ACS Publications. Most Trusted. Most Cited. Most Read
CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism
My Activity

Figure 1Loading Img
    Surfaces, Interfaces, Porous Materials, and Catalysis

    CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712-0165, United States
    *E-mail: [email protected] (H.Y.K.); [email protected] (G.H.). TEL: (512) 471-4179; FAX: (512) 471-6835.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 1, 216–221
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz301778b
    Published December 22, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    DFT+U calculations of CO oxidation by Au12 nanoclusters supported on a stepped-CeO2(111) surface show that lattice oxygen at the step edge oxidizes CO bound to Au NCs by the Mars–van Krevelen (M-vK) mechanism. We found that CO2 desorption determines the rate of CO oxidation, and the vacancy formation energy is a reactivity descriptor for CO oxidation. Our results suggest that the M-vK mechanism contributes significantly to CO oxidation activity at Au particles supported on the nano- or meso-structured CeO2 found in industrial catalysts.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional data is presented in Tables S1, S2, S3, and S4, and Figures S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 159 publications.

    1. Thu Ngan Dinhová, Oleksii Bezkrovnyi, Lesia Piliai, Ivan Khalakhan, Samiran Chakraborty, Maciej Ptak, Piotr Kraszkiewicz, Mykhailo Vaidulych, Michal Mazur, Štefan Vajda, Leszek Kepinski, Michael Vorochta, Iva Matolínová. Unraveling the Effects of Reducing and Oxidizing Pretreatments and Humidity on the Surface Chemistry of the Ru/CeO2 Catalyst during Propane Oxidation. The Journal of Physical Chemistry C 2025, 129 (3) , 1746-1757. https://doi.org/10.1021/acs.jpcc.4c08033
    2. Ying Wang, Piotr Igor Wemhoff, Ghada Missaoui, Niklas Nilius, Jacek Goniakowski, Claudine Noguera. Segregation Effects in 2D Mixed Oxide Nano-Islands: Edge Structure and Composition in V2-xFexO3 Monolayers. The Journal of Physical Chemistry C 2024, 128 (44) , 18923-18932. https://doi.org/10.1021/acs.jpcc.4c04585
    3. Yijing Liu, Le Lin, Rentao Mu, Qiang Fu. Oxygen Vacancy Activates the Second-Nearest-Neighbor Lattice Oxygen for Oxidation Reaction. The Journal of Physical Chemistry Letters 2024, 15 (37) , 9369-9373. https://doi.org/10.1021/acs.jpclett.4c02133
    4. Osman Bunjaku, Jan Florenski, Jonathan Wischnat, Elias Klemm, Olga V. Safonova, Joris van Slageren, Deven P. Estes. Understanding the Reducibility of CeO2 Surfaces by Proton–Electron Transfer from CpCr(CO)3H. Inorganic Chemistry 2024, 63 (16) , 7512-7519. https://doi.org/10.1021/acs.inorgchem.4c01199
    5. Eunji Lee, Beomjoon Jeon, Hyuk Choi, Jihun Kim, Jongseok Kim, Gyuho Han, Kwangjin An, Hyun You Kim, Jeong Young Park, Si Woo Lee. Insight into the Synergistic Effect of the Oxide–Metal Interface on Hot Electron Excitation. ACS Catalysis 2024, 14 (8) , 5520-5530. https://doi.org/10.1021/acscatal.4c00407
    6. Max L. Bols, Jing Ma, Fatima Rammal, Dieter Plessers, Xuejiao Wu, Sara Navarro-Jaén, Alexander J. Heyer, Bert F. Sels, Edward I. Solomon, Robert A. Schoonheydt. In Situ UV–Vis–NIR Absorption Spectroscopy and Catalysis. Chemical Reviews 2024, 124 (5) , 2352-2418. https://doi.org/10.1021/acs.chemrev.3c00602
    7. Hiroki Matsuo, Minori Kobayashi, Shimpei Naniwa, Shoji Iguchi, Soichi Kikkawa, Hiroyuki Asakura, Saburo Hosokawa, Tsunehiro Tanaka, Kentaro Teramura. Hydrogenation of CO2 over Mn-Substituted SrTiO3 Based on the Reverse Mars–van Krevelen Mechanism. The Journal of Physical Chemistry C 2023, 127 (19) , 8946-8952. https://doi.org/10.1021/acs.jpcc.3c01183
    8. Haoming Bao, Kenta Motobayashi, Hongwen Zhang, Weiping Cai, Katsuyoshi Ikeda. In-situ Surface-Enhanced Raman Spectroscopy Reveals a Mars–van Krevelen-Type Gas Sensing Mechanism in Au@SnO2 Nanoparticle-Based Chemiresistors. The Journal of Physical Chemistry Letters 2023, 14 (17) , 4113-4118. https://doi.org/10.1021/acs.jpclett.3c00562
    9. Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li. Metal Affinity of Support Dictates Sintering of Gold Catalysts. Journal of the American Chemical Society 2022, 144 (45) , 20601-20609. https://doi.org/10.1021/jacs.2c06785
    10. Linxi Wang, Shyam Deo, Ahana Mukhopadhyay, Nicholas A. Pantelis, II, Michael J. Janik, Robert M. Rioux. Emergent Behavior in Oxidation Catalysis over Single-Atom Pd on a Reducible CeO2 Support via Mixed Redox Cycles. ACS Catalysis 2022, 12 (20) , 12927-12941. https://doi.org/10.1021/acscatal.2c03194
    11. Luis A. Cipriano, Giovanni Di Liberto, Gianfranco Pacchioni. Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction. ACS Catalysis 2022, 12 (19) , 11682-11691. https://doi.org/10.1021/acscatal.2c03020
    12. Oleksii Bezkrovnyi, Albert Bruix, Dominik Blaumeiser, Lesia Piliai, Simon Schötz, Tanja Bauer, Ivan Khalakhan, Tomáš Skála, Peter Matvija, Piotr Kraszkiewicz, Mirosława Pawlyta, Mykhailo Vorokhta, Iva Matolínová, Jörg Libuda, Konstantin M. Neyman, Leszek Kȩpiński. Metal–Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. Chemistry of Materials 2022, 34 (17) , 7916-7936. https://doi.org/10.1021/acs.chemmater.2c01659
    13. Dung Van Dao, Hyuk Choi, Thuy T. D. Nguyen, Sang-Woo Ki, Gyu-Cheol Kim, Hoki Son, Jin-Kyu Yang, Yeon-Tae Yu, Hyun You Kim, In-Hwan Lee. Light-to-Hydrogen Improvement Based on Three-Factored Au@CeO2/Gr Hierarchical Photocatalysts. ACS Nano 2022, 16 (5) , 7848-7860. https://doi.org/10.1021/acsnano.2c00509
    14. Mi Yoo, Eunji Kang, Hyunwoo Ha, Jieun Yun, Hyuk Choi, Ju Hyeok Lee, Tae Jun Kim, Jiho Min, Jin-Seok Choi, Kug-Seung Lee, Namgee Jung, Sungtak Kim, Chunjoong Kim, Young-Sang Yu, Hyun You Kim. Interspersing CeOx Clusters to the Pt–TiO2 Interfaces for Catalytic Promotion of TiO2-Supported Pt Nanoparticles. The Journal of Physical Chemistry Letters 2022, 13 (7) , 1719-1725. https://doi.org/10.1021/acs.jpclett.2c00080
    15. Zhi-Qiang Wang, De-Ren Chu, Hui Zhou, Xin-Ping Wu, Xue-Qing Gong. Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces. ACS Catalysis 2022, 12 (1) , 624-632. https://doi.org/10.1021/acscatal.1c04856
    16. Yong Li, Shikun Li, Marcus Bäumer, Lyudmila V. Moskaleva. Transient Au–CO Complexes Promote the Activity of an Inverse Ceria/Gold Catalyst: An Insight from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry C 2021, 125 (48) , 26406-26417. https://doi.org/10.1021/acs.jpcc.1c07040
    17. Marc Ziemba, Christian Schilling, M. Verónica Ganduglia-Pirovano, Christian Hess. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Accounts of Chemical Research 2021, 54 (13) , 2884-2893. https://doi.org/10.1021/acs.accounts.1c00226
    18. Zhongtian Mao, Pablo G. Lustemberg, John R. Rumptz, M. Verónica Ganduglia-Pirovano, Charles T. Campbell. Ni Nanoparticles on CeO2(111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory. ACS Catalysis 2020, 10 (9) , 5101-5114. https://doi.org/10.1021/acscatal.0c00333
    19. Yong Li, Shikun Li, Marcus Bäumer, Elena A. Ivanova-Shor, Lyudmila V. Moskaleva. What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catalysis 2020, 10 (5) , 3164-3174. https://doi.org/10.1021/acscatal.9b05175
    20. Haoqian Zhou, Xiaolong Zou, Xi Wu, Xin Yang, Jia Li. Coordination Engineering in Cobalt–Nitrogen-Functionalized Materials for CO2 Reduction. The Journal of Physical Chemistry Letters 2019, 10 (21) , 6551-6557. https://doi.org/10.1021/acs.jpclett.9b02132
