ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVSurfaces, Interfaces...Surfaces, Interfaces, Porous Materials, and CatalysisNEXT

CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism

View Author Information
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712-0165, United States
*E-mail: [email protected] (H.Y.K.); [email protected] (G.H.). TEL: (512) 471-4179; FAX: (512) 471-6835.
Cite this: J. Phys. Chem. Lett. 2013, 4, 1, 216–221
Publication Date (Web):December 22, 2012
https://doi.org/10.1021/jz301778b
Copyright © 2012 American Chemical Society

    Article Views

    3550

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    DFT+U calculations of CO oxidation by Au12 nanoclusters supported on a stepped-CeO2(111) surface show that lattice oxygen at the step edge oxidizes CO bound to Au NCs by the Mars–van Krevelen (M-vK) mechanism. We found that CO2 desorption determines the rate of CO oxidation, and the vacancy formation energy is a reactivity descriptor for CO oxidation. Our results suggest that the M-vK mechanism contributes significantly to CO oxidation activity at Au particles supported on the nano- or meso-structured CeO2 found in industrial catalysts.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional data is presented in Tables S1, S2, S3, and S4, and Figures S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 149 publications.

    1. Osman Bunjaku, Jan Florenski, Jonathan Wischnat, Elias Klemm, Olga V. Safonova, Joris van Slageren, Deven P. Estes. Understanding the Reducibility of CeO2 Surfaces by Proton–Electron Transfer from CpCr(CO)3H. Inorganic Chemistry 2024, Article ASAP.
    2. Eunji Lee, Beomjoon Jeon, Hyuk Choi, Jihun Kim, Jongseok Kim, Gyuho Han, Kwangjin An, Hyun You Kim, Jeong Young Park, Si Woo Lee. Insight into the Synergistic Effect of the Oxide–Metal Interface on Hot Electron Excitation. ACS Catalysis 2024, Article ASAP.
    3. Max L. Bols, Jing Ma, Fatima Rammal, Dieter Plessers, Xuejiao Wu, Sara Navarro-Jaén, Alexander J. Heyer, Bert F. Sels, Edward I. Solomon, Robert A. Schoonheydt. In Situ UV–Vis–NIR Absorption Spectroscopy and Catalysis. Chemical Reviews 2024, 124 (5) , 2352-2418. https://doi.org/10.1021/acs.chemrev.3c00602
    4. Hiroki Matsuo, Minori Kobayashi, Shimpei Naniwa, Shoji Iguchi, Soichi Kikkawa, Hiroyuki Asakura, Saburo Hosokawa, Tsunehiro Tanaka, Kentaro Teramura. Hydrogenation of CO2 over Mn-Substituted SrTiO3 Based on the Reverse Mars–van Krevelen Mechanism. The Journal of Physical Chemistry C 2023, 127 (19) , 8946-8952. https://doi.org/10.1021/acs.jpcc.3c01183
    5. Haoming Bao, Kenta Motobayashi, Hongwen Zhang, Weiping Cai, Katsuyoshi Ikeda. In-situ Surface-Enhanced Raman Spectroscopy Reveals a Mars–van Krevelen-Type Gas Sensing Mechanism in Au@SnO2 Nanoparticle-Based Chemiresistors. The Journal of Physical Chemistry Letters 2023, 14 (17) , 4113-4118. https://doi.org/10.1021/acs.jpclett.3c00562
    6. Jin-Cheng Liu, Langli Luo, Hai Xiao, Junfa Zhu, Yang He, Jun Li. Metal Affinity of Support Dictates Sintering of Gold Catalysts. Journal of the American Chemical Society 2022, 144 (45) , 20601-20609. https://doi.org/10.1021/jacs.2c06785
    7. Linxi Wang, Shyam Deo, Ahana Mukhopadhyay, Nicholas A. Pantelis, II, Michael J. Janik, Robert M. Rioux. Emergent Behavior in Oxidation Catalysis over Single-Atom Pd on a Reducible CeO2 Support via Mixed Redox Cycles. ACS Catalysis 2022, 12 (20) , 12927-12941. https://doi.org/10.1021/acscatal.2c03194
    8. Luis A. Cipriano, Giovanni Di Liberto, Gianfranco Pacchioni. Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction. ACS Catalysis 2022, 12 (19) , 11682-11691. https://doi.org/10.1021/acscatal.2c03020
    9. Oleksii Bezkrovnyi, Albert Bruix, Dominik Blaumeiser, Lesia Piliai, Simon Schötz, Tanja Bauer, Ivan Khalakhan, Tomáš Skála, Peter Matvija, Piotr Kraszkiewicz, Mirosława Pawlyta, Mykhailo Vorokhta, Iva Matolínová, Jörg Libuda, Konstantin M. Neyman, Leszek Kȩpiński. Metal–Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO. Chemistry of Materials 2022, 34 (17) , 7916-7936. https://doi.org/10.1021/acs.chemmater.2c01659
    10. Dung Van Dao, Hyuk Choi, Thuy T. D. Nguyen, Sang-Woo Ki, Gyu-Cheol Kim, Hoki Son, Jin-Kyu Yang, Yeon-Tae Yu, Hyun You Kim, In-Hwan Lee. Light-to-Hydrogen Improvement Based on Three-Factored Au@CeO2/Gr Hierarchical Photocatalysts. ACS Nano 2022, 16 (5) , 7848-7860. https://doi.org/10.1021/acsnano.2c00509
    11. Mi Yoo, Eunji Kang, Hyunwoo Ha, Jieun Yun, Hyuk Choi, Ju Hyeok Lee, Tae Jun Kim, Jiho Min, Jin-Seok Choi, Kug-Seung Lee, Namgee Jung, Sungtak Kim, Chunjoong Kim, Young-Sang Yu, Hyun You Kim. Interspersing CeOx Clusters to the Pt–TiO2 Interfaces for Catalytic Promotion of TiO2-Supported Pt Nanoparticles. The Journal of Physical Chemistry Letters 2022, 13 (7) , 1719-1725. https://doi.org/10.1021/acs.jpclett.2c00080
    12. Zhi-Qiang Wang, De-Ren Chu, Hui Zhou, Xin-Ping Wu, Xue-Qing Gong. Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces. ACS Catalysis 2022, 12 (1) , 624-632. https://doi.org/10.1021/acscatal.1c04856
    13. Yong Li, Shikun Li, Marcus Bäumer, Lyudmila V. Moskaleva. Transient Au–CO Complexes Promote the Activity of an Inverse Ceria/Gold Catalyst: An Insight from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry C 2021, 125 (48) , 26406-26417. https://doi.org/10.1021/acs.jpcc.1c07040
    14. Marc Ziemba, Christian Schilling, M. Verónica Ganduglia-Pirovano, Christian Hess. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Accounts of Chemical Research 2021, 54 (13) , 2884-2893. https://doi.org/10.1021/acs.accounts.1c00226
    15. Zhongtian Mao, Pablo G. Lustemberg, John R. Rumptz, M. Verónica Ganduglia-Pirovano, Charles T. Campbell. Ni Nanoparticles on CeO2(111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory. ACS Catalysis 2020, 10 (9) , 5101-5114. https://doi.org/10.1021/acscatal.0c00333
    16. Yong Li, Shikun Li, Marcus Bäumer, Elena A. Ivanova-Shor, Lyudmila V. Moskaleva. What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catalysis 2020, 10 (5) , 3164-3174. https://doi.org/10.1021/acscatal.9b05175
    17. Haoqian Zhou, Xiaolong Zou, Xi Wu, Xin Yang, Jia Li. Coordination Engineering in Cobalt–Nitrogen-Functionalized Materials for CO2 Reduction. The Journal of Physical Chemistry Letters 2019, 10 (21) , 6551-6557. https://doi.org/10.1021/acs.jpclett.9b02132
    18. Wilke Dononelli, Gabriele Tomaschun, Thorsten Klüner, Lyudmila V. Moskaleva. Understanding Oxygen Activation on Nanoporous Gold. ACS Catalysis 2019, 9 (6) , 5204-5216. https://doi.org/10.1021/acscatal.9b00682
    19. Wilke Dononelli, Lyudmila V. Moskaleva, Thorsten Klüner. CO Oxidation over Unsupported Group 11 Metal Catalysts: New Mechanistic Insight from First-Principles. The Journal of Physical Chemistry C 2019, 123 (13) , 7818-7830. https://doi.org/10.1021/acs.jpcc.8b06676
    20. Hyunwoo Ha, Sinmyung Yoon, Kwangjin An, Hyun You Kim. Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface. ACS Catalysis 2018, 8 (12) , 11491-11501. https://doi.org/10.1021/acscatal.8b03539
    21. Philomena Schlexer, Daniel Widmann, R. Jürgen Behm, Gianfranco Pacchioni. CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism. ACS Catalysis 2018, 8 (7) , 6513-6525. https://doi.org/10.1021/acscatal.8b01751
    22. Chi He, Zeyu Jiang, Mudi Ma, Xiaodong Zhang, Mark Douthwaite, Jian-Wen Shi, Zhengping Hao. Understanding the Promotional Effect of Mn2O3 on Micro-/Mesoporous Hybrid Silica Nanocubic-Supported Pt Catalysts for the Low-Temperature Destruction of Methyl Ethyl Ketone: An Experimental and Theoretical Study. ACS Catalysis 2018, 8 (5) , 4213-4229. https://doi.org/10.1021/acscatal.7b04461
    23. Christian Schilling and Christian Hess . Real-Time Observation of the Defect Dynamics in Working Au/CeO2 Catalysts by Combined Operando Raman/UV–Vis Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (5) , 2909-2917. https://doi.org/10.1021/acs.jpcc.8b00027
    24. Hyunwoo Ha, Hyesung An, Mi Yoo, Junhee Lee, and Hyun You Kim . Catalytic CO Oxidation by CO-Saturated Au Nanoparticles Supported on CeO2: Effect of CO Coverage. The Journal of Physical Chemistry C 2017, 121 (48) , 26895-26902. https://doi.org/10.1021/acs.jpcc.7b09780
    25. Matthias Vandichel, Alina Moscu, and Henrik Grönbeck . Catalysis at the Rim: A Mechanism for Low Temperature CO Oxidation over Pt3Sn. ACS Catalysis 2017, 7 (11) , 7431-7441. https://doi.org/10.1021/acscatal.7b02094
    26. Filip Zasada, Witold Piskorz, Janusz Janas, Eko Budiyanto, and Zbigniew Sojka . Dioxygen Activation Pathways over Cobalt Spinel Nanocubes—From Molecular Mechanism into Ab Initio Thermodynamics and 16O2/18O2 Exchange Microkinetics. The Journal of Physical Chemistry C 2017, 121 (43) , 24128-24143. https://doi.org/10.1021/acs.jpcc.7b09597
    27. Antonio Ruiz Puigdollers, Philomena Schlexer, Sergio Tosoni, and Gianfranco Pacchioni . Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catalysis 2017, 7 (10) , 6493-6513. https://doi.org/10.1021/acscatal.7b01913
    28. Bradley W. Ewers, Andrew S. Crampton, Monika M. Biener, and Cynthia M. Friend . Thermally Activated Formation of Reactive Lattice Oxygen in Titania on Nanoporous Gold. The Journal of Physical Chemistry C 2017, 121 (39) , 21405-21410. https://doi.org/10.1021/acs.jpcc.7b06316
    29. Jin-Cheng Liu, Yang-Gang Wang, and Jun Li . Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. Journal of the American Chemical Society 2017, 139 (17) , 6190-6199. https://doi.org/10.1021/jacs.7b01602
    30. Jinshuo Zou, Zhichun Si, Yidan Cao, Rui Ran, Xiaodong Wu, and Duan Weng . Localized Surface Plasmon Resonance Assisted Photothermal Catalysis of CO and Toluene Oxidation over Pd–CeO2 Catalyst under Visible Light Irradiation. The Journal of Physical Chemistry C 2016, 120 (51) , 29116-29125. https://doi.org/10.1021/acs.jpcc.6b08630
    31. Anita M. D’Angelo, Nathan A. S. Webster, and Alan L. Chaffee . Vacancy Generation and Oxygen Uptake in Cu-Doped Pr-CeO2 Materials using Neutron and in Situ X-ray Diffraction. Inorganic Chemistry 2016, 55 (24) , 12595-12602. https://doi.org/10.1021/acs.inorgchem.6b01499
    32. Zili Wu, Guoxiang Hu, De-en Jiang, David R. Mullins, Qian-Fan Zhang, Lawrence F. Allard, Jr., Lai-Sheng Wang, and Steven H. Overbury . Diphosphine-Protected Au22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal. Nano Letters 2016, 16 (10) , 6560-6567. https://doi.org/10.1021/acs.nanolett.6b03221
    33. Daniel Widmann, Anke Krautsieder, Patrick Walter, Angelika Brückner, and R. Jürgen Behm . How Temperature Affects the Mechanism of CO Oxidation on Au/TiO2: A Combined EPR and TAP Reactor Study of the Reactive Removal of TiO2 Surface Lattice Oxygen in Au/TiO2 by CO. ACS Catalysis 2016, 6 (8) , 5005-5011. https://doi.org/10.1021/acscatal.6b01219
    34. Hyesung An, Soonho Kwon, Hyunwoo Ha, Hyun You Kim, and Hyuck Mo Lee . Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation. The Journal of Physical Chemistry C 2016, 120 (17) , 9292-9298. https://doi.org/10.1021/acs.jpcc.6b01774
    35. Bing Liu, Zhen Zhao, Graeme Henkelman, and Weiyu Song . Computational Design of a CeO2-Supported Pd-Based Bimetallic Nanorod for CO Oxidation. The Journal of Physical Chemistry C 2016, 120 (10) , 5557-5564. https://doi.org/10.1021/acs.jpcc.6b00253
    36. Ravi Kiran Mandapaka and Giridhar Madras . Microkinetic Modeling of CO Oxidation on Ionic Palladium-Substituted Ceria. Industrial & Engineering Chemistry Research 2016, 55 (8) , 2309-2318. https://doi.org/10.1021/acs.iecr.5b04724
    37. Jun Ke, Wei Zhu, Yingying Jiang, Rui Si, Yan-Jie Wang, Shuai-Chen Li, Chuanhong Jin, Haichao Liu, Wei-Guo Song, Chun-Hua Yan, and Ya-Wen Zhang . Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation. ACS Catalysis 2015, 5 (9) , 5164-5173. https://doi.org/10.1021/acscatal.5b00832
    38. Bing Liu, Jian Liu, Teng Li, Zhen Zhao, Xue-Qing Gong, Yu Chen, Aijun Duan, Guiyuan Jiang, and Yuechang Wei . Interfacial Effects of CeO2-Supported Pd Nanorod in Catalytic CO Oxidation: A Theoretical Study. The Journal of Physical Chemistry C 2015, 119 (23) , 12923-12934. https://doi.org/10.1021/acs.jpcc.5b00267
    39. Md Jafar Sharif, Masaaki Kitano, Yasunori Inoue, Yasuhiro Niwa, Hitoshi Abe, Toshiharu Yokoyama, Michikazu Hara, and Hideo Hosono . Electron Donation Enhanced CO Oxidation over Ru-Loaded 12CaO·7Al2O3 Electride Catalyst. The Journal of Physical Chemistry C 2015, 119 (21) , 11725-11731. https://doi.org/10.1021/acs.jpcc.5b02342
    40. Sumit Kumar Dutta, Shyamal Kumar Mehetor, and Narayan Pradhan . Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy. The Journal of Physical Chemistry Letters 2015, 6 (6) , 936-944. https://doi.org/10.1021/acs.jpclett.5b00113
    41. Shanwei Hu, Yan Wang, Weijia Wang, Yong Han, Qitang Fan, Xuefei Feng, Qian Xu, and Junfa Zhu . Ag Nanoparticles on Reducible CeO2(111) Thin Films: Effect of Thickness and Stoichiometry of Ceria. The Journal of Physical Chemistry C 2015, 119 (7) , 3579-3588. https://doi.org/10.1021/jp511691p
    42. Yang Lou, Jian Ma, Xiaoming Cao, Li Wang, Qiguang Dai, Zhenyang Zhao, Yafeng Cai, Wangcheng Zhan, Yanglong Guo, P. Hu, Guanzhong Lu, and Yun Guo . Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously. ACS Catalysis 2014, 4 (11) , 4143-4152. https://doi.org/10.1021/cs501049r
    43. Zili Wu, De-en Jiang, Amanda K. P. Mann, David R. Mullins, Zhen-An Qiao, Lawrence F. Allard, Chenjie Zeng, Rongchao Jin, and Steven H. Overbury . Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2 Supported Au25(SCH2CH2Ph)18 Nanoclusters. Journal of the American Chemical Society 2014, 136 (16) , 6111-6122. https://doi.org/10.1021/ja5018706
    44. D. Widmann and R. J. Behm . Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. Accounts of Chemical Research 2014, 47 (3) , 740-749. https://doi.org/10.1021/ar400203e
    45. Liang Zhang, Hyun You Kim, and Graeme Henkelman . CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111). The Journal of Physical Chemistry Letters 2013, 4 (17) , 2943-2947. https://doi.org/10.1021/jz401524d
    46. Dongyuan Liu, Houyu Zhu, Xiaoxiao Gong, Saifei Yuan, Hao Ma, Ping He, Yucheng Fan, Wen Zhao, Hao Ren, Wenyue Guo. Understanding and controlling the formation of single-atom site from supported Cu10 cluster by tuning CeO2 reducibility: Theoretical insight into the Gd-doping effect on electronic metal-support interaction. Journal of Colloid and Interface Science 2024, 661 , 720-729. https://doi.org/10.1016/j.jcis.2024.01.174
    47. Abhishek Umesh Shetty, Ravi Sankannavar. Exploring nitrogen reduction reaction mechanisms in electrocatalytic ammonia synthesis: A comprehensive review. Journal of Energy Chemistry 2024, 92 , 681-697. https://doi.org/10.1016/j.jechem.2024.01.024
    48. Hongpeng Liu, Zhongliang Cao, Siyuan Yang, Qingye Ren, Zejian Dong, Wei Liu, Zi-An Li, Xing Chen, Langli Luo. Geometric edge effect on the interface of Au/CeO2 nanocatalysts for CO oxidation. Nano Research 2024, 120 https://doi.org/10.1007/s12274-024-6508-6
    49. Madhu Ravula, Vijaykumar Dosarapu, Siddaramagoud Bandalla, Satyanarayana Mavurapu, Mohan Varkolu, Aswathi Rajeevan, Mallesham Baithy, Sreekantha B. Jonnalagadda, Chandra Sekhar Vasam. Development of Molybdenum oxide Promoted CeO 2 −SiO 2 Mixed‐oxide Catalyst for Efficient Catalytic Oxidation of Benzylamine to N‐Benzylidenebenzylamine. ChemistrySelect 2024, 9 (10) https://doi.org/10.1002/slct.202304534
    50. Yubin Liu, Yuqiong Li, Qi Yu, Soumendra Roy, Xiaohu Yu. Review of Theoretical and Computational Studies of Bulk and Single Atom Catalysts for H 2 S Catalytic Conversion. ChemPhysChem 2024, 25 (5) https://doi.org/10.1002/cphc.202300732
    51. Bowen Lu, Fan Wu, Xiaoshan Li, Cong Luo, Liqi Zhang. Reconstruction of interface oxygen vacancy for boosting CO2 hydrogenation by Cu/CeO2 catalysts with thermal treatment. Carbon Capture Science & Technology 2024, 10 , 100173. https://doi.org/10.1016/j.ccst.2023.100173
    52. Xilin Zhang, Qianqian Peng, Lu Chen, Zhansheng Lu, Zongxian Yang, Kersti Hermansson. A New Mars‐van Krevelen Mechanism for CO Oxidation on a Ti‐Decorated MXene. Advanced Materials Interfaces 2023, 10 (29) https://doi.org/10.1002/admi.202300070
    53. Matteo Barelli, Santiago Casado, Felix Cassin, Carlos Pimentel, Carlos M Pina, Maria Caterina Giordano, Francesco Buatier de Mongeot, Enrico Gnecco. Highly efficient sequestration of aqueous lead on nanostructured calcite substrates. Nanotechnology 2023, 34 (36) , 365301. https://doi.org/10.1088/1361-6528/acdbd4
    54. Taek-Seung Kim, Hyuk Choi, Daeho Kim, Hee Chan Song, Yusik Oh, Beomgyun Jeong, Jouhahn Lee, Ki-Jeong Kim, Jae Won Shin, Hye Ryung Byon, Ryong Ryoo, Hyun You Kim, Jeong Young Park. Catalytic boosting on AuCu bimetallic nanoparticles by oxygen-induced atomic restructuring. Applied Catalysis B: Environmental 2023, 331 , 122704. https://doi.org/10.1016/j.apcatb.2023.122704
    55. Tao Li, Mengling Dong, Jiacheng Xu, Tiantian Zhang, Yan Sun, Ning Li, Zuliang Wu, Jing Li, Erhao Gao, Jiali Zhu, Shuiliang Yao, Yong Huang. Exploring the Promotion of γ‐Al 2 O 3 on Pd/CeO 2 ‐Catalyzed Low‐Concentration Methane Oxidation Using Operando DRIFTS‐MS. ChemCatChem 2023, 15 (7) https://doi.org/10.1002/cctc.202300194
    56. Shikun Li, Okikiola Olaniyan, Lenard L. Carroll, Marcus Bäumer, Lyudmila V. Moskaleva. Catalytic activity of 1D chains of gold oxide on a stepped gold surface from density functional theory. Physical Chemistry Chemical Physics 2022, 24 (47) , 28853-28863. https://doi.org/10.1039/D2CP03524C
    57. Piotr Woźniak, Małgorzata A. Małecka, Piotr Kraszkiewicz, Włodzimierz Miśta, Oleksii Bezkrovnyi, Lidia Chinchilla, Susana Trasobares. Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catalysis Science & Technology 2022, 12 (23) , 7082-7113. https://doi.org/10.1039/D2CY01214F
    58. De-Ren Chu, Zhi-Qiang Wang, Xue-Qing Gong. Theoretical insights into CO oxidation activities on CeO2(111) steps. Surface Science 2022, 722 , 122096. https://doi.org/10.1016/j.susc.2022.122096
    59. Jinlan Yang, Yu Peng, Songrui Li, Jin Mu, Zhenzhen Huang, Jiutong Ma, Zhan Shi, Qiong Jia. Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coordination Chemistry Reviews 2022, 456 , 214391. https://doi.org/10.1016/j.ccr.2021.214391
    60. Mi Yoo, Eunji Kang, Hyuk Choi, Hyunwoo Ha, Hanseul Choi, Jin-Seok Choi, Kug-Seung Lee, Richard Celestre, David A. Shapiro, Jeong Young Park, Chunjoong Kim, Young-Sang Yu, Hyun You Kim. Enhancing the inherent catalytic activity and stability of TiO 2 supported Pt single-atoms at CeO x –TiO 2 interfaces. Journal of Materials Chemistry A 2022, 10 (11) , 5942-5952. https://doi.org/10.1039/D1TA08059H
    61. Ya-Qiong Su, Yan-Yang Qin, Tiantian Wu, De-Yin Wu. Structure sensitivity of ceria-supported Au catalysts for CO oxidation. Journal of Catalysis 2022, 407 , 353-363. https://doi.org/10.1016/j.jcat.2022.02.008
    62. Hui Zhou, Xin‐Ping Wu, Xue‐Qing Gong. Catalytic Activities of Low‐Coordinated Ce for Methane Conversion. ChemCatChem 2022, 14 (3) https://doi.org/10.1002/cctc.202101254
    63. Marc Ziemba, Jakob Weyel, Christian Hess. Elucidating the mechanism of the reverse water–gas shift reaction over Au/CeO2 catalysts using operando and transient spectroscopies. Applied Catalysis B: Environmental 2022, 301 , 120825. https://doi.org/10.1016/j.apcatb.2021.120825
    64. Nana Zhang, Jin Wang, Qian Li, Ying Xin, Lirong Zheng, Yingxia Wang, Zhaoliang Zhang. Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective α-Fe2O3. Chemical Engineering Journal 2021, 426 , 131845. https://doi.org/10.1016/j.cej.2021.131845
    65. Wenjuan Yang, Junjun Li, Xiaoya Cui, Chenhuai Yang, Yiting Liu, Xianwei Zeng, Zhicheng Zhang, Qitao Zhang. Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. Chinese Chemical Letters 2021, 32 (8) , 2489-2494. https://doi.org/10.1016/j.cclet.2020.12.057
    66. Ali M. Abdel‐Mageed, Shilong Chen, Corinna Fauth, Thomas Häring, Joachim Bansmann. Fundamental Aspects of Ceria Supported Au Catalysts Probed by In Situ/Operando Spectroscopy and TAP Reactor Studies. ChemPhysChem 2021, 22 (13) , 1302-1315. https://doi.org/10.1002/cphc.202100027
    67. Dung Van Dao, Thuy T.D. Nguyen, Periyayya Uthirakumar, Yeong-Hoon Cho, Gyu-Cheol Kim, Jin-Kyu Yang, Duy-Thanh Tran, Thanh Duc Le, Hyuk Choi, Hyun You Kim, Yeon-Tae Yu, In-Hwan Lee. Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Applied Catalysis B: Environmental 2021, 286 , 119947. https://doi.org/10.1016/j.apcatb.2021.119947
    68. Marc Ziemba, M. Verónica Ganduglia-Pirovano, Christian Hess. Insight into the mechanism of the water–gas shift reaction over Au/CeO 2 catalysts using combined operando spectroscopies. Faraday Discussions 2021, 229 , 232-250. https://doi.org/10.1039/C9FD00133F
    69. Zhi Qiao, Denis Johnson, Abdoulaye Djire. Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism. Cell Reports Physical Science 2021, 2 (5) , 100438. https://doi.org/10.1016/j.xcrp.2021.100438
    70. Eunji Kang, Hyuk Choi, Ju Hyeok Lee, Hyun You Kim. Density Functional Theory Study of Water Activation at Au-Ceria Interfaces. Korean Journal of Materials Research 2021, 31 (4) , 232-236. https://doi.org/10.3740/MRSK.2021.31.4.232
    71. Nobuyoshi Nakagawa, Hirokazu Ishitobi, Soma Abe, Masaki Kakinuma, Hiroshi Koshikawa, Shunya Yamamoto, Tetsuya Yamaki. A novel method to enhance the catalytic activity of PtRu on the support using CeO2 by high-energy ion-beam irradiation. Catalysis Today 2021, 364 , 118-124. https://doi.org/10.1016/j.cattod.2019.12.017
    72. Jiafeng Bao, Xiaolan Duan, Pengfei Zhang. Facile synthesis of a CuMnO x catalyst based on a mechanochemical redox process for efficient and stable CO oxidation. Journal of Materials Chemistry A 2020, 8 (46) , 24438-24444. https://doi.org/10.1039/D0TA07304K
    73. Deboshree Mukherjee, Benjaram M. Reddy. Significance of Oxygen Storage Capacity of Catalytic Materials in Emission Control Application. Emission Control Science and Technology 2020, 6 (4) , 381-389. https://doi.org/10.1007/s40825-020-00170-2
    74. Ming-Wen Chang, Long Zhang, Micha Davids, Ivo A.W. Filot, Emiel J.M. Hensen. Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis 2020, 392 , 39-47. https://doi.org/10.1016/j.jcat.2020.09.027
    75. Joan Papavasiliou. Interaction of atomically dispersed gold with hydrothermally prepared copper-cerium oxide for preferential CO oxidation reaction. Catalysis Today 2020, 357 , 684-693. https://doi.org/10.1016/j.cattod.2019.02.026
    76. Francis Doherty, Hui Wang, Ming Yang, Bryan R. Goldsmith. Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO 2. Catalysis Science & Technology 2020, 10 (17) , 5772-5791. https://doi.org/10.1039/D0CY01316A
    77. Ayesha A. AlKhoori, Kyriaki Polychronopoulou, Abderrezak Belabbes, Maguy Abi Jaoude, Lourdes F. Vega, Victor Sebastian, Steven Hinder, Mark A. Baker, Abdallah F. Zedan. Cu, Sm co-doping effect on the CO oxidation activity of CeO2. A combined experimental and density functional study. Applied Surface Science 2020, 521 , 146305. https://doi.org/10.1016/j.apsusc.2020.146305
    78. Marc Ziemba, Christian Hess. Influence of gold on the reactivity behaviour of ceria nanorods in CO oxidation: combining operando spectroscopies and DFT calculations. Catalysis Science & Technology 2020, 10 (11) , 3720-3730. https://doi.org/10.1039/D0CY00392A
    79. Hyuk Choi, Eunji Kang, Hyun You Kim. Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory. Korean Journal of Materials Research 2020, 30 (5) , 267-271. https://doi.org/10.3740/MRSK.2020.30.5.267
    80. Dong Duan, Chunxi Hao, Liqun Wang, Murtaza Adil, Wenyu Shi, Haiyang Wang, Lumei Gao, Xiaoping Song, Zhanbo Sun. Novel nanorod Au/Sm2O3 catalyst synthesized by dealloying combined with calcination for low-temperature CO oxidation. Journal of Alloys and Compounds 2020, 818 , 152879. https://doi.org/10.1016/j.jallcom.2019.152879
    81. Yixuan Jiang, Yaguang Zhu, Dechun Zhou, Zhao Jiang, Nan Si, Dario Stacchiola, Tianchao Niu. Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature. The Journal of Chemical Physics 2020, 152 (7) https://doi.org/10.1063/1.5136279
    82. Hassan A. Tahini, Xin Tan, Sean C. Smith. Facile CO Oxidation on Oxygen‐functionalized MXenes via the Mars‐van Krevelen Mechanism. ChemCatChem 2020, 12 (4) , 1007-1012. https://doi.org/10.1002/cctc.201901448
    83. Chengcheng Tian, Haiyan Zhang, Xiang Zhu, Bo Lin, Xiaofei Liu, Hao Chen, Yafen Zhang, David R. Mullins, Carter W. Abney, Mohsen Shakouri, Roman Chernikov, Yongfeng Hu, Felipe Polo-Garzon, Zili Wu, Victor Fung, De-en Jiang, Xiaoming Liu, Miaofang Chi, Jingyue Liu Jimmy, Sheng Dai. A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental 2020, 261 , 118178. https://doi.org/10.1016/j.apcatb.2019.118178
    84. Hyung Jun Kim, Myeong Gon Jang, Dongjae Shin, Jeong Woo Han. Design of Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2020, 12 (1) , 11-26. https://doi.org/10.1002/cctc.201901787
    85. Sunyoung Oh, Hyunwoo Ha, Hanseul Choi, Changbum Jo, Jangkeun Cho, Hyuk Choi, Ryong Ryoo, Hyun You Kim, Jeong Young Park. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5131464
    86. Hui Wang, Jin-Xun Liu, Lawrence F. Allard, Sungsik Lee, Jilei Liu, Hang Li, Jianqiang Wang, Jun Wang, Se H. Oh, Wei Li, Maria Flytzani-Stephanopoulos, Meiqing Shen, Bryan R. Goldsmith, Ming Yang. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11856-9
    87. Ping Liu, Lixia Ling, Hao Lin, Baojun Wang. Understanding the Role of Surface Oxygen in Hg Removal on Un‐Doped and Mn/Fe‐Doped CeO 2 (111). Journal of Computational Chemistry 2019, 40 (30) , 2611-2621. https://doi.org/10.1002/jcc.26038
    88. Dong Duan, Chunxi Hao, Wenyu Shi, Haiyang Wang, Chen Ma, Xiaoping Song, Zhanbo Sun. Au/CeO2 nanorods modified by TiO2 through a combining dealloying and calcining method for low-temperature CO oxidation. Applied Surface Science 2019, 484 , 354-364. https://doi.org/10.1016/j.apsusc.2019.04.130
    89. Zhengyang Gao, Xiaoshuo Liu, Ang Li, Xiang Li, Xunlei Ding, Weijie Yang. Bimetallic sites supported on N-doped graphene ((Fe,Co)/N-GN) as a new catalyst for NO oxidation: A theoretical investigation. Molecular Catalysis 2019, 470 , 56-66. https://doi.org/10.1016/j.mcat.2019.03.024
    90. Baoming Zhao, Yanfei Jian, Zeyu Jiang, Reem Albilali, Chi He. Revealing the unexpected promotion effect of EuO on Pt/CeO2 catalysts for catalytic combustion of toluene. Chinese Journal of Catalysis 2019, 40 (4) , 543-552. https://doi.org/10.1016/S1872-2067(19)63292-4
    91. Alexander V. Vorontsov, Panagiotis G. Smirniotis. Semiempirical computational study of oxygen vacancies in a decahedral anatase nanoparticle. International Journal of Quantum Chemistry 2019, 119 (5) https://doi.org/10.1002/qua.25806
    92. Yoonseok Choi, Seung Keun Cha, Hyunwoo Ha, Siwon Lee, Hyeon Kook Seo, Jeong Yong Lee, Hyun You Kim, Sang Ouk Kim, WooChul Jung. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nature Nanotechnology 2019, 14 (3) , 245-251. https://doi.org/10.1038/s41565-019-0367-4
    93. Ho Viet Thang, Gianfranco Pacchioni. CO Oxidation Promoted by a Pt4/TiO2 Catalyst: Role of Lattice Oxygen at the Metal/Oxide Interface. Catalysis Letters 2019, 149 (2) , 390-398. https://doi.org/10.1007/s10562-018-2610-2
    94. Sergio Tosoni, Gianfranco Pacchioni. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2019, 11 (1) , 73-89. https://doi.org/10.1002/cctc.201801082
    95. Priscila Destro. AuCu Nanoparticles Applied on Heterogeneous Catalysis: Studies About the Stability of Nanoparticles Under Redox Pre-treatments and Application in CO Oxidation Reaction. 2019, 41-71. https://doi.org/10.1007/978-3-030-03550-1_3
    96. Dolly Valechha, Suresh Kumar Megarajan, Ahmed Al-Fatesh, Heqing Jiang, Nitin Labhasetwar. Low Temperature CO Oxidation Over a Novel Nano-Structured, Mesoporous CeO2 Supported Au Catalyst. Catalysis Letters 2019, 149 (1) , 127-140. https://doi.org/10.1007/s10562-018-2603-1
    97. Zeyu Jiang, Changwei Chen, Mudi Ma, Zheng Guo, Yanke Yu, Chi He. Rare-earth element doping-promoted toluene low-temperature combustion over mesostructured CuMCeO x (M = Y, Eu, Ho, and Sm) catalysts: the indispensable role of in situ generated oxygen vacancies. Catalysis Science & Technology 2018, 8 (22) , 5933-5942. https://doi.org/10.1039/C8CY01849A
    98. Matthias Vandichel, Henrik Grönbeck. CO Oxidation at SnO2/Pt3Sn(111) Interfaces. Topics in Catalysis 2018, 61 (14) , 1458-1464. https://doi.org/10.1007/s11244-018-1044-9
    99. Shengpeng Mo, Qi Zhang, Shuangde Li, Quanming Ren, Mingyuan Zhang, Yudong Xue, Ruosi Peng, Hailin Xiao, Yunfa Chen, Daiqi Ye. Integrated Cobalt Oxide Based Nanoarray Catalysts with Hierarchical Architectures: In Situ Raman Spectroscopy Investigation on the Carbon Monoxide Reaction Mechanism. ChemCatChem 2018, 10 (14) , 3012-3026. https://doi.org/10.1002/cctc.201800363
    100. Tao Li, Deping Xia, Guilin Zhou, Hongmei Xie, Zhaojie Jiao, Xianming Zhang. Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst. Catalysis Communications 2018, 112 , 35-38. https://doi.org/10.1016/j.catcom.2018.04.011
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect