Charge Transfer between Water Molecules As the Possible Origin of the Observed Charging at the Surface of Pure Water
- Robert Vácha
- ,
- Ondrej Marsalek
- ,
- Adam P. Willard
- ,
- Douwe Jan Bonthuis
- ,
- Roland R. Netz
- , and
- Pavel Jungwirth
Abstract

Classical molecular dynamics simulations point to an anisotropy of water–water hydrogen bonding at the water surface. Approaching from the gas phase, a region of primarily dangling hydrogens is followed by dangling oxygens before the isotropic bulk region. Using ab initio calculations, we translate this hydrogen bonding anisotropy to charge transfer between water molecules, which we analyze with respect to both instantaneous and averaged positions of the water surface. Similarly to the oil/water interface, we show that there is a region of small net negative charge extending 0.2 to 0.6 nm from the Gibbs dividing surface in the aqueous phase. Using a simple continuum model, we translate this charge profile to a zeta potential, which acquires for realistic positions of the shear surface the same negative sign as that observed experimentally, albeit of a smaller absolute value.
Cited By
This article is cited by 96 publications.
- Seung Hee Chae, Min Sik Kim, Jae-Hong Kim, John D. Fortner. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions. ACS ES&T Engineering 2023, Article ASAP.
- Bowen Han, Christine M. Isborn, Liang Shi. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. The Journal of Physical Chemistry Letters 2023, 14 (16) , 3869-3877. https://doi.org/10.1021/acs.jpclett.3c00036
- Fan Wang, Peng Yang, Xinglin Tao, Yuxiang Shi, Shuyao Li, Zhaoqi Liu, Xiangyu Chen, Zhong Lin Wang. Study of Contact Electrification at Liquid-Gas Interface. ACS Nano 2021, 15 (11) , 18206-18213. https://doi.org/10.1021/acsnano.1c07158
- William N. Sharratt, Victoria E. Lee, Rodney D. Priestley, João T. Cabral. Precision Polymer Particles by Flash Nanoprecipitation and Microfluidic Droplet Extraction. ACS Applied Polymer Materials 2021, 3 (10) , 4746-4768. https://doi.org/10.1021/acsapm.1c00546
- Bowen Han, Christine M. Isborn, Liang Shi. Determining Partial Atomic Charges for Liquid Water: Assessing Electronic Structure and Charge Models. Journal of Chemical Theory and Computation 2021, 17 (2) , 889-901. https://doi.org/10.1021/acs.jctc.0c01102
- Tianyu Zhu, Troy Van Voorhis. Understanding the Dipole Moment of Liquid Water from a Self-Attractive Hartree Decomposition. The Journal of Physical Chemistry Letters 2021, 12 (1) , 6-12. https://doi.org/10.1021/acs.jpclett.0c03300
- Narjes Ansari, Tarak Karmakar, Michele Parrinello. Molecular Mechanism of Gas Solubility in Liquid: Constant Chemical Potential Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2020, 16 (8) , 5279-5286. https://doi.org/10.1021/acs.jctc.0c00450
- Andrew P. Carpenter, Rebecca M. Altman, Emma Tran, Geraldine L. Richmond. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces. The Journal of Physical Chemistry B 2020, 124 (20) , 4234-4245. https://doi.org/10.1021/acs.jpcb.0c03293
- Yuki Uematsu, Douwe Jan Bonthuis, Roland R. Netz. Nanomolar Surface-Active Charged Impurities Account for the Zeta Potential of Hydrophobic Surfaces. Langmuir 2020, 36 (13) , 3645-3658. https://doi.org/10.1021/acs.langmuir.9b03795
- Magdalena Kowacz, Gerald H. Pollack. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. The Journal of Physical Chemistry B 2019, 123 (51) , 11003-11013. https://doi.org/10.1021/acs.jpcb.9b09161
- Tatiana I. Morozova, Victoria E. Lee, Athanassios Z. Panagiotopoulos, Robert K. Prud’homme, Rodney D. Priestley, Arash Nikoubashman. On the Stability of Polymeric Nanoparticles Fabricated through Rapid Solvent Mixing. Langmuir 2019, 35 (3) , 709-717. https://doi.org/10.1021/acs.langmuir.8b03399
