ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVMolecular Structure,...Molecular Structure, Quantum Chemistry, and General TheoryNEXT

Solution Structures and Acidity Constants of Molybdic Acid

View Author Information
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, People’s Republic of China
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
Cite this: J. Phys. Chem. Lett. 2013, 4, 17, 2926–2930
Publication Date (Web):August 14, 2013
https://doi.org/10.1021/jz401444m
Copyright © 2013 American Chemical Society

    Article Views

    1554

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Experiment has not been able to discriminate between the oxo (MoO3·(H2O)3) and oxyhydroxide (MoO2(OH)2·(H2O)2) forms of molybdic acid. Using first-principles molecular dynamics based pKa calculation techniques, we identify that MoO2(OH)2.(H2O)2 is the true solution structure and its OH ligands are the acidic site. Simulations at elevated temperatures up to 573 K show an encouraging agreement between calculated and experimental pKa’s, which validates our method of prediction of subtle pH-dependent speciation in hydrothermal solutions. We find that molybdate species have highly volatile pH- and temperature-dependent coordinations, which is related with the experimentally observed variability in Mo coordination of polyoxometalates (POMs). These results form a physical basis for understanding the properties of Mo in numerous lab and natural processes ranging from formation of POMs to transport and deposition mechanisms in crustal fluids.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Methodology including systems, FPMD details, and pKa calculation techniques, and the results including vertical energy gap data, deprotonation free energies, and pKa’s. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Chi Zhang, Libin Liu, Hanzhong Jia. An Atomic-Scale Understanding of the Solution Chemistry of Antimony(V): Insights from First-Principles Molecular Dynamics Simulation. Inorganic Chemistry 2020, 59 (21) , 15741-15750. https://doi.org/10.1021/acs.inorgchem.0c02162
    2. Ning Zhang, Erich Königsberger, Siqi Duan, Ke Lin, Haibo Yi, Dewen Zeng, Zhongwei Zhao, Glenn Hefter. Nature of Monomeric Molybdenum(VI) Cations in Acid Solutions Using Theoretical Calculations and Raman Spectroscopy. The Journal of Physical Chemistry B 2019, 123 (15) , 3304-3311. https://doi.org/10.1021/acs.jpcb.9b00926
    3. Mengjia He, Xiandong Liu, Jun Cheng, Xiancai Lu, Chi Zhang, Rucheng Wang. Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations. Inorganic Chemistry 2018, 57 (10) , 5801-5809. https://doi.org/10.1021/acs.inorgchem.8b00136
    4. Benxin Jing, Xiaofeng Wang, Haitao Wang, Jie Qiu, Yi Shi, Haifeng Gao, and Yingxi Zhu . Shape and Mechanical Control of Poly(ethylene oxide) Based Polymersome with Polyoxometalates via Hydrogen Bond. The Journal of Physical Chemistry B 2017, 121 (7) , 1723-1730. https://doi.org/10.1021/acs.jpcb.6b11759
    5. Rulin Feng, Monica Vasiliu, Kirk A. Peterson, and David A. Dixon . Acidity of M(VI)O2(OH)2 for M = Group 6, 16, and U as Central Atoms. The Journal of Physical Chemistry A 2017, 121 (5) , 1041-1050. https://doi.org/10.1021/acs.jpca.6b11889
    6. Mengjia He, Xiandong Liu, Xiancai Lu, Chi Zhang, and Rucheng Wang . Structures and Acidity Constants of Silver–Sulfide Complexes in Hydrothermal Fluids: A First-Principles Molecular Dynamics Study. The Journal of Physical Chemistry A 2016, 120 (42) , 8435-8443. https://doi.org/10.1021/acs.jpca.6b08403
    7. Jun Cheng, Xiandong Liu, Joost VandeVondele, Marialore Sulpizi, and Michiel Sprik . Redox Potentials and Acidity Constants from Density Functional Theory Based Molecular Dynamics. Accounts of Chemical Research 2014, 47 (12) , 3522-3529. https://doi.org/10.1021/ar500268y
    8. Kristine Laws, Marcus Tze‐Kiat Ng, Abhishek Sharma, Yibin Jiang, Alexander J. S. Hammer, Leroy Cronin. An Autonomous Electrochemical Discovery Robot that Utilises Probabilistic Algorithms: Probing the Redox Behaviour of Inorganic Materials. ChemElectroChem 2023, 400 https://doi.org/10.1002/celc.202300532
    9. Qiushi Guan, Yuan Mei, Barbara Etschmann, Marion Louvel, Denis Testemale, Riccardo Spezia, Joël Brugger. Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: A combined molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta 2022, 330 , 27-46. https://doi.org/10.1016/j.gca.2022.02.032
    10. Ricardo Abejón. An Overview to Technical Solutions for Molybdenum Removal: Perspective from the Analysis of the Scientific Literature on Molybdenum and Drinking Water (1990–2019). Water 2022, 14 (13) , 2108. https://doi.org/10.3390/w14132108
    11. Endre-Zsolt Kedves, Enikő Bárdos, Tamás Gyulavári, Zsolt Pap, Klara Hernadi, Lucian Baia. Dependence of cationic dyes’ adsorption upon α-MoO3 structural properties. Applied Surface Science 2022, 573 , 151584. https://doi.org/10.1016/j.apsusc.2021.151584
    12. Ning Zhang, Jianfeng Tang, Qiongqiong Luo, Shaoheng Wang, Dewen Zeng. Computational and solubility equilibrium experimental insight into Ca 2+ –fluoride complexation and their dissociation behaviors in aqueous solutions: implication for the association constant measured using fluoride ion selective electrodes. Physical Chemistry Chemical Physics 2021, 23 (43) , 24711-24725. https://doi.org/10.1039/D1CP02087K
    13. Francisco Villalba, Ana C. Albéniz. Non‐Chelate‐Assisted Palladium‐Catalyzed Aerobic Oxidative Heck Reaction of Fluorobenzenes and Other Arenes: When Does the C−H Activation Need Help?. Advanced Synthesis & Catalysis 2021, 363 (20) , 4795-4804. https://doi.org/10.1002/adsc.202100677
    14. Corinna Probst, Jing Yang, Joern Krausze, Thomas W. Hercher, Casseday P. Richers, Thomas Spatzal, Khadanand KC, Logan J. Giles, Douglas C. Rees, Ralf R. Mendel, Martin L. Kirk, Tobias Kruse. Mechanism of molybdate insertion into pterin-based molybdenum cofactors. Nature Chemistry 2021, 13 (8) , 758-765. https://doi.org/10.1038/s41557-021-00714-1
    15. Michael Bae, Jun Kyun Oh, Shuhao Liu, Nirup Nagabandi, Yagmur Yegin, William DeFlorio, Luis Cisneros-Zevallos, Ethan M. A. Scholar. Nanotoxicity of 2D Molybdenum Disulfide, MoS2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. Nanomaterials 2021, 11 (6) , 1453. https://doi.org/10.3390/nano11061453
    16. Yuan Mei, Weihua Liu, Joël Brugger, Qiushi Guan. Gold solubility in alkaline and ammonia-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations. Geochimica et Cosmochimica Acta 2020, 291 , 62-78. https://doi.org/10.1016/j.gca.2019.12.031
    17. Hidetoshi Kumata, Chika Morimoto, Akihiro Horie, Akane Tanabe, Eiji Fujimori, Tomonari Umemura. Elimination of interfering molybdenum oxyanion with an anion-exchange monolithic spin tip (AXTip) for precise determination of cadmium in human urine by ICP-MS. Talanta Open 2020, 2 , 100009. https://doi.org/10.1016/j.talo.2020.100009
    18. Weihua Liu, Barbara Etschmann, Yuan Mei, Qiushi Guan, Denis Testemale, Joël Brugger. The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations. Geochimica et Cosmochimica Acta 2020, 290 , 162-179. https://doi.org/10.1016/j.gca.2020.08.003
    19. Enric Petrus, Mireia Segado, Carles Bo. Nucleation mechanisms and speciation of metal oxide clusters. Chemical Science 2020, 11 (32) , 8448-8456. https://doi.org/10.1039/D0SC03530K
    20. Kavosh Majlesi, Clemente Bretti, Concetta De Stefano, Kimia Majlesi, Silvio Sammartano, Saleh Zeighaminezhad. Complexation of Molybdenum(VI) with GLDA at Different Ionic Strengths. Journal of Solution Chemistry 2018, 47 (12) , 1965-1979. https://doi.org/10.1007/s10953-018-0825-x
    21. Yuan Mei, Weihua Liu, Joël Brugger, David M. Sherman, Julian D. Gale. The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700 °C, 60 kbar) by ab initio molecular dynamics simulations. Geochimica et Cosmochimica Acta 2018, 226 , 84-106. https://doi.org/10.1016/j.gca.2018.01.017
    22. Ning Zhang, Haibo Yi, Dewen Zeng, Zhongwei Zhao, Wenlei Wang, Francesca Costanzo. Structure evolution of mononuclear tungsten and molybdenum species in the protonation process: Insight from FPMD and DFT calculations. Chemical Physics 2018, 502 , 77-86. https://doi.org/10.1016/j.chemphys.2018.01.009
    23. Chi Zhang, Xiandong Liu, Xiancai Lu, Mengjia He. Complexation of heavy metal cations on clay edges at elevated temperatures. Chemical Geology 2018, 479 , 36-46. https://doi.org/10.1016/j.chemgeo.2017.12.027
    24. Mengjia He, Xiandong Liu, Xiancai Lu, Chi Zhang, Rucheng Wang. Structure, acidity, and metal complexing properties of oxythioarsenites in hydrothermal solutions. Chemical Geology 2017, 471 , 131-140. https://doi.org/10.1016/j.chemgeo.2017.09.030
    25. Joël Brugger, Weihua Liu, Barbara Etschmann, Yuan Mei, David M. Sherman, Denis Testemale. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?. Chemical Geology 2016, 447 , 219-253. https://doi.org/10.1016/j.chemgeo.2016.10.021
    26. Claude H. Yoder, Emily L. Christie, Jennifer L. Morford. 95Mo NMR study of the effect of structure on complexation of molybdate with alpha and beta hydroxy carboxylic acid ligands. Polyhedron 2016, 114 , 23-28. https://doi.org/10.1016/j.poly.2015.09.009
    27. Carla Freund, Anthony Wishard, Ryan Brenner, Marisa Sobel, Jack Mizelle, Alex Kim, Drew A. Meyer, Jennifer L. Morford. The effect of a thiol-containing organic molecule on molybdenum adsorption onto pyrite. Geochimica et Cosmochimica Acta 2016, 174 , 222-235. https://doi.org/10.1016/j.gca.2015.11.015
    28. Xiandong Liu, Jun Cheng, Xiancai Lu, Mengjia He, Rucheng Wang. Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics. Physical Chemistry Chemical Physics 2016, 18 (22) , 14911-14917. https://doi.org/10.1039/C6CP01375A
    29. Xiandong Liu, Jun Cheng, Mengjia He, Xiancai Lu, Rucheng Wang. Acidity constants and redox potentials of uranyl ions in hydrothermal solutions. Physical Chemistry Chemical Physics 2016, 18 (37) , 26040-26048. https://doi.org/10.1039/C6CP03469A
    30. Xiaolei Guo, Zhicao Feng, Belinda Hurley, Rudolph Buchheit. Entrapped Molybdate in Phytate Film and the Corresponding Anodic Corrosion Inhibition on AA2024-T3. Journal of The Electrochemical Society 2016, 163 (6) , C260-C268. https://doi.org/10.1149/2.0391606jes
    31. Jon Petter Gustafsson, Charlotta Tiberg. Molybdenum binding to soil constituents in acid soils: An XAS and modelling study. Chemical Geology 2015, 417 , 279-288. https://doi.org/10.1016/j.chemgeo.2015.10.016
    32. Xiandong Liu, Jun Cheng, Michiel Sprik, Xiancai Lu, Rucheng Wang. Interfacial structures and acidity of edge surfaces of ferruginous smectites. Geochimica et Cosmochimica Acta 2015, 168 , 293-301. https://doi.org/10.1016/j.gca.2015.07.015
    33. Xiandong Liu, Mengjia He, Xiancai Lu, Rucheng Wang. Structures and acidity constants of arsenite and thioarsenite species in hydrothermal solutions. Chemical Geology 2015, 411 , 192-199. https://doi.org/10.1016/j.chemgeo.2015.07.015
    34. Xiandong Liu, Xiancai Lu, Jun Cheng, Michiel Sprik, Rucheng Wang. Temperature dependence of interfacial structures and acidity of clay edge surfaces. Geochimica et Cosmochimica Acta 2015, 160 , 91-99. https://doi.org/10.1016/j.gca.2015.04.005
    35. Yuji Sasaki, Tomoya Suzuki, Keisuke Morita, Yasuhiro Tsubata. Complexing Agents for Oxonium Anions of Mo and Re and Their Masking Effects on Extraction Using N-Donor Extractants. Chemistry Letters 2014, 43 (10) , 1538-1539. https://doi.org/10.1246/cl.140502
    36. Xiandong Liu, Jun Cheng, Michiel Sprik, Xiancai Lu, Rucheng Wang. Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations. Geochimica et Cosmochimica Acta 2014, 140 , 410-417. https://doi.org/10.1016/j.gca.2014.05.044
    37. Nicole C. Hurtig, Anthony E. Williams-Jones. An experimental study of the solubility of MoO3 in aqueous vapour and low to intermediate density supercritical fluids. Geochimica et Cosmochimica Acta 2014, 136 , 169-193. https://doi.org/10.1016/j.gca.2014.03.043
    38. Xiandong Liu, Jun Cheng, Xiancai Lu, Rucheng Wang. Surface acidity of quartz: understanding the crystallographic control. Phys. Chem. Chem. Phys. 2014, 16 (48) , 26909-26916. https://doi.org/10.1039/C4CP02955K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect