Institute for Computational Engineering and Sciences, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712-1167, United States
Physik Department, Technische Universität München, 85748 Garching, Germany
Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
Cite this: J. Phys. Chem. Lett. 2012, 3, 1, 107–111
Publication Date (Web):December 12, 2011
https://doi.org/10.1021/jz2014852
Copyright © 2011 American Chemical Society

    Article Views

    2390

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1011 KB)

    Abstract

    Abstract Image

    Classical molecular dynamics simulations point to an anisotropy of water–water hydrogen bonding at the water surface. Approaching from the gas phase, a region of primarily dangling hydrogens is followed by dangling oxygens before the isotropic bulk region. Using ab initio calculations, we translate this hydrogen bonding anisotropy to charge transfer between water molecules, which we analyze with respect to both instantaneous and averaged positions of the water surface. Similarly to the oil/water interface, we show that there is a region of small net negative charge extending 0.2 to 0.6 nm from the Gibbs dividing surface in the aqueous phase. Using a simple continuum model, we translate this charge profile to a zeta potential, which acquires for realistic positions of the shear surface the same negative sign as that observed experimentally, albeit of a smaller absolute value.

    Cited By

    This article is cited by 96 publications.

    1. Seung Hee Chae, Min Sik Kim, Jae-Hong Kim, John D. Fortner. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions. ACS ES&T Engineering 2023, Article ASAP.
    2. Bowen Han, Christine M. Isborn, Liang Shi. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. The Journal of Physical Chemistry Letters 2023, 14 (16) , 3869-3877. https://doi.org/10.1021/acs.jpclett.3c00036
    3. Fan Wang, Peng Yang, Xinglin Tao, Yuxiang Shi, Shuyao Li, Zhaoqi Liu, Xiangyu Chen, Zhong Lin Wang. Study of Contact Electrification at Liquid-Gas Interface. ACS Nano 2021, 15 (11) , 18206-18213. https://doi.org/10.1021/acsnano.1c07158
    4. William N. Sharratt, Victoria E. Lee, Rodney D. Priestley, João T. Cabral. Precision Polymer Particles by Flash Nanoprecipitation and Microfluidic Droplet Extraction. ACS Applied Polymer Materials 2021, 3 (10) , 4746-4768. https://doi.org/10.1021/acsapm.1c00546
    5. Bowen Han, Christine M. Isborn, Liang Shi. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models. Journal of Chemical Theory and Computation 2021, 17 (2) , 889-901. https://doi.org/10.1021/acs.jctc.0c01102
    6. Tianyu Zhu, Troy Van Voorhis. Understanding the Dipole Moment of Liquid Water from a Self-Attractive Hartree Decomposition. The Journal of Physical Chemistry Letters 2021, 12 (1) , 6-12. https://doi.org/10.1021/acs.jpclett.0c03300
    7. Narjes Ansari, Tarak Karmakar, Michele Parrinello. Molecular Mechanism of Gas Solubility in Liquid: Constant Chemical Potential Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2020, 16 (8) , 5279-5286. https://doi.org/10.1021/acs.jctc.0c00450
    8. Andrew P. Carpenter, Rebecca M. Altman, Emma Tran, Geraldine L. Richmond. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces. The Journal of Physical Chemistry B 2020, 124 (20) , 4234-4245. https://doi.org/10.1021/acs.jpcb.0c03293
    9. Yuki Uematsu, Douwe Jan Bonthuis, Roland R. Netz. Nanomolar Surface-Active Charged Impurities Account for the Zeta Potential of Hydrophobic Surfaces. Langmuir 2020, 36 (13) , 3645-3658. https://doi.org/10.1021/acs.langmuir.9b03795
    10. Magdalena Kowacz, Gerald H. Pollack. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. The Journal of Physical Chemistry B 2019, 123 (51) , 11003-11013. https://doi.org/10.1021/acs.jpcb.9b09161
    11. Tatiana I. Morozova, Victoria E. Lee, Athanassios Z. Panagiotopoulos, Robert K. Prud’homme, Rodney D. Priestley, Arash Nikoubashman. On the Stability of Polymeric Nanoparticles Fabricated through Rapid Solvent Mixing. Langmuir 2019, 35 (3) , 709-717. https://doi.org/10.1021/acs.langmuir.8b03399
    12. S. Jain, L. Qiao. Understanding Combustion of H2/O2 Gases inside Nanobubbles Generated by Water Electrolysis Using Reactive Molecular Dynamic Simulations. The Journal of Physical Chemistry A 2018, 122 (24) , 5261-5269. https://doi.org/10.1021/acs.jpca.8b01798
    13. Sucheol Shin, Adam P. Willard. Three-Body Hydrogen Bond Defects Contribute Significantly to the Dielectric Properties of the Liquid Water–Vapor Interface. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1649-1654. https://doi.org/10.1021/acs.jpclett.8b00488
    14. Victoria E. Lee, Chris Sosa, Rui Liu, Robert K. Prud’homme, and Rodney D. Priestley . Scalable Platform for Structured and Hybrid Soft Nanocolloids by Continuous Precipitation in a Confined Environment. Langmuir 2017, 33 (14) , 3444-3449. https://doi.org/10.1021/acs.langmuir.7b00249
    15. Noam Agmon, Huib J. Bakker, R. Kramer Campen, Richard H. Henchman, Peter Pohl, Sylvie Roke, Martin Thämer, and Ali Hassanali . Protons and Hydroxide Ions in Aqueous Systems. Chemical Reviews 2016, 116 (13) , 7642-7672. https://doi.org/10.1021/acs.chemrev.5b00736
    16. Chen Bai and Judith Herzfeld . Surface Propensities of the Self-Ions of Water. ACS Central Science 2016, 2 (4) , 225-231. https://doi.org/10.1021/acscentsci.6b00013
    17. Arash Nikoubashman, Victoria E. Lee, Chris Sosa, Robert K. Prud’homme, Rodney D. Priestley, and Athanassios Z. Panagiotopoulos . Directed Assembly of Soft Colloids through Rapid Solvent Exchange. ACS Nano 2016, 10 (1) , 1425-1433. https://doi.org/10.1021/acsnano.5b06890
    18. Yongli Huang, Xi Zhang, Zengsheng Ma, Guanghui Zhou, Yinyan Gong, and Chang Q Sun . Potential Paths for the Hydrogen-Bond Relaxing with (H2O)N Cluster Size. The Journal of Physical Chemistry C 2015, 119 (29) , 16962-16971. https://doi.org/10.1021/acs.jpcc.5b03921
    19. Hajime Torii . Electronic Structural Basis for the Atomic Partial Charges of Planar Molecular Systems Derived from Out-of-Plane Dipole Derivatives. The Journal of Physical Chemistry A 2015, 119 (13) , 3277-3284. https://doi.org/10.1021/jp512884g
    20. Sigurd Bauerecker and Tillmann Buttersack . Electric Effect during the Fast Dendritic Freezing of Supercooled Water Droplets. The Journal of Physical Chemistry B 2014, 118 (47) , 13629-13635. https://doi.org/10.1021/jp507440a
    21. Hajime Torii . Cooperative Contributions of the Intermolecular Charge Fluxes and Intramolecular Polarizations in the Far-Infrared Spectral Intensities of Liquid Water. Journal of Chemical Theory and Computation 2014, 10 (3) , 1219-1227. https://doi.org/10.1021/ct4011147
    22. Chang Q Sun, Xi Zhang, Ji Zhou, Yongli Huang, Yichun Zhou, and Weitao Zheng . Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors. The Journal of Physical Chemistry Letters 2013, 4 (15) , 2565-2570. https://doi.org/10.1021/jz401029z
    23. Volker Knecht, Benjamin Klasczyk, and Rumiana Dimova . Macro- versus Microscopic View on the Electrokinetics of a Water–Membrane Interface. Langmuir 2013, 29 (25) , 7939-7948. https://doi.org/10.1021/la400342m
    24. Hajime Torii . Extended Nature of the Molecular Dipole of Hydrogen-Bonded Water. The Journal of Physical Chemistry A 2013, 117 (9) , 2044-2051. https://doi.org/10.1021/jp4013015
    25. Alexis J. Lee and Steven W. Rick . Characterizing Charge Transfer at Water Ice Interfaces. The Journal of Physical Chemistry Letters 2012, 3 (21) , 3199-3203. https://doi.org/10.1021/jz301411q
    26. Dominique Verreault, Wei Hua, and Heather C. Allen . From Conventional to Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy: Probing Water Organization at Aqueous Interfaces. The Journal of Physical Chemistry Letters 2012, 3 (20) , 3012-3028. https://doi.org/10.1021/jz301179g
    27. Ali A. Paknahad, Intesar O. Zalloum, Raffi Karshafian, Michael C. Kolios, Scott S.H. Tsai. High throughput microfluidic nanobubble generation by microporous membrane integration and controlled bubble shrinkage. Journal of Colloid and Interface Science 2023, 11 https://doi.org/10.1016/j.jcis.2023.09.066
    28. Hajime Torii. Intermolecular charge fluxes and terahertz spectral features of liquid methanol. Journal of Molecular Liquids 2023, 86 , 123111. https://doi.org/10.1016/j.molliq.2023.123111
    29. Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. On the role of surface charge and surface tension tuned by surfactant in stabilizing bulk nanobubbles. Applied Surface Science 2023, 608 , 155232. https://doi.org/10.1016/j.apsusc.2022.155232
    30. Maximilian R. Becker, Philip Loche, Roland R. Netz. Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid–vapor interface. The Journal of Chemical Physics 2022, 157 (24) https://doi.org/10.1063/5.0127869
    31. Youngsun Kim, Hongru Ding, Yuebing Zheng. Investigating water/oil interfaces with opto-thermophoresis. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31546-3
    32. Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. Nanomaterials 2022, 12 (19) , 3450. https://doi.org/10.3390/nano12193450
    33. Louise Perrin, Sylvie Desobry-Banon, Guillaume Gillet, Stephane Desobry. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022, 11 (15) , 2194. https://doi.org/10.3390/foods11152194
    34. Xiaotong Ma, Mingbo Li, Patricia Pfeiffer, Julian Eisener, Claus-Dieter Ohl, Chao Sun. Ion adsorption stabilizes bulk nanobubbles. Journal of Colloid and Interface Science 2022, 606 , 1380-1394. https://doi.org/10.1016/j.jcis.2021.08.101
    35. Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. On the Role of Surface Charge and Surface Tension Tuned by Surfactant in Stabilizing Bulk Nanobubbles. SSRN Electronic Journal 2022, 32 https://doi.org/10.2139/ssrn.4195344
    36. John M. Herbert, Suranjan K. Paul. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface. Molecules 2021, 26 (21) , 6719. https://doi.org/10.3390/molecules26216719
    37. Yuki Uematsu. Electrification of water interface. Journal of Physics: Condensed Matter 2021, 33 (42) , 423001. https://doi.org/10.1088/1361-648X/ac15d5
    38. Muidh Alheshibri, Abbad Al Baroot, Lingling Shui, Minmin Zhang. Nanobubbles and nanoparticles. Current Opinion in Colloid & Interface Science 2021, 55 , 101470. https://doi.org/10.1016/j.cocis.2021.101470
    39. Vitaly B. Svetovoy. Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles. Current Opinion in Colloid & Interface Science 2021, 52 , 101423. https://doi.org/10.1016/j.cocis.2021.101423
    40. Pratik A. Satpute, James C. Earthman. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage. Journal of Colloid and Interface Science 2021, 584 , 449-455. https://doi.org/10.1016/j.jcis.2020.09.100
    41. Emiliano Poli, Kwang H. Jong, Ali Hassanali. Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14659-5
    42. Jamilya Nauruzbayeva, Zhonghao Sun, Adair Gallo, Mahmoud Ibrahim, J. Carlos Santamarina, Himanshu Mishra. Electrification at water–hydrophobe interfaces. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19054-8
    43. Dongyue Liang, Udaya Dahal, Yongqian (Kelly) Zhang, Christian Lochbaum, Dhiman Ray, Robert J. Hamers, Joel A. Pedersen, Qiang Cui. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules. Nanoscale 2020, 12 (35) , 18106-18123. https://doi.org/10.1039/D0NR03792C
    44. Christoph Schran, Krystof Brezina, Ondrej Marsalek. Committee neural network potentials control generalization errors and enable active learning. The Journal of Chemical Physics 2020, 153 (10) https://doi.org/10.1063/5.0016004
    45. Soumen Mandal, Souvik Paul, Saswata Mukhopadhyay, Ravi Kumar Arun, Debeshi Dutta, Nripen Chanda. Gold-nanoparticle-embedded microchannel array for enhanced power generation. Lab on a Chip 2020, 20 (15) , 2717-2723. https://doi.org/10.1039/D0LC00552E
    46. Seth Yannacone, Marek Freindorf, Yunwen Tao, Wenli Zou, Elfi Kraka. Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors. Crystals 2020, 10 (7) , 556. https://doi.org/10.3390/cryst10070556
    47. Hongguang Zhang, Zhenjiang Guo, Xianren Zhang. Surface enrichment of ions leads to the stability of bulk nanobubbles. Soft Matter 2020, 16 (23) , 5470-5477. https://doi.org/10.1039/D0SM00116C
    48. Mohammad Reza Ghaani, Peter G. Kusalik, Niall J. English. Massive generation of metastable bulk nanobubbles in water by external electric fields. Science Advances 2020, 6 (14) https://doi.org/10.1126/sciadv.aaz0094
    49. Chang Q Sun. Liquid Phase. 2020, 215-242. https://doi.org/10.1007/978-981-15-3176-7_11
    50. Vitaly B. Svetovoy, Alexander V. Prokaznikov, Alexander V. Postnikov, Ilia V. Uvarov, George Palasantzas. Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. Energies 2020, 13 (1) , 20. https://doi.org/10.3390/en13010020
    51. Johannes Fiedler, Drew F. Parsons, Friedrich Anton Burger, Priyadarshini Thiyam, Michael Walter, I. Brevik, Clas Persson, Stefan Yoshi Buhmann, Mathias Boström. Impact of effective polarisability models on the near-field interaction of dissolved greenhouse gases at ice and air interfaces. Physical Chemistry Chemical Physics 2019, 21 (38) , 21296-21304. https://doi.org/10.1039/C9CP03165K
    52. Baofu Qiao, Felipe Jiménez-Ángeles, Trung Dac Nguyen, Monica Olvera de la Cruz. Water follows polar and nonpolar protein surface domains. Proceedings of the National Academy of Sciences 2019, 116 (39) , 19274-19281. https://doi.org/10.1073/pnas.1910225116
    53. Nikolay O. Mchedlov-Petrossyan, Anastasiia Yu. Kharchenko, Mykyta O. Marfunin, Oleg R. Klochaniuk. Nano-sized bubbles in solution of hydrophobic dyes and the properties of the water/air interface. Journal of Molecular Liquids 2019, 275 , 384-393. https://doi.org/10.1016/j.molliq.2018.11.073
    54. Hajime Torii. Dynamical behavior of molecular partial charges implied by the far-infrared spectral profile of liquid water. Chemical Physics 2018, 512 , 165-170. https://doi.org/10.1016/j.chemphys.2017.11.018
    55. Joseph A. Napoli, Ondrej Marsalek, Thomas E. Markland. Decoding the spectroscopic features and time scales of aqueous proton defects. The Journal of Chemical Physics 2018, 148 (22) https://doi.org/10.1063/1.5023704
    56. Yong Whan Choi, Segeun Jang, Myung-Suk Chun, Sang Moon Kim, Mansoo Choi. Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface. International Journal of Precision Engineering and Manufacturing-Green Technology 2018, 5 (2) , 255-260. https://doi.org/10.1007/s40684-018-0026-5
    57. Christoph Hölzl, Dominik Horinek. Pressure increases the ice-like order of water at hydrophobic interfaces. Physical Chemistry Chemical Physics 2018, 20 (33) , 21257-21261. https://doi.org/10.1039/C8CP03057J
    58. Shavkat I. Mamatkulov, Christoph Allolio, Roland R. Netz, Douwe Jan Bonthuis. Adsorption von hydrierten Protonen an der Luft‐Wasser‐Grenzfläche durch Orientierung. Angewandte Chemie 2017, 129 (50) , 16058-16064. https://doi.org/10.1002/ange.201707391
    59. Shavkat I. Mamatkulov, Christoph Allolio, Roland R. Netz, Douwe Jan Bonthuis. Orientation‐Induced Adsorption of Hydrated Protons at the Air–Water Interface. Angewandte Chemie International Edition 2017, 56 (50) , 15846-15851. https://doi.org/10.1002/anie.201707391