- S. Jain, L. Qiao. Understanding Combustion of H2/O2 Gases inside Nanobubbles Generated by Water Electrolysis Using Reactive Molecular Dynamic Simulations. The Journal of Physical Chemistry A 2018, 122 (24) , 5261-5269. https://doi.org/10.1021/acs.jpca.8b01798
- Sucheol Shin, Adam P. Willard. Three-Body Hydrogen Bond Defects Contribute Significantly to the Dielectric Properties of the Liquid Water–Vapor Interface. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1649-1654. https://doi.org/10.1021/acs.jpclett.8b00488
- Victoria E. Lee, Chris Sosa, Rui Liu, Robert K. Prud’homme, and Rodney D. Priestley . Scalable Platform for Structured and Hybrid Soft Nanocolloids by Continuous Precipitation in a Confined Environment. Langmuir 2017, 33 (14) , 3444-3449. https://doi.org/10.1021/acs.langmuir.7b00249
- Noam Agmon, Huib J. Bakker, R. Kramer Campen, Richard H. Henchman, Peter Pohl, Sylvie Roke, Martin Thämer, and Ali Hassanali . Protons and Hydroxide Ions in Aqueous Systems. Chemical Reviews 2016, 116 (13) , 7642-7672. https://doi.org/10.1021/acs.chemrev.5b00736
- Chen Bai and Judith Herzfeld . Surface Propensities of the Self-Ions of Water. ACS Central Science 2016, 2 (4) , 225-231. https://doi.org/10.1021/acscentsci.6b00013
- Arash Nikoubashman, Victoria E. Lee, Chris Sosa, Robert K. Prud’homme, Rodney D. Priestley, and Athanassios Z. Panagiotopoulos . Directed Assembly of Soft Colloids through Rapid Solvent Exchange. ACS Nano 2016, 10 (1) , 1425-1433. https://doi.org/10.1021/acsnano.5b06890
- Yongli Huang, Xi Zhang, Zengsheng Ma, Guanghui Zhou, Yinyan Gong, and Chang Q Sun . Potential Paths for the Hydrogen-Bond Relaxing with (H2O)N Cluster Size. The Journal of Physical Chemistry C 2015, 119 (29) , 16962-16971. https://doi.org/10.1021/acs.jpcc.5b03921
- Hajime Torii . Electronic Structural Basis for the Atomic Partial Charges of Planar Molecular Systems Derived from Out-of-Plane Dipole Derivatives. The Journal of Physical Chemistry A 2015, 119 (13) , 3277-3284. https://doi.org/10.1021/jp512884g
- Sigurd Bauerecker and Tillmann Buttersack . Electric Effect during the Fast Dendritic Freezing of Supercooled Water Droplets. The Journal of Physical Chemistry B 2014, 118 (47) , 13629-13635. https://doi.org/10.1021/jp507440a
- Hajime Torii . Cooperative Contributions of the Intermolecular Charge Fluxes and Intramolecular Polarizations in the Far-Infrared Spectral Intensities of Liquid Water. Journal of Chemical Theory and Computation 2014, 10 (3) , 1219-1227. https://doi.org/10.1021/ct4011147
- Chang Q Sun, Xi Zhang, Ji Zhou, Yongli Huang, Yichun Zhou, and Weitao Zheng . Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors. The Journal of Physical Chemistry Letters 2013, 4 (15) , 2565-2570. https://doi.org/10.1021/jz401029z
- Volker Knecht, Benjamin Klasczyk, and Rumiana Dimova . Macro- versus Microscopic View on the Electrokinetics of a Water–Membrane Interface. Langmuir 2013, 29 (25) , 7939-7948. https://doi.org/10.1021/la400342m
- Hajime Torii . Extended Nature of the Molecular Dipole of Hydrogen-Bonded Water. The Journal of Physical Chemistry A 2013, 117 (9) , 2044-2051. https://doi.org/10.1021/jp4013015
- Alexis J. Lee and Steven W. Rick . Characterizing Charge Transfer at Water Ice Interfaces. The Journal of Physical Chemistry Letters 2012, 3 (21) , 3199-3203. https://doi.org/10.1021/jz301411q
- Dominique Verreault, Wei Hua, and Heather C. Allen . From Conventional to Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy: Probing Water Organization at Aqueous Interfaces. The Journal of Physical Chemistry Letters 2012, 3 (20) , 3012-3028. https://doi.org/10.1021/jz301179g
- Ali A. Paknahad, Intesar O. Zalloum, Raffi Karshafian, Michael C. Kolios, Scott S.H. Tsai. High throughput microfluidic nanobubble generation by microporous membrane integration and controlled bubble shrinkage. Journal of Colloid and Interface Science 2023, 11 https://doi.org/10.1016/j.jcis.2023.09.066
- Hajime Torii. Intermolecular charge fluxes and terahertz spectral features of liquid methanol. Journal of Molecular Liquids 2023, 86 , 123111. https://doi.org/10.1016/j.molliq.2023.123111
- Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. On the role of surface charge and surface tension tuned by surfactant in stabilizing bulk nanobubbles. Applied Surface Science 2023, 608 , 155232. https://doi.org/10.1016/j.apsusc.2022.155232
- Maximilian R. Becker, Philip Loche, Roland R. Netz. Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid–vapor interface. The Journal of Chemical Physics 2022, 157 (24) https://doi.org/10.1063/5.0127869
- Youngsun Kim, Hongru Ding, Yuebing Zheng. Investigating water/oil interfaces with opto-thermophoresis. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31546-3
- Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. Nanomaterials 2022, 12 (19) , 3450. https://doi.org/10.3390/nano12193450
- Louise Perrin, Sylvie Desobry-Banon, Guillaume Gillet, Stephane Desobry. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022, 11 (15) , 2194. https://doi.org/10.3390/foods11152194
- Xiaotong Ma, Mingbo Li, Patricia Pfeiffer, Julian Eisener, Claus-Dieter Ohl, Chao Sun. Ion adsorption stabilizes bulk nanobubbles. Journal of Colloid and Interface Science 2022, 606 , 1380-1394. https://doi.org/10.1016/j.jcis.2021.08.101
- Xiaotong Ma, Mingbo Li, Xuefei Xu, Chao Sun. On the Role of Surface Charge and Surface Tension Tuned by Surfactant in Stabilizing Bulk Nanobubbles. SSRN Electronic Journal 2022, 32 https://doi.org/10.2139/ssrn.4195344
- John M. Herbert, Suranjan K. Paul. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface. Molecules 2021, 26 (21) , 6719. https://doi.org/10.3390/molecules26216719
- Yuki Uematsu. Electrification of water interface. Journal of Physics: Condensed Matter 2021, 33 (42) , 423001. https://doi.org/10.1088/1361-648X/ac15d5
- Muidh Alheshibri, Abbad Al Baroot, Lingling Shui, Minmin Zhang. Nanobubbles and nanoparticles. Current Opinion in Colloid & Interface Science 2021, 55 , 101470. https://doi.org/10.1016/j.cocis.2021.101470
- Vitaly B. Svetovoy. Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles. Current Opinion in Colloid & Interface Science 2021, 52 , 101423. https://doi.org/10.1016/j.cocis.2021.101423
- Pratik A. Satpute, James C. Earthman. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage. Journal of Colloid and Interface Science 2021, 584 , 449-455. https://doi.org/10.1016/j.jcis.2020.09.100
- Emiliano Poli, Kwang H. Jong, Ali Hassanali. Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14659-5
- Jamilya Nauruzbayeva, Zhonghao Sun, Adair Gallo, Mahmoud Ibrahim, J. Carlos Santamarina, Himanshu Mishra. Electrification at water–hydrophobe interfaces. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19054-8
- Dongyue Liang, Udaya Dahal, Yongqian (Kelly) Zhang, Christian Lochbaum, Dhiman Ray, Robert J. Hamers, Joel A. Pedersen, Qiang Cui. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules. Nanoscale 2020, 12 (35) , 18106-18123. https://doi.org/10.1039/D0NR03792C
- Christoph Schran, Krystof Brezina, Ondrej Marsalek. Committee neural network potentials control generalization errors and enable active learning. The Journal of Chemical Physics 2020, 153 (10) https://doi.org/10.1063/5.0016004
- Soumen Mandal, Souvik Paul, Saswata Mukhopadhyay, Ravi Kumar Arun, Debeshi Dutta, Nripen Chanda. Gold-nanoparticle-embedded microchannel array for enhanced power generation. Lab on a Chip 2020, 20 (15) , 2717-2723. https://doi.org/10.1039/D0LC00552E
- Seth Yannacone, Marek Freindorf, Yunwen Tao, Wenli Zou, Elfi Kraka. Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors. Crystals 2020, 10 (7) , 556. https://doi.org/10.3390/cryst10070556
- Hongguang Zhang, Zhenjiang Guo, Xianren Zhang. Surface enrichment of ions leads to the stability of bulk nanobubbles. Soft Matter 2020, 16 (23) , 5470-5477. https://doi.org/10.1039/D0SM00116C
- Mohammad Reza Ghaani, Peter G. Kusalik, Niall J. English. Massive generation of metastable bulk nanobubbles in water by external electric fields. Science Advances 2020, 6 (14) https://doi.org/10.1126/sciadv.aaz0094
- Chang Q Sun. Liquid Phase. 2020, 215-242. https://doi.org/10.1007/978-981-15-3176-7_11
- Vitaly B. Svetovoy, Alexander V. Prokaznikov, Alexander V. Postnikov, Ilia V. Uvarov, George Palasantzas. Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. Energies 2020, 13 (1) , 20. https://doi.org/10.3390/en13010020
- Johannes Fiedler, Drew F. Parsons, Friedrich Anton Burger, Priyadarshini Thiyam, Michael Walter, I. Brevik, Clas Persson, Stefan Yoshi Buhmann, Mathias Boström. Impact of effective polarisability models on the near-field interaction of dissolved greenhouse gases at ice and air interfaces. Physical Chemistry Chemical Physics 2019, 21 (38) , 21296-21304. https://doi.org/10.1039/C9CP03165K
- Baofu Qiao, Felipe Jiménez-Ángeles, Trung Dac Nguyen, Monica Olvera de la Cruz. Water follows polar and nonpolar protein surface domains. Proceedings of the National Academy of Sciences 2019, 116 (39) , 19274-19281. https://doi.org/10.1073/pnas.1910225116
- Nikolay O. Mchedlov-Petrossyan, Anastasiia Yu. Kharchenko, Mykyta O. Marfunin, Oleg R. Klochaniuk. Nano-sized bubbles in solution of hydrophobic dyes and the properties of the water/air interface. Journal of Molecular Liquids 2019, 275 , 384-393. https://doi.org/10.1016/j.molliq.2018.11.073
- Hajime Torii. Dynamical behavior of molecular partial charges implied by the far-infrared spectral profile of liquid water. Chemical Physics 2018, 512 , 165-170. https://doi.org/10.1016/j.chemphys.2017.11.018
- Joseph A. Napoli, Ondrej Marsalek, Thomas E. Markland. Decoding the spectroscopic features and time scales of aqueous proton defects. The Journal of Chemical Physics 2018, 148 (22) https://doi.org/10.1063/1.5023704
- Yong Whan Choi, Segeun Jang, Myung-Suk Chun, Sang Moon Kim, Mansoo Choi. Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface. International Journal of Precision Engineering and Manufacturing-Green Technology 2018, 5 (2) , 255-260. https://doi.org/10.1007/s40684-018-0026-5
- Christoph Hölzl, Dominik Horinek. Pressure increases the ice-like order of water at hydrophobic interfaces. Physical Chemistry Chemical Physics 2018, 20 (33) , 21257-21261. https://doi.org/10.1039/C8CP03057J
- Shavkat I. Mamatkulov, Christoph Allolio, Roland R. Netz, Douwe Jan Bonthuis. Adsorption von hydrierten Protonen an der Luft‐Wasser‐Grenzfläche durch Orientierung. Angewandte Chemie 2017, 129 (50) , 16058-16064. https://doi.org/10.1002/ange.201707391
- Shavkat I. Mamatkulov, Christoph Allolio, Roland R. Netz, Douwe Jan Bonthuis. Orientation‐Induced Adsorption of Hydrated Protons at the Air–Water Interface. Angewandte Chemie International Edition 2017, 56 (50) , 15846-15851. https://doi.org/10.1002/anie.201707391
- Christoph Schran, Ondrej Marsalek, Thomas E. Markland. Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond. Chemical Physics Letters 2017, 678 , 289-295. https://doi.org/10.1016/j.cplett.2017.04.034
- M. Okumura, M. Sassi, K. M. Rosso, M. Machida. Origin of 6-fold coordinated aluminum at (010)-type pyrophyllite edges. AIP Advances 2017, 7 (5) , 055211. https://doi.org/10.1063/1.4983213
- Alexander Prokaznikov, Niels Tas, Vitaly Svetovoy. Surface Assisted Combustion of Hydrogen-Oxygen Mixture in Nanobubbles Produced by Electrolysis. Energies 2017, 10 (2) , 178. https://doi.org/10.3390/en10020178
- Mohammadhasan Dinpajooh, Dmitry V. Matyushov. Mobility of nanometer-size solutes in water driven by electric field. Physica A: Statistical Mechanics and its Applications 2016, 463 , 366-375. https://doi.org/10.1016/j.physa.2016.07.054
- Daniel Muñoz-Santiburcio, Dominik Marx. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12625
- Steven W. Rick. A polarizable, charge transfer model of water using the drude oscillator. Journal of Computational Chemistry 2016, 37 (22) , 2060-2066. https://doi.org/10.1002/jcc.24426
- Chang Q. Sun, Yi Sun. Water Supersolid Skin. 2016, 245-279. https://doi.org/10.1007/978-981-10-0180-2_10
- Chang Q. Sun, Yi Sun. Molecular Undercoordination: Supersolidity. 2016, 175-202. https://doi.org/10.1007/978-981-10-0180-2_8
- Chang Q. Sun, Yi Sun. Superlubricity of Ice. 2016, 203-243. https://doi.org/10.1007/978-981-10-0180-2_9
- Xi Zhang, Yongli Huang, Zengsheng Ma, Lengyuan Niu, Chang Qing Sun. From ice superlubricity to quantum friction: Electronic repulsivity and phononic elasticity. Friction 2015, 3 (4) , 294-319. https://doi.org/10.1007/s40544-015-0097-z
- Marielle Soniat, Revati Kumar, Steven W. Rick. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water. The Journal of Chemical Physics 2015, 143 (4) https://doi.org/10.1063/1.4926831
- Yong Li Huang, Xi Zhang, Zengsheng Ma, Guanghui Zhou, Chang Qing Sun, Yin Yang Gong. Potential Paths for the Hydrogen-Bond Relaxing With (H 2 O) N Cluster Size. The Journal of Physical Chemistry A 2015, 285 , 150629002906004. https://doi.org/10.1021/acs.jpca.5b03921
- Yongli Huang, Xi Zhang, Zengsheng Ma, Yichun Zhou, Weitao Zheng, Ji Zhou, Chang Q. Sun. Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coordination Chemistry Reviews 2015, 285 , 109-165. https://doi.org/10.1016/j.ccr.2014.10.003
- Thomas Gladytz, Bernd Abel, Katrin R. Siefermann. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics 2015, 17 (7) , 4926-4936. https://doi.org/10.1039/C4CP05171H
- Hajime Torii. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds. 2015, 090043. https://doi.org/10.1063/1.4938851
- Jean-Sebastién Samson, Rüdiger Scheu, Nikolay Smolentsev, Steven W. Rick, Sylvie Roke. Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures. Chemical Physics Letters 2014, 615 , 124-131. https://doi.org/10.1016/j.cplett.2014.09.034
- C.S. Tian, Y.R. Shen. Recent progress on sum-frequency spectroscopy. Surface Science Reports 2014, 69 (2-3) , 105-131. https://doi.org/10.1016/j.surfrep.2014.05.001
- Atiða Selmani, Johannes Lützenkirchen, Nikola Kallay, Tajana Preočanin. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. Journal of Physics: Condensed Matter 2014, 26 (24) , 244104. https://doi.org/10.1088/0953-8984/26/24/244104
- Sanket Deshmukh, Ganesh Kamath, Subramanian K. R. S. Sankaranarayanan. Effect of Nanoscale Confinement on Freezing of Modified Water at Room Temperature and Ambient Pressure. ChemPhysChem 2014, 15 (8) , 1632-1642. https://doi.org/10.1002/cphc.201400016
- Marielle Soniat, Steven W. Rick. Charge transfer effects of ions at the liquid water/vapor interface. The Journal of Chemical Physics 2014, 140 (18) https://doi.org/10.1063/1.4874256
- Robert Vácha, Frank Uhlig, Pavel Jungwirth. Charges at Aqueous Interfaces: Development of Computational Approaches in Direct Contact with Experiment. 2014, 69-96. https://doi.org/10.1002/9781118755815.ch02
- Richard W. O’Brien, James K. Beattie, Alex M. Djerdjev. The electrophoretic mobility of an uncharged particle. Journal of Colloid and Interface Science 2014, 420 , 70-73. https://doi.org/10.1016/j.jcis.2013.10.047
- Ali A. Hassanali, Jérôme Cuny, Vincenzo Verdolino, Michele Parrinello. Aqueous solutions: state of the art in ab initio molecular dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2014, 372 (2011) , 20120482. https://doi.org/10.1098/rsta.2012.0482
- Xi Zhang, Yongli Huang, Zengsheng Ma, Yichun Zhou, Weitao Zheng, Ji Zhou, Chang Q. Sun. A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 2014, 16 (42) , 22987-22994. https://doi.org/10.1039/C4CP02516D
- Chang Q. Sun. Molecular Clusters, Skins, and Ultrathin Films. 2014, 701-712. https://doi.org/10.1007/978-981-4585-21-7_35
- Chang Q. Sun. Skin Supersolidity of Water and Ice. 2014, 747-756. https://doi.org/10.1007/978-981-4585-21-7_39
- Yongli Huang, Xi Zhang, Zengsheng Ma, Wen Li, Yichun Zhou, Ji Zhou, Weitao Zheng, Chang Q. Sun. Size, separation, structural order and mass density of molecules packing in water and ice. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep03005
- Mary Jane Shultz, Patrick Bisson, Tuan Hoang Vu. Molecular dance: Water’s collective modes. Chemical Physics Letters 2013, 588 , 1-10. https://doi.org/10.1016/j.cplett.2013.09.053
- Benjamin Rotenberg, Ignacio Pagonabarraga. Electrokinetics: insights from simulation on the microscopic scale. Molecular Physics 2013, 111 (7) , 827-842. https://doi.org/10.1080/00268976.2013.791731
- Vladimir L. Shapovalov, Helmuth Möhwald, Oleg V. Konovalov, Volker Knecht. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques. Physical Chemistry Chemical Physics 2013, 15 (33) , 13991. https://doi.org/10.1039/c3cp51575c
- Richard H. Henchman, Stuart J. Cockram. Water's non-tetrahedral side. Faraday Discussions 2013, 167 , 529. https://doi.org/10.1039/c3fd00080j
- Himanshu Mishra, Shinichi Enami, Robert J. Nielsen, Logan A. Stewart, Michael R. Hoffmann, William A. Goddard, Agustín J. Colussi. Brønsted basicity of the air–water interface. Proceedings of the National Academy of Sciences 2012, 109 (46) , 18679-18683. https://doi.org/10.1073/pnas.1209307109
- Collin D. Wick, Alexis J. Lee, Steven W. Rick. How intermolecular charge transfer influences the air-water interface. The Journal of Chemical Physics 2012, 137 (15) , 154701. https://doi.org/10.1063/1.4758457
- Alessandro Cerioni, Luigi Genovese, Alessandro Mirone, Vicente Armando Sole. Efficient and accurate solver of the three-dimensional screened and unscreened Poisson's equation with generic boundary conditions. The Journal of Chemical Physics 2012, 137 (13) https://doi.org/10.1063/1.4755349
- Tajana Preočanin, Atiđa Selmani, Patric Lindqvist-Reis, Frank Heberling, Nikola Kallay, Johannes Lützenkirchen. Surface charge at Teflon/aqueous solution of potassium chloride interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 412 , 120-128. https://doi.org/10.1016/j.colsurfa.2012.07.025
- Sheeba Jem Irudayam, Richard H. Henchman. Long-range hydrogen-bond structure in aqueous solutions and the vapor-water interface. The Journal of Chemical Physics 2012, 137 (3) https://doi.org/10.1063/1.4735267
- Mark A Miller, David A Bonhommeau, Christopher J Heard, Yuyoung Shin, Riccardo Spezia, Marie-Pierre Gaigeot. Structure and stability of charged clusters. Journal of Physics: Condensed Matter 2012, 24 (28) , 284130. https://doi.org/10.1088/0953-8984/24/28/284130