    21. Wilke Dononelli, Gabriele Tomaschun, Thorsten Klüner, Lyudmila V. Moskaleva. Understanding Oxygen Activation on Nanoporous Gold. ACS Catalysis 2019, 9 (6) , 5204-5216. https://doi.org/10.1021/acscatal.9b00682
    22. Wilke Dononelli, Lyudmila V. Moskaleva, Thorsten Klüner. CO Oxidation over Unsupported Group 11 Metal Catalysts: New Mechanistic Insight from First-Principles. The Journal of Physical Chemistry C 2019, 123 (13) , 7818-7830. https://doi.org/10.1021/acs.jpcc.8b06676
    23. Hyunwoo Ha, Sinmyung Yoon, Kwangjin An, Hyun You Kim. Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface. ACS Catalysis 2018, 8 (12) , 11491-11501. https://doi.org/10.1021/acscatal.8b03539
    24. Philomena Schlexer, Daniel Widmann, R. Jürgen Behm, Gianfranco Pacchioni. CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism. ACS Catalysis 2018, 8 (7) , 6513-6525. https://doi.org/10.1021/acscatal.8b01751
    25. Chi He, Zeyu Jiang, Mudi Ma, Xiaodong Zhang, Mark Douthwaite, Jian-Wen Shi, Zhengping Hao. Understanding the Promotional Effect of Mn2O3 on Micro-/Mesoporous Hybrid Silica Nanocubic-Supported Pt Catalysts for the Low-Temperature Destruction of Methyl Ethyl Ketone: An Experimental and Theoretical Study. ACS Catalysis 2018, 8 (5) , 4213-4229. https://doi.org/10.1021/acscatal.7b04461
    26. Christian Schilling and Christian Hess . Real-Time Observation of the Defect Dynamics in Working Au/CeO2 Catalysts by Combined Operando Raman/UV–Vis Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (5) , 2909-2917. https://doi.org/10.1021/acs.jpcc.8b00027
    27. Hyunwoo Ha, Hyesung An, Mi Yoo, Junhee Lee, and Hyun You Kim . Catalytic CO Oxidation by CO-Saturated Au Nanoparticles Supported on CeO2: Effect of CO Coverage. The Journal of Physical Chemistry C 2017, 121 (48) , 26895-26902. https://doi.org/10.1021/acs.jpcc.7b09780
    28. Matthias Vandichel, Alina Moscu, and Henrik Grönbeck . Catalysis at the Rim: A Mechanism for Low Temperature CO Oxidation over Pt3Sn. ACS Catalysis 2017, 7 (11) , 7431-7441. https://doi.org/10.1021/acscatal.7b02094
    29. Filip Zasada, Witold Piskorz, Janusz Janas, Eko Budiyanto, and Zbigniew Sojka . Dioxygen Activation Pathways over Cobalt Spinel Nanocubes—From Molecular Mechanism into Ab Initio Thermodynamics and 16O2/18O2 Exchange Microkinetics. The Journal of Physical Chemistry C 2017, 121 (43) , 24128-24143. https://doi.org/10.1021/acs.jpcc.7b09597
    30. Antonio Ruiz Puigdollers, Philomena Schlexer, Sergio Tosoni, and Gianfranco Pacchioni . Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catalysis 2017, 7 (10) , 6493-6513. https://doi.org/10.1021/acscatal.7b01913
    31. Bradley W. Ewers, Andrew S. Crampton, Monika M. Biener, and Cynthia M. Friend . Thermally Activated Formation of Reactive Lattice Oxygen in Titania on Nanoporous Gold. The Journal of Physical Chemistry C 2017, 121 (39) , 21405-21410. https://doi.org/10.1021/acs.jpcc.7b06316
    32. Jin-Cheng Liu, Yang-Gang Wang, and Jun Li . Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. Journal of the American Chemical Society 2017, 139 (17) , 6190-6199. https://doi.org/10.1021/jacs.7b01602
    33. Jinshuo Zou, Zhichun Si, Yidan Cao, Rui Ran, Xiaodong Wu, and Duan Weng . Localized Surface Plasmon Resonance Assisted Photothermal Catalysis of CO and Toluene Oxidation over Pd–CeO2 Catalyst under Visible Light Irradiation. The Journal of Physical Chemistry C 2016, 120 (51) , 29116-29125. https://doi.org/10.1021/acs.jpcc.6b08630
    34. Anita M. D’Angelo, Nathan A. S. Webster, and Alan L. Chaffee . Vacancy Generation and Oxygen Uptake in Cu-Doped Pr-CeO2 Materials using Neutron and in Situ X-ray Diffraction. Inorganic Chemistry 2016, 55 (24) , 12595-12602. https://doi.org/10.1021/acs.inorgchem.6b01499
    35. Zili Wu, Guoxiang Hu, De-en Jiang, David R. Mullins, Qian-Fan Zhang, Lawrence F. Allard, Jr., Lai-Sheng Wang, and Steven H. Overbury . Diphosphine-Protected Au22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal. Nano Letters 2016, 16 (10) , 6560-6567. https://doi.org/10.1021/acs.nanolett.6b03221
    36. Daniel Widmann, Anke Krautsieder, Patrick Walter, Angelika Brückner, and R. Jürgen Behm . How Temperature Affects the Mechanism of CO Oxidation on Au/TiO2: A Combined EPR and TAP Reactor Study of the Reactive Removal of TiO2 Surface Lattice Oxygen in Au/TiO2 by CO. ACS Catalysis 2016, 6 (8) , 5005-5011. https://doi.org/10.1021/acscatal.6b01219
    37. Hyesung An, Soonho Kwon, Hyunwoo Ha, Hyun You Kim, and Hyuck Mo Lee . Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation. The Journal of Physical Chemistry C 2016, 120 (17) , 9292-9298. https://doi.org/10.1021/acs.jpcc.6b01774
    38. Bing Liu, Zhen Zhao, Graeme Henkelman, and Weiyu Song . Computational Design of a CeO2-Supported Pd-Based Bimetallic Nanorod for CO Oxidation. The Journal of Physical Chemistry C 2016, 120 (10) , 5557-5564. https://doi.org/10.1021/acs.jpcc.6b00253
    39. Ravi Kiran Mandapaka and Giridhar Madras . Microkinetic Modeling of CO Oxidation on Ionic Palladium-Substituted Ceria. Industrial & Engineering Chemistry Research 2016, 55 (8) , 2309-2318. https://doi.org/10.1021/acs.iecr.5b04724
    40. Jun Ke, Wei Zhu, Yingying Jiang, Rui Si, Yan-Jie Wang, Shuai-Chen Li, Chuanhong Jin, Haichao Liu, Wei-Guo Song, Chun-Hua Yan, and Ya-Wen Zhang . Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation. ACS Catalysis 2015, 5 (9) , 5164-5173. https://doi.org/10.1021/acscatal.5b00832
    41. Bing Liu, Jian Liu, Teng Li, Zhen Zhao, Xue-Qing Gong, Yu Chen, Aijun Duan, Guiyuan Jiang, and Yuechang Wei . Interfacial Effects of CeO2-Supported Pd Nanorod in Catalytic CO Oxidation: A Theoretical Study. The Journal of Physical Chemistry C 2015, 119 (23) , 12923-12934. https://doi.org/10.1021/acs.jpcc.5b00267
    42. Md Jafar Sharif, Masaaki Kitano, Yasunori Inoue, Yasuhiro Niwa, Hitoshi Abe, Toshiharu Yokoyama, Michikazu Hara, and Hideo Hosono . Electron Donation Enhanced CO Oxidation over Ru-Loaded 12CaO·7Al2O3 Electride Catalyst. The Journal of Physical Chemistry C 2015, 119 (21) , 11725-11731. https://doi.org/10.1021/acs.jpcc.5b02342
    43. Sumit Kumar Dutta, Shyamal Kumar Mehetor, and Narayan Pradhan . Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy. The Journal of Physical Chemistry Letters 2015, 6 (6) , 936-944. https://doi.org/10.1021/acs.jpclett.5b00113
    44. Shanwei Hu, Yan Wang, Weijia Wang, Yong Han, Qitang Fan, Xuefei Feng, Qian Xu, and Junfa Zhu . Ag Nanoparticles on Reducible CeO2(111) Thin Films: Effect of Thickness and Stoichiometry of Ceria. The Journal of Physical Chemistry C 2015, 119 (7) , 3579-3588. https://doi.org/10.1021/jp511691p
    45. Yang Lou, Jian Ma, Xiaoming Cao, Li Wang, Qiguang Dai, Zhenyang Zhao, Yafeng Cai, Wangcheng Zhan, Yanglong Guo, P. Hu, Guanzhong Lu, and Yun Guo . Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously. ACS Catalysis 2014, 4 (11) , 4143-4152. https://doi.org/10.1021/cs501049r
    46. Zili Wu, De-en Jiang, Amanda K. P. Mann, David R. Mullins, Zhen-An Qiao, Lawrence F. Allard, Chenjie Zeng, Rongchao Jin, and Steven H. Overbury . Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2 Supported Au25(SCH2CH2Ph)18 Nanoclusters. Journal of the American Chemical Society 2014, 136 (16) , 6111-6122. https://doi.org/10.1021/ja5018706
    47. D. Widmann and R. J. Behm . Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Accounts of Chemical Research 2014, 47 (3) , 740-749. https://doi.org/10.1021/ar400203e
    48. Liang Zhang, Hyun You Kim, and Graeme Henkelman . CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111). The Journal of Physical Chemistry Letters 2013, 4 (17) , 2943-2947. https://doi.org/10.1021/jz401524d
    49. Wei Tan, Xuandong Li, Xin Li. Theoretical screening of SnO2-based single-atom catalysts for CO oxidation reaction. Reaction Kinetics, Mechanisms and Catalysis 2025, 138 https://doi.org/10.1007/s11144-025-02830-2
    50. Yunhao Zang, Taipeng Wei, Jiangying Qu, Feng Gao, Jianfeng Gu, Xuetan Lin, Shaofeng Zheng. Boosting low-temperature CO2 methanation activity through Tailored electronic structures and step-edge defects in Niε−-Ov-Ceδ+ inverse interfaces. Applied Surface Science 2025, 685 , 161945. https://doi.org/10.1016/j.apsusc.2024.161945
    51. Guanhua Lin, Gang Chen, Jingyu Lu. In-situ characterization techniques for investigations of heterogeneous catalysis. Journal of Alloys and Compounds 2025, 1010 , 177552. https://doi.org/10.1016/j.jallcom.2024.177552
    52. Xin TIAN, Pengli SHU, Ketong ZHANG, Dechao ZENG, Zhifei YAO, Bohui ZHAO, Xiaosen REN, Li QIN, Qiang ZHU, Jiuyan WEI, Huanfei WEN, Yanjun LI, Sugawara Yasuhiro, Jun TANG, Zongmin MA, Jun LIU, , , , , . Charge transfer characteristics of Au adsorption on CeO<sub>2</sub>(111) surface. Acta Physica Sinica 2025, 74 (5) , 053101. https://doi.org/10.7498/aps.74.20241522
    53. Yoonseok Choi, Hyunwoo Ha, Jinwook Kim, Han Gil Seo, Hyuk Choi, Beomgyun Jeong, JeongDo Yoo, Ethan J. Crumlin, Graeme Henkelman, Hyun You Kim, WooChul Jung. Unveiling Direct Electrochemical Oxidation of Methane at the Ceria/Gas Interface. Advanced Materials 2024, 36 (46) https://doi.org/10.1002/adma.202403626
    54. Pengli Shu, Xin Tian, Qiang Guo, Xiaosen Ren, Bohui Zhao, Huanfei Wen, Jun Tang, Yanjun Li, Sugawara Yasuhiro, Zongmin Ma, Jun Liu. Investigation into geometric configurations and electronic properties of CeO 2 -supported gold clusters. Physica Scripta 2024, 99 (10) , 105990. https://doi.org/10.1088/1402-4896/ad77f9
    55. Jiyue Zhang, Min Shu, Yaxin Niu, Lei Yi, Honghong Yi, Yuansong Zhou, Shunzheng Zhao, Xiaolong Tang, Fengyu Gao. Advances in CO catalytic oxidation on typical noble metal catalysts: Mechanism, performance and optimization. Chemical Engineering Journal 2024, 495 , 153523. https://doi.org/10.1016/j.cej.2024.153523
    56. Hongpeng Liu, Zhongliang Cao, Siyuan Yang, Qingye Ren, Zejian Dong, Wei Liu, Zi-An Li, Xing Chen, Langli Luo. Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation. Nano Research 2024, 17 (6) , 4986-4993. https://doi.org/10.1007/s12274-024-6508-6
    57. Abhishek Umesh Shetty, Ravi Sankannavar. Exploring nitrogen reduction reaction mechanisms in electrocatalytic ammonia synthesis: A comprehensive review. Journal of Energy Chemistry 2024, 92 , 681-697. https://doi.org/10.1016/j.jechem.2024.01.024
    58. Dongyuan Liu, Houyu Zhu, Xiaoxiao Gong, Saifei Yuan, Hao Ma, Ping He, Yucheng Fan, Wen Zhao, Hao Ren, Wenyue Guo. Understanding and controlling the formation of single-atom site from supported Cu10 cluster by tuning CeO2 reducibility: Theoretical insight into the Gd-doping effect on electronic metal-support interaction. Journal of Colloid and Interface Science 2024, 661 , 720-729. https://doi.org/10.1016/j.jcis.2024.01.174
    59. Madhu Ravula, Vijaykumar Dosarapu, Siddaramagoud Bandalla, Satyanarayana Mavurapu, Mohan Varkolu, Aswathi Rajeevan, Mallesham Baithy, Sreekantha B. Jonnalagadda, Chandra Sekhar Vasam. Development of Molybdenum oxide Promoted CeO 2 −SiO 2 Mixed‐oxide Catalyst for Efficient Catalytic Oxidation of Benzylamine to N‐Benzylidenebenzylamine. ChemistrySelect 2024, 9 (10) https://doi.org/10.1002/slct.202304534
    60. Bowen Lu, Fan Wu, Xiaoshan Li, Cong Luo, Liqi Zhang. Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology 2024, 10 , 100173. https://doi.org/10.1016/j.ccst.2023.100173
    61. Yubin Liu, Yuqiong Li, Qi Yu, Soumendra Roy, Xiaohu Yu. Review of Theoretical and Computational Studies of Bulk and Single Atom Catalysts for H 2 S Catalytic Conversion. ChemPhysChem 2024, 25 (5) https://doi.org/10.1002/cphc.202300732
    62. Xilin Zhang, Qianqian Peng, Lu Chen, Zhansheng Lu, Zongxian Yang, Kersti Hermansson. A New Mars‐van Krevelen Mechanism for CO Oxidation on a Ti‐Decorated MXene. Advanced Materials Interfaces 2023, 10 (29) https://doi.org/10.1002/admi.202300070
    63. Matteo Barelli, Santiago Casado, Felix Cassin, Carlos Pimentel, Carlos M Pina, Maria Caterina Giordano, Francesco Buatier de Mongeot, Enrico Gnecco. Highly efficient sequestration of aqueous lead on nanostructured calcite substrates. Nanotechnology 2023, 34 (36) , 365301. https://doi.org/10.1088/1361-6528/acdbd4
    64. Taek-Seung Kim, Hyuk Choi, Daeho Kim, Hee Chan Song, Yusik Oh, Beomgyun Jeong, Jouhahn Lee, Ki-Jeong Kim, Jae Won Shin, Hye Ryung Byon, Ryong Ryoo, Hyun You Kim, Jeong Young Park. Catalytic boosting on AuCu bimetallic nanoparticles by oxygen-induced atomic restructuring. Applied Catalysis B: Environmental 2023, 331 , 122704. https://doi.org/10.1016/j.apcatb.2023.122704
    65. Tao Li, Mengling Dong, Jiacheng Xu, Tiantian Zhang, Yan Sun, Ning Li, Zuliang Wu, Jing Li, Erhao Gao, Jiali Zhu, Shuiliang Yao, Yong Huang. Exploring the Promotion of γ‐Al 2 O 3 on Pd/CeO 2 ‐Catalyzed Low‐Concentration Methane Oxidation Using Operando DRIFTS‐MS. ChemCatChem 2023, 15 (7) https://doi.org/10.1002/cctc.202300194
    66. Shikun Li, Okikiola Olaniyan, Lenard L. Carroll, Marcus Bäumer, Lyudmila V. Moskaleva. Catalytic activity of 1D chains of gold oxide on a stepped gold surface from density functional theory. Physical Chemistry Chemical Physics 2022, 24 (47) , 28853-28863. https://doi.org/10.1039/D2CP03524C
    67. Piotr Woźniak, Małgorzata A. Małecka, Piotr Kraszkiewicz, Włodzimierz Miśta, Oleksii Bezkrovnyi, Lidia Chinchilla, Susana Trasobares. Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catalysis Science & Technology 2022, 12 (23) , 7082-7113. https://doi.org/10.1039/D2CY01214F
    68. De-Ren Chu, Zhi-Qiang Wang, Xue-Qing Gong. Theoretical insights into CO oxidation activities on CeO2(111) steps. Surface Science 2022, 722 , 122096. https://doi.org/10.1016/j.susc.2022.122096
    69. Jinlan Yang, Yu Peng, Songrui Li, Jin Mu, Zhenzhen Huang, Jiutong Ma, Zhan Shi, Qiong Jia. Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coordination Chemistry Reviews 2022, 456 , 214391. https://doi.org/10.1016/j.ccr.2021.214391
    70. Mi Yoo, Eunji Kang, Hyuk Choi, Hyunwoo Ha, Hanseul Choi, Jin-Seok Choi, Kug-Seung Lee, Richard Celestre, David A. Shapiro, Jeong Young Park, Chunjoong Kim, Young-Sang Yu, Hyun You Kim. Enhancing the inherent catalytic activity and stability of TiO 2 supported Pt single-atoms at CeO x –TiO 2 interfaces. Journal of Materials Chemistry A 2022, 10 (11) , 5942-5952. https://doi.org/10.1039/D1TA08059H
    71. Ya-Qiong Su, Yan-Yang Qin, Tiantian Wu, De-Yin Wu. Structure sensitivity of ceria-supported Au catalysts for CO oxidation. Journal of Catalysis 2022, 407 , 353-363. https://doi.org/10.1016/j.jcat.2022.02.008
    72. Hui Zhou, Xin‐Ping Wu, Xue‐Qing Gong. Catalytic Activities of Low‐Coordinated Ce for Methane Conversion. ChemCatChem 2022, 14 (3) https://doi.org/10.1002/cctc.202101254
    73. Marc Ziemba, Jakob Weyel, Christian Hess. Elucidating the mechanism of the reverse water–gas shift reaction over Au/CeO2 catalysts using operando and transient spectroscopies. Applied Catalysis B: Environmental 2022, 301 , 120825. https://doi.org/10.1016/j.apcatb.2021.120825
    74. Nana Zhang, Jin Wang, Qian Li, Ying Xin, Lirong Zheng, Yingxia Wang, Zhaoliang Zhang. Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective α-Fe2O3. Chemical Engineering Journal 2021, 426 , 131845. https://doi.org/10.1016/j.cej.2021.131845
    75. Wenjuan Yang, Junjun Li, Xiaoya Cui, Chenhuai Yang, Yiting Liu, Xianwei Zeng, Zhicheng Zhang, Qitao Zhang. Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. Chinese Chemical Letters 2021, 32 (8) , 2489-2494. https://doi.org/10.1016/j.cclet.2020.12.057
    76. Ali M. Abdel‐Mageed, Shilong Chen, Corinna Fauth, Thomas Häring, Joachim Bansmann. Fundamental Aspects of Ceria Supported Au Catalysts Probed by In Situ/Operando Spectroscopy and TAP Reactor Studies. ChemPhysChem 2021, 22 (13) , 1302-1315. https://doi.org/10.1002/cphc.202100027
    77. Dung Van Dao, Thuy T.D. Nguyen, Periyayya Uthirakumar, Yeong-Hoon Cho, Gyu-Cheol Kim, Jin-Kyu Yang, Duy-Thanh Tran, Thanh Duc Le, Hyuk Choi, Hyun You Kim, Yeon-Tae Yu, In-Hwan Lee. Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Applied Catalysis B: Environmental 2021, 286 , 119947. https://doi.org/10.1016/j.apcatb.2021.119947
    78. Marc Ziemba, M. Verónica Ganduglia-Pirovano, Christian Hess. Insight into the mechanism of the water–gas shift reaction over Au/CeO 2 catalysts using combined operando spectroscopies. Faraday Discussions 2021, 229 , 232-250. https://doi.org/10.1039/C9FD00133F
    79. Zhi Qiao, Denis Johnson, Abdoulaye Djire. Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism. Cell Reports Physical Science 2021, 2 (5) , 100438. https://doi.org/10.1016/j.xcrp.2021.100438
    80. Eunji Kang, Hyuk Choi, Ju Hyeok Lee, Hyun You Kim. Density Functional Theory Study of Water Activation at Au-Ceria Interfaces. Korean Journal of Materials Research 2021, 31 (4) , 232-236. https://doi.org/10.3740/MRSK.2021.31.4.232
    81. Nobuyoshi Nakagawa, Hirokazu Ishitobi, Soma Abe, Masaki Kakinuma, Hiroshi Koshikawa, Shunya Yamamoto, Tetsuya Yamaki. A novel method to enhance the catalytic activity of PtRu on the support using CeO2 by high-energy ion-beam irradiation. Catalysis Today 2021, 364 , 118-124. https://doi.org/10.1016/j.cattod.2019.12.017
    82. Jiafeng Bao, Xiaolan Duan, Pengfei Zhang. Facile synthesis of a CuMnO x catalyst based on a mechanochemical redox process for efficient and stable CO oxidation. Journal of Materials Chemistry A 2020, 8 (46) , 24438-24444. https://doi.org/10.1039/D0TA07304K
    83. Deboshree Mukherjee, Benjaram M. Reddy. Significance of Oxygen Storage Capacity of Catalytic Materials in Emission Control Application. Emission Control Science and Technology 2020, 6 (4) , 381-389. https://doi.org/10.1007/s40825-020-00170-2
    84. Ming-Wen Chang, Long Zhang, Micha Davids, Ivo A.W. Filot, Emiel J.M. Hensen. Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis 2020, 392 , 39-47. https://doi.org/10.1016/j.jcat.2020.09.027
    85. Joan Papavasiliou. Interaction of atomically dispersed gold with hydrothermally prepared copper-cerium oxide for preferential CO oxidation reaction. Catalysis Today 2020, 357 , 684-693. https://doi.org/10.1016/j.cattod.2019.02.026
    86. Francis Doherty, Hui Wang, Ming Yang, Bryan R. Goldsmith. Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO 2. Catalysis Science & Technology 2020, 10 (17) , 5772-5791. https://doi.org/10.1039/D0CY01316A
    87. Ayesha A. AlKhoori, Kyriaki Polychronopoulou, Abderrezak Belabbes, Maguy Abi Jaoude, Lourdes F. Vega, Victor Sebastian, Steven Hinder, Mark A. Baker, Abdallah F. Zedan. Cu, Sm co-doping effect on the CO oxidation activity of CeO2. A combined experimental and density functional study. Applied Surface Science 2020, 521 , 146305. https://doi.org/10.1016/j.apsusc.2020.146305
    88. Marc Ziemba, Christian Hess. Influence of gold on the reactivity behaviour of ceria nanorods in CO oxidation: combining operando spectroscopies and DFT calculations. Catalysis Science & Technology 2020, 10 (11) , 3720-3730. https://doi.org/10.1039/D0CY00392A
    89. Hyuk Choi, Eunji Kang, Hyun You Kim. Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory. Korean Journal of Materials Research 2020, 30 (5) , 267-271. https://doi.org/10.3740/MRSK.2020.30.5.267
    90. Dong Duan, Chunxi Hao, Liqun Wang, Murtaza Adil, Wenyu Shi, Haiyang Wang, Lumei Gao, Xiaoping Song, Zhanbo Sun. Novel nanorod Au/Sm2O3 catalyst synthesized by dealloying combined with calcination for low-temperature CO oxidation. Journal of Alloys and Compounds 2020, 818 , 152879. https://doi.org/10.1016/j.jallcom.2019.152879
    91. Yixuan Jiang, Yaguang Zhu, Dechun Zhou, Zhao Jiang, Nan Si, Dario Stacchiola, Tianchao Niu. Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature. The Journal of Chemical Physics 2020, 152 (7) https://doi.org/10.1063/1.5136279
    92. Hassan A. Tahini, Xin Tan, Sean C. Smith. Facile CO Oxidation on Oxygen‐functionalized MXenes via the Mars‐van Krevelen Mechanism. ChemCatChem 2020, 12 (4) , 1007-1012. https://doi.org/10.1002/cctc.201901448
    93. Chengcheng Tian, Haiyan Zhang, Xiang Zhu, Bo Lin, Xiaofei Liu, Hao Chen, Yafen Zhang, David R. Mullins, Carter W. Abney, Mohsen Shakouri, Roman Chernikov, Yongfeng Hu, Felipe Polo-Garzon, Zili Wu, Victor Fung, De-en Jiang, Xiaoming Liu, Miaofang Chi, Jingyue Liu Jimmy, Sheng Dai. A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental 2020, 261 , 118178. https://doi.org/10.1016/j.apcatb.2019.118178
    94. Hyung Jun Kim, Myeong Gon Jang, Dongjae Shin, Jeong Woo Han. Design of Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2020, 12 (1) , 11-26. https://doi.org/10.1002/cctc.201901787
    95. Sunyoung Oh, Hyunwoo Ha, Hanseul Choi, Changbum Jo, Jangkeun Cho, Hyuk Choi, Ryong Ryoo, Hyun You Kim, Jeong Young Park. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5131464
    96. Hui Wang, Jin-Xun Liu, Lawrence F. Allard, Sungsik Lee, Jilei Liu, Hang Li, Jianqiang Wang, Jun Wang, Se H. Oh, Wei Li, Maria Flytzani-Stephanopoulos, Meiqing Shen, Bryan R. Goldsmith, Ming Yang. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11856-9
    97. Ping Liu, Lixia Ling, Hao Lin, Baojun Wang. Understanding the Role of Surface Oxygen in Hg Removal on Un‐Doped and Mn/Fe‐Doped CeO 2 (111). Journal of Computational Chemistry 2019, 40 (30) , 2611-2621. https://doi.org/10.1002/jcc.26038
    98. Dong Duan, Chunxi Hao, Wenyu Shi, Haiyang Wang, Chen Ma, Xiaoping Song, Zhanbo Sun. Au/CeO2 nanorods modified by TiO2 through a combining dealloying and calcining method for low-temperature CO oxidation. Applied Surface Science 2019, 484 , 354-364. https://doi.org/10.1016/j.apsusc.2019.04.130
    99. Zhengyang Gao, Xiaoshuo Liu, Ang Li, Xiang Li, Xunlei Ding, Weijie Yang. Bimetallic sites supported on N-doped graphene ((Fe,Co)/N-GN) as a new catalyst for NO oxidation: A theoretical investigation. Molecular Catalysis 2019, 470 , 56-66. https://doi.org/10.1016/j.mcat.2019.03.024
    100. Baoming Zhao, Yanfei Jian, Zeyu Jiang, Reem Albilali, Chi He. Revealing the unexpected promotion effect of EuO on Pt/CeO2 catalysts for catalytic combustion of toluene. Chinese Journal of Catalysis 2019, 40 (4) , 543-552. https://doi.org/10.1016/S1872-2067(19)63292-4
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 1, 216–221
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz301778b
    Published December 22, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3684

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.