    60. Christoph Schran, Ondrej Marsalek, Thomas E. Markland. Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond. Chemical Physics Letters 2017, 678 , 289-295. https://doi.org/10.1016/j.cplett.2017.04.034
    61. M. Okumura, M. Sassi, K. M. Rosso, M. Machida. Origin of 6-fold coordinated aluminum at (010)-type pyrophyllite edges. AIP Advances 2017, 7 (5) , 055211. https://doi.org/10.1063/1.4983213
    62. Alexander Prokaznikov, Niels Tas, Vitaly Svetovoy. Surface Assisted Combustion of Hydrogen-Oxygen Mixture in Nanobubbles Produced by Electrolysis. Energies 2017, 10 (2) , 178. https://doi.org/10.3390/en10020178
    63. Mohammadhasan Dinpajooh, Dmitry V. Matyushov. Mobility of nanometer-size solutes in water driven by electric field. Physica A: Statistical Mechanics and its Applications 2016, 463 , 366-375. https://doi.org/10.1016/j.physa.2016.07.054
    64. Daniel Muñoz-Santiburcio, Dominik Marx. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12625
    65. Steven W. Rick. A polarizable, charge transfer model of water using the drude oscillator. Journal of Computational Chemistry 2016, 37 (22) , 2060-2066. https://doi.org/10.1002/jcc.24426
    66. Chang Q. Sun, Yi Sun. Water Supersolid Skin. 2016, 245-279. https://doi.org/10.1007/978-981-10-0180-2_10
    67. Chang Q. Sun, Yi Sun. Molecular Undercoordination: Supersolidity. 2016, 175-202. https://doi.org/10.1007/978-981-10-0180-2_8
    68. Chang Q. Sun, Yi Sun. Superlubricity of Ice. 2016, 203-243. https://doi.org/10.1007/978-981-10-0180-2_9
    69. Xi Zhang, Yongli Huang, Zengsheng Ma, Lengyuan Niu, Chang Qing Sun. From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity. Friction 2015, 3 (4) , 294-319. https://doi.org/10.1007/s40544-015-0097-z
    70. Marielle Soniat, Revati Kumar, Steven W. Rick. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water. The Journal of Chemical Physics 2015, 143 (4) https://doi.org/10.1063/1.4926831
    71. Yong Li Huang, Xi Zhang, Zengsheng Ma, Guanghui Zhou, Chang Qing Sun, Yin Yang Gong. Potential Paths for the Hydrogen-Bond Relaxing With (H 2 O) N Cluster Size. The Journal of Physical Chemistry A 2015, 285 , 150629002906004. https://doi.org/10.1021/acs.jpca.5b03921
    72. Yongli Huang, Xi Zhang, Zengsheng Ma, Yichun Zhou, Weitao Zheng, Ji Zhou, Chang Q. Sun. Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coordination Chemistry Reviews 2015, 285 , 109-165. https://doi.org/10.1016/j.ccr.2014.10.003
    73. Thomas Gladytz, Bernd Abel, Katrin R. Siefermann. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics 2015, 17 (7) , 4926-4936. https://doi.org/10.1039/C4CP05171H
    74. Hajime Torii. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds. 2015, 090043. https://doi.org/10.1063/1.4938851
    75. Jean-Sebastién Samson, Rüdiger Scheu, Nikolay Smolentsev, Steven W. Rick, Sylvie Roke. Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures. Chemical Physics Letters 2014, 615 , 124-131. https://doi.org/10.1016/j.cplett.2014.09.034
    76. C.S. Tian, Y.R. Shen. Recent progress on sum-frequency spectroscopy. Surface Science Reports 2014, 69 (2-3) , 105-131. https://doi.org/10.1016/j.surfrep.2014.05.001
    77. Atiða Selmani, Johannes Lützenkirchen, Nikola Kallay, Tajana Preočanin. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. Journal of Physics: Condensed Matter 2014, 26 (24) , 244104. https://doi.org/10.1088/0953-8984/26/24/244104
    78. Sanket Deshmukh, Ganesh Kamath, Subramanian K. R. S. Sankaranarayanan. Effect of Nanoscale Confinement on Freezing of Modified Water at Room Temperature and Ambient Pressure. ChemPhysChem 2014, 15 (8) , 1632-1642. https://doi.org/10.1002/cphc.201400016
    79. Marielle Soniat, Steven W. Rick. Charge transfer effects of ions at the liquid water/vapor interface. The Journal of Chemical Physics 2014, 140 (18) https://doi.org/10.1063/1.4874256
    80. Robert Vácha, Frank Uhlig, Pavel Jungwirth. Charges at Aqueous Interfaces: Development of Computational Approaches in Direct Contact with Experiment. 2014, 69-96. https://doi.org/10.1002/9781118755815.ch02
    81. Richard W. O’Brien, James K. Beattie, Alex M. Djerdjev. The electrophoretic mobility of an uncharged particle. Journal of Colloid and Interface Science 2014, 420 , 70-73. https://doi.org/10.1016/j.jcis.2013.10.047
    82. Ali A. Hassanali, Jérôme Cuny, Vincenzo Verdolino, Michele Parrinello. Aqueous solutions: state of the art in ab initio molecular dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2014, 372 (2011) , 20120482. https://doi.org/10.1098/rsta.2012.0482
    83. Xi Zhang, Yongli Huang, Zengsheng Ma, Yichun Zhou, Weitao Zheng, Ji Zhou, Chang Q. Sun. A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 2014, 16 (42) , 22987-22994. https://doi.org/10.1039/C4CP02516D
    84. Chang Q. Sun. Molecular Clusters, Skins, and Ultrathin Films. 2014, 701-712. https://doi.org/10.1007/978-981-4585-21-7_35
    85. Chang Q. Sun. Skin Supersolidity of Water and Ice. 2014, 747-756. https://doi.org/10.1007/978-981-4585-21-7_39
    86. Yongli Huang, Xi Zhang, Zengsheng Ma, Wen Li, Yichun Zhou, Ji Zhou, Weitao Zheng, Chang Q. Sun. Size, separation, structural order and mass density of molecules packing in water and ice. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03005
    87. Mary Jane Shultz, Patrick Bisson, Tuan Hoang Vu. Molecular dance: Water’s collective modes. Chemical Physics Letters 2013, 588 , 1-10. https://doi.org/10.1016/j.cplett.2013.09.053
    88. Benjamin Rotenberg, Ignacio Pagonabarraga. Electrokinetics: insights from simulation on the microscopic scale. Molecular Physics 2013, 111 (7) , 827-842. https://doi.org/10.1080/00268976.2013.791731
    89. Vladimir L. Shapovalov, Helmuth Möhwald, Oleg V. Konovalov, Volker Knecht. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques. Physical Chemistry Chemical Physics 2013, 15 (33) , 13991. https://doi.org/10.1039/c3cp51575c
    90. Richard H. Henchman, Stuart J. Cockram. Water's non-tetrahedral side. Faraday Discussions 2013, 167 , 529. https://doi.org/10.1039/c3fd00080j
    91. Himanshu Mishra, Shinichi Enami, Robert J. Nielsen, Logan A. Stewart, Michael R. Hoffmann, William A. Goddard, Agustín J. Colussi. Brønsted basicity of the air–water interface. Proceedings of the National Academy of Sciences 2012, 109 (46) , 18679-18683. https://doi.org/10.1073/pnas.1209307109
    92. Collin D. Wick, Alexis J. Lee, Steven W. Rick. How intermolecular charge transfer influences the air-water interface. The Journal of Chemical Physics 2012, 137 (15) , 154701. https://doi.org/10.1063/1.4758457
    93. Alessandro Cerioni, Luigi Genovese, Alessandro Mirone, Vicente Armando Sole. Efficient and accurate solver of the three-dimensional screened and unscreened Poisson's equation with generic boundary conditions. The Journal of Chemical Physics 2012, 137 (13) https://doi.org/10.1063/1.4755349
    94. Tajana Preočanin, Atiđa Selmani, Patric Lindqvist-Reis, Frank Heberling, Nikola Kallay, Johannes Lützenkirchen. Surface charge at Teflon/aqueous solution of potassium chloride interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 412 , 120-128. https://doi.org/10.1016/j.colsurfa.2012.07.025
    95. Sheeba Jem Irudayam, Richard H. Henchman. Long-range hydrogen-bond structure in aqueous solutions and the vapor-water interface. The Journal of Chemical Physics 2012, 137 (3) https://doi.org/10.1063/1.4735267
    96. Mark A Miller, David A Bonhommeau, Christopher J Heard, Yuyoung Shin, Riccardo Spezia, Marie-Pierre Gaigeot. Structure and stability of charged clusters. Journal of Physics: Condensed Matter 2012, 24 (28) , 284130. https://doi.org/10.1088/0953-8984/24/28/284130

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect