ACS Publications. Most Trusted. Most Cited. Most Read
Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells
My Activity

    Energy Conversion and Storage; Energy and Charge Transport

    Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
    Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 11, 1843–1849
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400642e
    Published May 9, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report a cobalt pyrite (cobalt disulfide, CoS2) thin film on glass as a robust, high-performance, low-cost, earth-abundant counter electrode for liquid-junction quantum dot-sensitized solar cells (QDSSCs) that employ the aqueous sulfide/polysulfide (S2–/Sn2–) redox electrolyte as the hole-transporting medium. The metallic CoS2 thin film electrode is prepared via thermal sulfidation of a cobalt film deposited on glass and has been characterized by powder X-ray diffraction and electron microscopy. Using the CoS2 counter electrode, CdS/CdSe-sensitized QDSSCs display improved short-circuit photocurrent density and fill factor, achieving solar light-to-electricity conversion efficiencies as high as 4.16%, with an average efficiency improvement of 54 (±14)% over equivalent devices assembled with a traditional platinum counter electrode. Electrochemical measurements verify that CoS2 shows high electrocatalytic activity toward polysulfide reduction, rationalizing the improved QDSSC performance. CoS2 is also less susceptible to poisoning by the sulfide/polysulfide electrolyte, a problem that plagues platinum electrodes in this application; furthermore, CoS2 exhibits excellent stability in sulfide/polysulfide electrolyte, resulting in highly reproducible performance.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Mesoscopic TiO2 photoanode preparation and sensitization procedures; demonstrations of QDSSC stability, reproducibility, and improved performance when using the CoS2 counter electrode; IPCE action spectra for QDSSCs assembled with either a CoS2 or a Pt CE; and CV characterization of CoS2 and Pt symmetrical cells filled with diluted sulfide/polysulfide electrolyte. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 200 publications.

    1. Yao-Sheng Cheng, Yu-Ting Wu, Sofiannisa Aulia, Ching-Cheng Chang, Mia Rinawati, Ting-Ying Lee, Jia-Yaw Chang, Ni Luh Wulan Septiani, Brian Yuliarto, Min-Hsin Yeh. Robust Cobalt Manganese Sulfide Thin Film as an Electrocatalytic Layer for Quantum Dot-Sensitized Solar Cells with the Polysulfide Electrolyte. ACS Sustainable Chemistry & Engineering 2023, 11 (18) , 6903-6913. https://doi.org/10.1021/acssuschemeng.2c06206
    2. Jiajun Mo, Haiwen Chen, Ruida Chen, Mingjie Jin, Min Liu, Yanfang Xia. Nature of Spin-Glass Behavior of Cobalt-Doped Iron Disulfide Nanospheres Using the Monte Carlo Method. The Journal of Physical Chemistry C 2023, 127 (3) , 1475-1486. https://doi.org/10.1021/acs.jpcc.2c06087
    3. Hyunseok Yoon, Dongjoo Park, Hee Jo Song, Sangbaek Park, Dong-Wan Kim. Vertically Aligned Sulfiphilic Cobalt Disulfide Nanosheets Supported on a Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (25) , 8487-8496. https://doi.org/10.1021/acssuschemeng.1c01494
    4. Priyakshree Borthakur, Purna K. Boruah, Manash R. Das, Mohamed M. Ibrahim, Tariq Altalhi, Hamdy S. El-Sheshtawy, Sabine Szunerits, Rabah Boukherroub, Mohammed A. Amin. CoS2 Nanoparticles Supported on rGO, g-C3N4, BCN, MoS2, and WS2 Two-Dimensional Nanosheets with Excellent Electrocatalytic Performance for Overall Water Splitting: Electrochemical Studies and DFT Calculations. ACS Applied Energy Materials 2021, 4 (2) , 1269-1285. https://doi.org/10.1021/acsaem.0c02509
    5. Hongyuan Sheng, Eric D. Hermes, Xiaohua Yang, Diwen Ying, Aurora N. Janes, Wenjie Li, J. R. Schmidt, Song Jin. Electrocatalytic Production of H2O2 by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS2). ACS Catalysis 2019, 9 (9) , 8433-8442. https://doi.org/10.1021/acscatal.9b02546
    6. Haibin Lin, Shengliang Zhang, Tianran Zhang, Sheng Cao, Hualin Ye, Qiaofeng Yao, Guangyuan Wesley Zheng, Jim Yang Lee. A Cathode-Integrated Sulfur-Deficient Co9S8 Catalytic Interlayer for the Reutilization of “Lost” Polysulfides in Lithium–Sulfur Batteries. ACS Nano 2019, 13 (6) , 7073-7082. https://doi.org/10.1021/acsnano.9b02374
    7. Anqi Wang, Man Zhang, Haobo Li, Fan Wu, Kai Yan, Jianping Xiao. Combination of Theory and Experiment Achieving a Rational Design of Electrocatalysts for Hydrogen Evolution on the Hierarchically Mesoporous CoS2 Microsphere. The Journal of Physical Chemistry C 2019, 123 (22) , 13428-13433. https://doi.org/10.1021/acs.jpcc.9b01814
    8. Mei Wang, Wenjuan Zhang, Fangfang Zhang, Zhonghua Zhang, Bin Tang, Jinping Li, Xiaoguang Wang. Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS2 Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catalysis 2019, 9 (2) , 1489-1502. https://doi.org/10.1021/acscatal.8b04502
    9. Dibyendu Ghosh, Anima Ghosh, Md. Yusuf Ali, Sayan Bhattacharyya. Photoactive Core–Shell Nanorods as Bifunctional Electrodes for Boosting the Performance of Quantum Dot Sensitized Solar Cells and Photoelectrochemical Cells. Chemistry of Materials 2018, 30 (17) , 6071-6081. https://doi.org/10.1021/acs.chemmater.8b02504
    10. Mengmeng Lao, Guoqiang Zhao, Xin Li, Yaping Chen, Shi Xue Dou, Wenping Sun. Homogeneous Sulfur–Cobalt Sulfide Nanocomposites as Lithium–Sulfur Battery Cathodes with Enhanced Reaction Kinetics. ACS Applied Energy Materials 2018, 1 (1) , 167-172. https://doi.org/10.1021/acsaem.7b00049
    11. Ru-Pan Wang, Boyang Liu, Robert J. Green, Mario Ulises Delgado-Jaime, Mahnaz Ghiasi, Thorsten Schmitt, Matti M. van Schooneveld, and Frank M. F. de Groot . Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides. The Journal of Physical Chemistry C 2017, 121 (45) , 24919-24928. https://doi.org/10.1021/acs.jpcc.7b06882
    12. Jingyan Zhang, Wen Xiao, Pinxian Xi, Shibo Xi, Yonghua Du, Daqiang Gao, and Jun Ding . Activating and Optimizing Activity of CoS2 for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Letters 2017, 2 (5) , 1022-1028. https://doi.org/10.1021/acsenergylett.7b00270
    13. Jing Yang, Kai Wang, Jixin Zhu, Chao Zhang, and Tianxi Liu . Self-Templated Growth of Vertically Aligned 2H-1T MoS2 for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2016, 8 (46) , 31702-31708. https://doi.org/10.1021/acsami.6b11298
    14. Wenxia Guo, Zhonglin Du, Qingfei Zhao, Hua Zhang, and Xinhua Zhong . Controlled Sulfidation Approach for Copper Sulfide–Carbon Hybrid as an Effective Counter Electrode in Quantum-Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2016, 120 (30) , 16500-16506. https://doi.org/10.1021/acs.jpcc.6b05211
    15. Bin Tian, Zhen Li, Wenlong Zhen, and Gongxuan Lu . Uniformly Sized (112) Facet Co2P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2016, 120 (12) , 6409-6415. https://doi.org/10.1021/acs.jpcc.6b00680
    16. Tyler Kinner, Khagendra P. Bhandari, Ebin Bastola, Bradley M. Monahan, Neale O. Haugen, Paul J. Roland, Terry P. Bigioni, and Randy J. Ellingson . Majority Carrier Type Control of Cobalt Iron Sulfide (CoxFe1–xS2) Pyrite Nanocrystals. The Journal of Physical Chemistry C 2016, 120 (10) , 5706-5713. https://doi.org/10.1021/acs.jpcc.5b11204
    17. Zhe Yuan, Hong-Jie Peng, Ting-Zheng Hou, Jia-Qi Huang, Cheng-Meng Chen, Dai-Wei Wang, Xin-Bing Cheng, Fei Wei, and Qiang Zhang . Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters 2016, 16 (1) , 519-527. https://doi.org/10.1021/acs.nanolett.5b04166
    18. Muhammad A. Abbas and Jin Ho Bang . Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chemistry of Materials 2015, 27 (21) , 7218-7235. https://doi.org/10.1021/acs.chemmater.5b03331
    19. Junqiao Zhuo, Miguel Cabán-Acevedo, Hanfeng Liang, Leith Samad, Qi Ding, Yongping Fu, Meixian Li, and Song Jin . High-Performance Electrocatalysis for Hydrogen Evolution Reaction Using Se-Doped Pyrite-Phase Nickel Diphosphide Nanostructures. ACS Catalysis 2015, 5 (11) , 6355-6361. https://doi.org/10.1021/acscatal.5b01657
    20. Leize Zhu, Beau J. Richardson, and Qiuming Yu . Anisotropic Growth of Iron Pyrite FeS2 Nanocrystals via Oriented Attachment. Chemistry of Materials 2015, 27 (9) , 3516-3525. https://doi.org/10.1021/acs.chemmater.5b00945
    21. Leith Samad, Miguel Cabán-Acevedo, Melinda J. Shearer, Kwangsuk Park, Robert J. Hamers, and Song Jin . Direct Chemical Vapor Deposition Synthesis of Phase-Pure Iron Pyrite (FeS2) Thin Films. Chemistry of Materials 2015, 27 (8) , 3108-3114. https://doi.org/10.1021/acs.chemmater.5b00664
    22. Chung Soo Kim, Sun Hee Choi, and Jin Ho Bang . New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability. ACS Applied Materials & Interfaces 2014, 6 (24) , 22078-22087. https://doi.org/10.1021/am505473d
    23. Jiarui Jin, Xuehua Zhang, and Tao He . Self-Assembled CoS2 Nanocrystal Film as an Efficient Counter Electrode for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (43) , 24877-24883. https://doi.org/10.1021/jp508814y
    24. Jun Xu, Xia Yang, Qingdan Yang, Wenjun Zhang, and Chun-Sing Lee . Phase Conversion from Hexagonal CuSySe1–y to Cubic Cu2–xSySe1–y: Composition Variation, Morphology Evolution, Optical Tuning, and Solar Cell Applications. ACS Applied Materials & Interfaces 2014, 6 (18) , 16352-16359. https://doi.org/10.1021/am5046247
    25. Matthew S. Faber, Mark A. Lukowski, Qi Ding, Nicholas S. Kaiser, and Song Jin . Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. The Journal of Physical Chemistry C 2014, 118 (37) , 21347-21356. https://doi.org/10.1021/jp506288w
    26. Feifan Wang, Hui Dong, Jinlong Pan, Jingjian Li, Qi Li, and Dongsheng Xu . One-Step Electrochemical Deposition of Hierarchical CuS Nanostructures on Conductive Substrates as Robust, High-Performance Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (34) , 19589-19598. https://doi.org/10.1021/jp505737u
    27. Zonghua Pu, Qian Liu, Ping Jiang, Abdullah M. Asiri, Abdullah Y. Obaid, and Xuping Sun . CoP Nanosheet Arrays Supported on a Ti Plate: An Efficient Cathode for Electrochemical Hydrogen Evolution. Chemistry of Materials 2014, 26 (15) , 4326-4329. https://doi.org/10.1021/cm501273s
    28. Linlin Li, Peining Zhu, Shengjie Peng, Madhavi Srinivasan, Qingyu Yan, A. Sreekumaran Nair, Bin Liu, and Seeram Samakrishna . Controlled Growth of CuS on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16526-16535. https://doi.org/10.1021/jp4117529
    29. Haijing Yu, Huili Bao, Ke Zhao, Zhonglin Du, Hua Zhang, and Xinhua Zhong . Topotactically Grown Bismuth Sulfide Network Film on Substrate as Low-Cost Counter Electrodes for Quantum Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16602-16610. https://doi.org/10.1021/jp4125217
    30. Matthew S. Faber, Rafal Dziedzic, Mark A. Lukowski, Nicholas S. Kaiser, Qi Ding, and Song Jin . High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures. Journal of the American Chemical Society 2014, 136 (28) , 10053-10061. https://doi.org/10.1021/ja504099w
    31. Prashant V. Kamat, Jeffrey A. Christians, Emmy J. Radich. Quantum Dot Solar Cells: Hole Transfer as a Limiting Factor in Boosting the Photoconversion Efficiency. Langmuir 2014, 30 (20) , 5716-5725. https://doi.org/10.1021/la500555w
    32. Ke Zhao, Haijing Yu, Hua Zhang, and Xinhua Zhong . Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (11) , 5683-5690. https://doi.org/10.1021/jp4118369
    33. Hye Mi Choi, In Ae Ji, and Jin Ho Bang . Metal Selenides as a New Class of Electrocatalysts for Quantum Dot-Sensitized Solar Cells: A Tale of Cu1.8Se and PbSe. ACS Applied Materials & Interfaces 2014, 6 (4) , 2335-2343. https://doi.org/10.1021/am404355m
    34. Shu-Hao Chang, Ming-De Lu, Yung-Liang Tung, and Hsing-Yu Tuan . Gram-Scale Synthesis of Catalytic Co9S8 Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells. ACS Nano 2013, 7 (10) , 9443-9451. https://doi.org/10.1021/nn404272j
    35. Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Audrey Forticaux, Linsen Li, and Song Jin . Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. Journal of the American Chemical Society 2013, 135 (28) , 10274-10277. https://doi.org/10.1021/ja404523s
    36. Jyoti Singh, Rakhi Thareja, Pragati Malik. Exploring the Potential of Quantum Dot‐Sensitized Solar Cells: Innovation and Insights. ChemPhysChem 2025, 26 (10) https://doi.org/10.1002/cphc.202400800
    37. Mahider Asmare Tekalgne, Tuan Van Nguyen, Sung Hyun Hong, Quyet Van Le, Sangwoo Ryu, Sang Hyun Ahn, Soo Young Kim. Synergistic enhancement of electrocatalytic hydrogen evolution by CoS2 nanoparticle-modified P-doped Ti3C2Tx heterostructure in acidic and alkaline media. Fuel 2024, 371 , 131976. https://doi.org/10.1016/j.fuel.2024.131976
    38. José A. Carvalho Junior, Cássio L. Nunes, Wagner S. Machado, Marco A. Schiavon. Recent Progresses in Quantum‐Dot‐Sensitized Solar Cells: The Role of Counter Electrodes. Energy Technology 2024, 12 (8) https://doi.org/10.1002/ente.202400254
    39. Zhenzhen Shan, Xiaoxiong Li, Xiaolong Li, Yusen He, Yitong Guo, Guangshuo Wang, Yamin Geng, Guoqing Chang, Qiang Li. Nanofiber-based electrode current collector for high-energy Li-S batteries towards practical application for energy storage. Applied Surface Science 2024, 651 , 159218. https://doi.org/10.1016/j.apsusc.2023.159218
    40. Arushi Pandey, Preeti Yadav, Rutam Biswal, Abu Fahad, Bushra Khan, Pushpendra Kumar, Manoj K. Singh. Structural, morphological and electrical properties of hydrothermally synthesized cobalt disulfide (CoS 2 ) nanoparticles. Ferroelectrics 2024, 618 (2) , 451-463. https://doi.org/10.1080/00150193.2023.2273722
    41. Sivalingam Ramesh, Abu Talha Aqueel Ahmed, Yuvaraj Haldorai, Vijay Kakani, Chinna Bathula, Heung Soo Kim. Cobalt sulfide@cobalt-metal organic frame works materials for energy storage and electrochemical glucose detection sensor application. Journal of Alloys and Compounds 2023, 967 , 171760. https://doi.org/10.1016/j.jallcom.2023.171760
    42. Anchal Srivastava, Rajesh Kumar Shukla, Priyanka Srivastava, Pramesh Chandra, Nishant Kumar. Chalcogenides: Bulk and Thin Films. 2023, 1-25. https://doi.org/10.2174/9789815051247123010003
    43. Fateme Sadat Hojati, Mahmoud Ziarati, Mohammad Eghdamtalab. Effect of operational conditions on the production of CoS2 nanoparticles. Applied Nanoscience 2023, 13 (6) , 4313-4330. https://doi.org/10.1007/s13204-022-02674-5
    44. Zhangqian Liang, Yanjun Xue, Xinyu Wang, Xiaoli Zhang, Jian Tian, Hongzhi Cui. The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Materials Science 2023, 5 (2) , 202-209. https://doi.org/10.1016/j.nanoms.2022.03.001
    45. Seyedeh Yasaman Shajaripour Jaberi, Ali Ghaffarinejad, Zahra Khajehsaeidi, Ali Sadeghi. The synthesis, properties, and potential applications of CoS2 as a transition metal dichalcogenide (TMD). International Journal of Hydrogen Energy 2023, 48 (42) , 15831-15878. https://doi.org/10.1016/j.ijhydene.2023.01.056
    46. Jinyou Fei, Yi Wei, Yu Zhou, Yunyu Ning, Yingjian Wang, Hongsheng Jia. Synthesis of a Porous CoS 2 ‐CN/MWCNTs Composite Derived from ZIF‐67 for Electrochemical Hydrogen Storage Applications. ChemistrySelect 2023, 8 (12) https://doi.org/10.1002/slct.202204708
    47. Xuanwa Chen, Yanhui Yu, Jing Li, Peilin Deng, Chongtai Wang, Yingjie Hua, Yijun Shen, Xinlong Tian. Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy 2023, 48 (25) , 9231-9243. https://doi.org/10.1016/j.ijhydene.2022.11.352
    48. Bui Van Thang, Ha Thanh Tung, Dang Huu Phuc, Tan Phat Nguyen, Tran Van Man, Lam Quang Vinh. High-efficiency quantum dot sensitized solar cells based on flexible rGO-Cu2S electrodes compared with PbS, CuS, Cu2S CEs. Solar Energy Materials and Solar Cells 2023, 250 , 112042. https://doi.org/10.1016/j.solmat.2022.112042
    49. Xinping Li, Min Zhou, Zhuoxun Yin, Xinzhi Ma, Yang Zhou. Bimetallic Ni-Mo nitride@C3N4 for highly active and stable water catalysis. Frontiers of Materials Science 2022, 16 (3) https://doi.org/10.1007/s11706-022-0613-9
    50. Jagodish C. Sarker, Rosie Nash, Suwimon Boonrungsiman, David Pugh, Graeme Hogarth. Diaryl dithiocarbamates: synthesis, oxidation to thiuram disulfides, Co( iii ) complexes [Co(S 2 CNAr 2 ) 3 ] and their use as single source precursors to CoS 2. Dalton Transactions 2022, 51 (34) , 13061-13070. https://doi.org/10.1039/D2DT01767A
    51. Yi Cai, Yuxing Shi, Weilong Shi, Song Bai, Shengtao Yang, Feng Guo. A one-photon excitation pathway in 0D/3D CoS2/ZnIn2S4 composite with nanoparticles on micro-flowers structure for boosted visible-light-driven photocatalytic hydrogen evolution. Composites Part B: Engineering 2022, 238 , 109955. https://doi.org/10.1016/j.compositesb.2022.109955
    52. Cristina Rodríguez-Seco, Yue-Sheng Wang, Karim Zaghib, Dongling Ma. Photoactive nanomaterials enabled integrated photo-rechargeable batteries. Nanophotonics 2022, 11 (8) , 1443-1484. https://doi.org/10.1515/nanoph-2021-0782
    53. Dheeraj Devadiga, Muthu Selvakumar, Prakasha Shetty, Mysore Sridhar Santosh. The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review. Renewable and Sustainable Energy Reviews 2022, 159 , 112252. https://doi.org/10.1016/j.rser.2022.112252
    54. Xiaochun Li, Jiawen Wang, Jiawei Xia, Yuanxing Fang, Yidong Hou, Xianzhi Fu, Menny Shalom, Xinchen Wang. One‐Pot Synthesis of CoS 2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem 2022, 15 (8) https://doi.org/10.1002/cssc.202200330
    55. Akash S. Rasal, Sudesh Yadav, Anil A. Kashale, Ali Altaee, Jia-Yaw Chang. Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy 2022, 94 , 106854. https://doi.org/10.1016/j.nanoen.2021.106854
    56. Ayesha Siddika, Munira Sultana, M.S. Bashar, Samia Tabassum, Shahin Aziz, Md Aftab Ali Shaikh. Improved performance of dye sensitized solar cell by exploration of photoanode and ruthenium based dye. Optical Materials 2022, 125 , 112042. https://doi.org/10.1016/j.optmat.2022.112042
    57. Wenhua Li, Shule Zhang, Qianqiao Chen, Qin Zhong. Highly-dispersed CoS2/N-doped carbon nanoparticles anchored on RGO skeleton as a hierarchical composite counter electrode for quantum dot sensitized solar cells. Chemical Engineering Journal 2022, 430 , 132732. https://doi.org/10.1016/j.cej.2021.132732
    58. S. Thirumaran. Dithiocarbamate complexes containing the pyrrole moiety for synthesis of sulfides. 2022, 107-121. https://doi.org/10.1016/B978-0-12-820340-8.00017-4
    59. Muhammad Rizwan, Muhammad Ammar Bin Mingsukang, Md. Akhtaruzzaman. Quantum dot-sensitized solar cells. 2022, 245-271. https://doi.org/10.1016/B978-0-323-85529-7.00003-7
    60. SUNG-MOK JUNG, SEUNG-BEOM HA, JOO-WON SEO, JAE-YUP KIM. Optimization of Fabrication Conditions for Cu2S Counter Electrodes of Quantum Dot-Sensitized Solar Cells. Transactions of the Korean Hydrogen and New Energy Society 2021, 32 (6) , 663-668. https://doi.org/10.7316/KHNES.2021.32.6.663
    61. Zhiyuan Zhang, Zhihong Zhu. Concentration modulate engineering of cobalt-selenium-sulfide electrodes toward water splitting: A first principle study. Applied Surface Science 2021, 570 , 151229. https://doi.org/10.1016/j.apsusc.2021.151229
    62. Yazhou Liang, Shanshan Yao, Youqiang Wang, Heli Yu, Arslan Majeed, Xiangqian Shen, Tianbao Li, Shibiao Qin. Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@sulfur materials propelling polysulfide conversion in lithium sulfur batteries. Ceramics International 2021, 47 (19) , 27122-27131. https://doi.org/10.1016/j.ceramint.2021.06.126
    63. Tingting Zhang, Qiu Zhang, Yumeng Wang, Fengyan Li, Lin Xu. Constructing high-performance H 3 PW 12 O 40 /CoS 2 counter electrodes for quantum dot sensitized solar cells by reducing the surface work function of CoS 2. Dalton Transactions 2021, 50 (37) , 12879-12887. https://doi.org/10.1039/D1DT01871J
    64. Yahui Li, Jiayi Li, Jinshi Yuan, Yuling Zhao, Jianmin Zhang, Hao Liu, Fengyun Wang, Jie Tang, Jianjun Song. 3D CoS2/rGO aerogel as trapping-catalyst sulfur host to promote polysulfide conversion for stable Li-S batteries. Journal of Alloys and Compounds 2021, 873 , 159780. https://doi.org/10.1016/j.jallcom.2021.159780
    65. Sunzhi Jiao, Qi Zhou. Earth-abundant nickel cobalt disulfide nanoporous networks catalyst for efficient hydrogen evolution. Materials Today Communications 2021, 27 , 102465. https://doi.org/10.1016/j.mtcomm.2021.102465
    66. Nguyen Thi Kim Chung, Phat Tan Nguyen, Ha Thanh Tung, Dang Huu Phuc. Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes. Molecules 2021, 26 (9) , 2638. https://doi.org/10.3390/molecules26092638
    67. Zhengtian Shi, Xiangqian Qi, Zhiyuan Zhang, Yingchao Song, Jianfa Zhang, Chucai Guo, Wei Xu, Ken Liu, Zhihong Zhu. Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting. Nanoscale 2021, 13 (14) , 6890-6901. https://doi.org/10.1039/D1NR00987G
    68. Fang Liu, Wenjun He, Ying Li, Fangqing Wang, Jingyu Zhang, Xuewen Xu, Yanming Xue, Chengchun Tang, Hui Liu, Jun Zhang. Activating sulfur sites of CoS2 electrocatalysts through tin doping for hydrogen evolution reaction. Applied Surface Science 2021, 546 , 149101. https://doi.org/10.1016/j.apsusc.2021.149101
    69. Syed Mansoor Ali, M. S. AlGarawi, S. S. AlGamdi, M. A. Majeed Khan, Tauriq Uzzaman, Khalid Saeed, Jahangeer Ahmed. Effects of Cu doping on the structural, photoluminescence and impedance spectroscopy of CoS2 thin films. Journal of Materials Science: Materials in Electronics 2021, 32 (4) , 3948-3957. https://doi.org/10.1007/s10854-020-05136-2
    70. Hasan Ay, Fatih Sen. Metal, Metal Oxides, and Metal Sulfide Roles in Fuel Cell. 2021, 115-145. https://doi.org/10.1007/978-3-030-63791-0_4
    71. Yun Tong, Qiong Sun, Pengzuo Chen, Lu Chen, Zhaofu Fei, Paul J. Dyson. Nitrogen‐Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting. ChemSusChem 2020, 13 (18) , 5112-5118. https://doi.org/10.1002/cssc.202001413
    72. Lida Givalou, Dimitrios Tsichlis, Fu Zhang, Chaido-Stefania Karagianni, Mauricio Terrones, Konstantinos Kordatos, Polycarpos Falaras. Transition metal – Graphene oxide nanohybrid materials as counter electrodes for high efficiency quantum dot solar cells. Catalysis Today 2020, 355 , 860-869. https://doi.org/10.1016/j.cattod.2019.03.035
    73. Jiantao Zai, Ye Zhu, Kai He, Asma Iqbal, Shoushuang Huang, Zhiwen Chen, Xuefeng Qian. Sandwiched Cu7S4@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries: Enhanced cycling stability and electrocatalytic dynamics of polysulfides. Materials Chemistry and Physics 2020, 250 , 123143. https://doi.org/10.1016/j.matchemphys.2020.123143
    74. Wangyan Gou, Mingkai Zhang, Jian Wu, Qingchen Dong, Yongquan Qu. Pyrite-type electrocatalysts for hydrogen evolution. MRS Bulletin 2020, 45 (7) , 555-561. https://doi.org/10.1557/mrs.2020.165
    75. Peng Liu, Jianyue Yan, Jianxin Mao, Jiawen Li, Dongxue Liang, Wenbo Song. In-plane intergrowth CoS 2 /MoS 2 nanosheets: binary metal–organic framework evolution and efficient alkaline HER electrocatalysis. Journal of Materials Chemistry A 2020, 8 (22) , 11435-11441. https://doi.org/10.1039/D0TA00897D
    76. Menghui Zhang, Hui Xie, Haosen Fan, Tucheng Zeng, Wei Yang, Wenzhi Zheng, Hong Liang, Zhiting Liu. Two-dimensional carbon-coated CoS2 nanoplatelets issued from a novel Co(OH)(OCH3) precursor as anode materials for lithium ion batteries. Applied Surface Science 2020, 516 , 146133. https://doi.org/10.1016/j.apsusc.2020.146133
    77. Guoqiang Long, Wenhua Li, Wanyue Luo, Qianqiao Chen, Qin Zhong. Glucose-derived porous carbon as a highly efficient and low-cost counter electrode for quantum dot-sensitized solar cells. New Journal of Chemistry 2020, 44 (16) , 6362-6368. https://doi.org/10.1039/D0NJ00447B
    78. Fabiola Navarro‐Pardo, Jiabin Liu, Omar Abdelkarim, Gurpreet S. Selopal, Aycan Yurtsever, Ana C. Tavares, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. 1D/2D Cobalt‐Based Nanohybrids as Electrocatalysts for Hydrogen Generation. Advanced Functional Materials 2020, 30 (14) https://doi.org/10.1002/adfm.201908467
    79. Hisham A. Maddah, Vikas Berry, Sanjay K. Behura. Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights. Renewable and Sustainable Energy Reviews 2020, 121 , 109678. https://doi.org/10.1016/j.rser.2019.109678
    80. Erdem Elibol. Effects of different counter electrodes on performance of CdSeTe alloy QDSSC. Solar Energy 2020, 197 , 519-526. https://doi.org/10.1016/j.solener.2020.01.035
    81. Gurpreet Singh Selopal. Core/Shell Quantum-Dot-Sensitized Solar Cells. 2020, 219-255. https://doi.org/10.1007/978-3-030-46596-4_7
    82. Jiahui Yang, Yudi Niu, Jie Huang, Linchun Liu, Xing Qian. N-doped C/CoSe2@Co–FeSe2 yolk-shell nano polyhedron as superior counter electrode catalyst for high-efficiency Pt-free dye-sensitized solar cell. Electrochimica Acta 2020, 330 , 135333. https://doi.org/10.1016/j.electacta.2019.135333
    83. Yi Liu, Liyong Du, Kuikun Gu, Mingzhe Zhang. Effect of Tm dopant on luminescence, photoelectric properties and electronic structure of In2S3 quantum dots. Journal of Luminescence 2020, 217 , 116775. https://doi.org/10.1016/j.jlumin.2019.116775
    84. K Ashok Kumar, A Pandurangan, S Arumugam, M Sathiskumar. Effect of Bi-functional Hierarchical Flower-like CoS Nanostructure on its Interfacial Charge Transport Kinetics, Magnetic and Electrochemical Behaviors for Supercapacitor and DSSC Applications. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-37463-0
    85. X.Q. Zhang, Y.L. Cui, Y. Zhong, D.H. Wang, W.J. Tang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu. Cobalt disulfide-modified cellular hierarchical porous carbon derived from bovine bone for application in high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science 2019, 551 , 219-226. https://doi.org/10.1016/j.jcis.2019.04.079
    86. Wirat Jarernboon, Samuk Pimanpang, Vittaya Amornkitbamrung. Effect of sputtered Cu 2 ZnSnS 4 film thickness on dye sensitized solar cell counter electrode performance. Japanese Journal of Applied Physics 2019, 58 (SI) , SIID02. https://doi.org/10.7567/1347-4065/ab0c77
    87. Fabiola Navarro-Pardo, Xin Tong, Xin Tong, Gurpreet S. Selopal, Sylvain G. Cloutier, Shuhui Sun, Ana C. Tavares, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental 2019, 245 , 167-176. https://doi.org/10.1016/j.apcatb.2018.12.041
    88. Venkata Thulasivarma Chebrolu, Hee-Je Kim. Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Journal of Materials Chemistry C 2019, 7 (17) , 4911-4933. https://doi.org/10.1039/C8TC06476H
    89. Jia‐Shan Tsai, Khalilalrahman Dehvari, Wei‐Chuan Ho, Keiko Waki, Jia‐Yaw Chang. In Situ Microwave‐Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot‐Sensitized Solar Cells. Advanced Materials Interfaces 2019, 6 (5) https://doi.org/10.1002/admi.201801745
    90. Zhonglin Du, Mikhail Artemyev, Jin Wang, Jianguo Tang. Performance improvement strategies for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A 2019, 7 (6) , 2464-2489. https://doi.org/10.1039/C8TA11483H
    91. Xiaohe Ji, Cheng Yang, Wenjuan Fang, Hua Zhang. Insight into the reduction and property of graphene hydrogel for high efficiency composite counter electrodes and solar cells. Electrochimica Acta 2019, 297 , 980-987. https://doi.org/10.1016/j.electacta.2018.09.038
    92. Yifan Chen, Qingqing Qiu, Dejun Wang, Yanhong Lin, Xiaoxin Zou, Tengfeng Xie. CuSe/CuxS as a composite counter electrode based on P-N heterojunction for quantum dot sensitized solar cells. Journal of Power Sources 2019, 413 , 68-76. https://doi.org/10.1016/j.jpowsour.2018.12.027
    93. Yuan Wang, Mingshui Yao, Lianjing Zhao, Wei Wang, Weinan Xue, Yan Li. Cu x S nanoparticle@carbon nanorod composites prepared from metal–organic frameworks as efficient electrode catalysts for quantum dot sensitized solar cells. Journal of Materials Chemistry A 2019, 7 (5) , 2210-2218. https://doi.org/10.1039/C8TA10629K
    94. Yuheng Tian, Kuang-Hsu Wu, Xin Tan, Qingcong Zeng, Rose Amal, Da-Wei Wang. Hydrophilic tannic acid-modified WS 2 nanosheets for enhanced polysulfide conversion in aqueous media. Journal of Physics: Energy 2019, 1 (1) , 015005. https://doi.org/10.1088/2515-7655/aaead4
    95. Yinan Zhang, Jingyu Zhang, Wei Zheng. Optimizing the Multiwall Carbon Nanotubes Counter Electrode by Depositing CuS Quantum Dots. IEEE Journal of Photovoltaics 2019, 9 (1) , 119-123. https://doi.org/10.1109/JPHOTOV.2018.2868016
    96. Hailong Yan, Zhonglu Qi, Qianqiao Chen, Qin Zhong. Flower-Like MoS 2 /CNTs Composite as Efficient Counter Electrode for Quantum Dot Sensitized Solar Cells. ECS Journal of Solid State Science and Technology 2019, 8 (2) , P77-P82. https://doi.org/10.1149/2.0031902jss
    97. Jue Wang, Zheng Guo, Wei Xiong, Xinwei Wang. Synthesis of Thin‐Film Metal Pyrites by an Atomic Layer Deposition Approach. Chemistry – A European Journal 2018, 24 (70) , 18568-18574. https://doi.org/10.1002/chem.201803327
    98. Xiaoli Zhao, Chengjie Xiang, Ming Huang, Mei Ding, Chuankun Jia, Chuankun Jia, Lidong Sun, Lidong Sun. Quantum Dot Solar Cells. 2018, 611-658. https://doi.org/10.1002/9781119407690.ch16
    99. S.K. Shinde, M.B. Jalak, S.Y. Kim, H.M. Yadav, G.S. Ghodake, A.A. Kadam, D.-Y. Kim. Effect of Mn doping on the chemical synthesis of interconnected nanoflakes-like CoS thin films for high performance supercapacitor applications. Ceramics International 2018, 44 (18) , 23102-23108. https://doi.org/10.1016/j.ceramint.2018.09.117
    100. Yi Wang, Yuanzhang Huang, Haotong Li, Yusheng Zhou, Lei Wan, Haihong Niu, Yuan Li, Jinzhang Xu, Ru Zhou. In Situ Growth of PbS Nanocubes as Highly Catalytic Counter Electrodes for Quantum Dot Sensitized Solar Cells. IEEE Journal of Photovoltaics 2018, 8 (6) , 1670-1676. https://doi.org/10.1109/JPHOTOV.2018.2863787
    Load all citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2013, 4, 11, 1843–1849
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz400642e
    Published May 9, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4222

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.