Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Anomalous Hysteresis in Perovskite Solar Cells
My Activity

Figure 1Loading Img
    Energy Conversion and Storage; Energy and Charge Transport

    Anomalous Hysteresis in Perovskite Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2014, 5, 9, 1511–1515
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz500113x
    Published March 24, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current–voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Device fabrication and solar cell characterization details. Current–voltage characteristics. Scan rate dependence of the current–voltage characteristics of a mesosuperstructured perovskite solar cell and perovskite-sensitized solar cell. Current–voltage characteristics of a perovskite-sensitized solar cell. Extracted current density from a planar perovskite cell over time, when the cell is held at different voltage conditions until stabilized. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 2211 publications.

    1. Vincent M. Le Corre. Space-Charge-Limited Current Measurements: A Problematic Technique for Metal Halide Perovskites. The Journal of Physical Chemistry Letters 2024, 15 (39) , 10001-10008. https://doi.org/10.1021/acs.jpclett.4c02379
    2. Osbel Almora, Farshad Jafarzadeh, Mohamed Samir, Renán Escalante, Diego Di Girolamo, Jessica Barichello, Francesca Brunetti, Lluis F. Marsal, Fabio Matteocci, Juan Antonio Anta. Electron Diffusion Length Effect on Direction of Irradiance in Transparent FAPbBr3 Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2024, Article ASAP.
    3. Zhaojian Xu, Ross A. Kerner, Leeor Kronik, Barry P. Rand. Beyond Ion Migration in Metal Halide Perovskites: Toward a Broader Photoelectrochemistry Perspective. ACS Energy Letters 2024, 9 (9) , 4645-4654. https://doi.org/10.1021/acsenergylett.4c02033
    4. Anashmita Ghosh, Susmita Paul, Mrinmay Das, Piyush Kanti Sarkar, Pooja Bhardwaj, Goutam Sheet, Surajit Das, Sk Kalimuddin, Anuja Datta, Somobrata Acharya. Switchable Bulk Photovoltaic Effect in Intrinsically Ferroelectric 3D All-Inorganic CsPbBr3 Perovskite Nanocrystals. ACS Nano 2024, 18 (34) , 23310-23319. https://doi.org/10.1021/acsnano.4c06297
    5. Jianlin Chen, Xianfu Zhang, Xuepeng Liu, Botong Li, Mingyuan Han, Sike Han, Yu Han, Jiasheng Liu, Weiqing Dai, Rahim Ghadari, Songyuan Dai. A Multifunctional Dye Molecule as the Interfacial Layer for Perovskite Solar Cells. ACS Applied Materials & Interfaces 2024, 16 (17) , 22079-22088. https://doi.org/10.1021/acsami.4c03383
    6. Julian A. Vigil, Nathan R. Wolf, Adam H. Slavney, Roc Matheu, Abraham Saldivar Valdes, Aaron Breidenbach, Young S. Lee, Hemamala I. Karunadasa. Halide Perovskites Breathe Too: The Iodide–Iodine Equilibrium and Self-Doping in Cs2SnI6. ACS Central Science 2024, 10 (4) , 907-919. https://doi.org/10.1021/acscentsci.4c00056
    7. Zhikai Le, Ao Liu, Youjin Reo, Sai Bai, Yong-Young Noh, Huihui Zhu. Ion Migration in Tin-Halide Perovskites. ACS Energy Letters 2024, 9 (4) , 1639-1644. https://doi.org/10.1021/acsenergylett.4c00198
    8. Hytham Elbohy, Hiroo Suzuki, Takeshi Nishikawa, Aung Ko Ko Kyaw, Yasuhiko Hayashi. Phenolphthalein: A Potent Small-Molecule Additive for High-Performance and Ambient-Air-Stable FAPbI3 Perovskite Solar Cells. ACS Applied Energy Materials 2024, 7 (7) , 2925-2937. https://doi.org/10.1021/acsaem.4c00158
    9. Preethi Mathew, Junsang Cho, Prashant V. Kamat. Ramifications of Ion Migration in 2D Lead Halide Perovskites. ACS Energy Letters 2024, 9 (3) , 1103-1114. https://doi.org/10.1021/acsenergylett.4c00093
    10. Tim P. Schneider, Jonas Glaser, Jonas Horn, Fabian Schmitz, Teresa Gatti, Derck Schlettwein. Transformation of Polarization Mechanisms by Dimensional Reduction in Lead-Free Silver Bismuth Bromide Double-Perovskite Thin Films. ACS Applied Electronic Materials 2024, 6 (2) , 987-997. https://doi.org/10.1021/acsaelm.3c01451
    11. Deepak Yadav, Atif Suhail, Arun Kumar, Mandeep Jangra, Kanhaiya Lal Yadav, Arnab Datta, Monojit Bag. Hysteric Influence of Grain Multiplicity in All-Inorganic Halide Perovskite Nanocrystals. ACS Applied Electronic Materials 2024, 6 (2) , 1330-1338. https://doi.org/10.1021/acsaelm.3c01648
    12. M. Alevli, N. Gungor, P. Kavak, N. Sahin, A. Corcor, I. Topal, K. Esmer, E. Cakmakci, C. Deger, I. Yavuz. Incorporation Mechanism of Potassium in FAPbI3 Perovskite Solar Cell Materials. The Journal of Physical Chemistry C 2024, 128 (7) , 2759-2766. https://doi.org/10.1021/acs.jpcc.3c07066
    13. Ujjal Das, Pranab Kumar Sarkar, Sachin Kumar Sharma, Rajesh Deb, Romy Garg, Bhanu Prakash, Kaushik Parida, Asim Roy. Enhancing Stability and Resistive Memory Performance: The Role of Graphene in Hybrid Perovskite Composites. The Journal of Physical Chemistry C 2024, 128 (7) , 3043-3053. https://doi.org/10.1021/acs.jpcc.3c07643
    14. Enrique H. Balaguera, Juan Bisquert. Accelerating the Assessment of Hysteresis in Perovskite Solar Cells. ACS Energy Letters 2024, 9 (2) , 478-486. https://doi.org/10.1021/acsenergylett.3c02779
    15. Rana Yekani, Han Wang, Pegah Ghamari, Stéphanie Bessette, Jonathan Sharir-Smith, Raynald Gauvin, George P. Demopoulos. Impact of Photo-Induced Doping of Spiro-OMeTAD as HTL on Perovskite Solar Cell Hysteresis Dynamics. The Journal of Physical Chemistry C 2024, 128 (2) , 710-722. https://doi.org/10.1021/acs.jpcc.3c05366
    16. Paramesh Chandra, Swapan Kumar Mandal. Observation of Negative Photoconductivity in (CH3NH3)3Bi2(BrxCl1–x)9: Correlating Ion Migration, Stability, and Efficiency in Mixed Halide Perovskite Solar Cell. The Journal of Physical Chemistry C 2023, 127 (47) , 23109-23121. https://doi.org/10.1021/acs.jpcc.3c06427
    17. Hytham Elbohy, Hiroo Suzuki, Takeshi Nishikawa, Thiri Htun, Kosei Tsutsumi, Chiyu Nakano, Aung Ko Ko Kyaw, Yasuhiko Hayashi. Benzophenone: A Small Molecule Additive for Enhanced Performance and Stability of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (38) , 45177-45189. https://doi.org/10.1021/acsami.3c09835
    18. Bipeng Wang, Yifan Wu, Dongyu Liu, Andrey S. Vasenko, David Casanova, Oleg V. Prezhdo. Efficient Modeling of Quantum Dynamics of Charge Carriers in Materials Using Short Nonequilibrium Molecular Dynamics. The Journal of Physical Chemistry Letters 2023, 14 (37) , 8289-8295. https://doi.org/10.1021/acs.jpclett.3c02187
    19. Fei Ma, Yang Zhao, Zihan Qu, Jingbi You. Developments of Highly Efficient Perovskite Solar Cells. Accounts of Materials Research 2023, 4 (8) , 716-725. https://doi.org/10.1021/accountsmr.3c00068
    20. Yahong Xie, Ke Zhao, Haobin Wang, Ying Qi, Peng Wei, Jian Cheng. Chitosan Derivatives Modified with SnO2 for High-Efficiency Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials 2023, 6 (14) , 7377-7386. https://doi.org/10.1021/acsaem.3c00497
    21. Pranjul Bhatt, Amit Kumar, Neha Singh, Ashish Garg, Kanwar Singh Nalwa, Abhishek Tewari. Long-Range Binding of Defect Clusters Leads to Suppressed Ion Mobility in Cs-Doped Methylammonium Lead Iodide. ACS Applied Energy Materials 2023, 6 (12) , 6615-6623. https://doi.org/10.1021/acsaem.3c00659
    22. Simiao Yang, Wei Hui, Lingfeng Chao, Zhen Yang, Qi Chen, Lin Song, Yue Wang, Yonghua Chen, Deli Li. Toward a Diagnostic Method for Efficient Perovskite Solar Cells Based on Equivalent Circuit Parameters. The Journal of Physical Chemistry C 2023, 127 (12) , 5663-5675. https://doi.org/10.1021/acs.jpcc.2c08601
    23. You Jin Park, Young In Jeon, In Seok Yang, Hyunsue Choo, Woo Seok Suh, So-Yeon Ju, Hui-Seon Kim, Jia Hong Pan, Wan In Lee. Selective Control of Novel TiO2 Nanorods: Excellent Building Blocks for the Electron Transport Layer of Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (7) , 9447-9456. https://doi.org/10.1021/acsami.2c21731
    24. Juan Bisquert. Electrical Charge Coupling Dominates the Hysteresis Effect of Halide Perovskite Devices. The Journal of Physical Chemistry Letters 2023, 14 (4) , 1014-1021. https://doi.org/10.1021/acs.jpclett.2c03812
    25. Xinxin Li, Lingpeng Yan, Changzeng Ding, Haitao Song, Yongzhen Yang, Chang-Qi Ma. Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels 2023, 37 (2) , 876-901. https://doi.org/10.1021/acs.energyfuels.2c03362
    26. Huanxin Peng, Ping Fan, Zhuanghao Zheng, Shuo Chen, Guangxing Liang. Phase-Controlled Strategy for High-Quality Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films. ACS Applied Energy Materials 2022, 5 (12) , 15058-15068. https://doi.org/10.1021/acsaem.2c02724
    27. Sarvani Jowhar Khanam, Nishi Parikh, Soumitra Satapathi, Abul Kalam, Murali Banavoth, Pankaj Yadav. Role of Heterocyclic Organic Compounds on the Optoelectronic Properties of Halide Perovskite Single Crystals. ACS Applied Energy Materials 2022, 5 (12) , 14732-14738. https://doi.org/10.1021/acsaem.2c01783
    28. Zhenqi Hua, Azza Ben-Akacha, Qingquan He, Tianhan Liu, Gillian Boyce, Margaret van Deventer, Xinsong Lin, Hanwei Gao, Biwu Ma, Peng Xiong. Intrinsic Ion Migration Dynamics in a One-Dimensional Organic Metal Halide Hybrid. ACS Energy Letters 2022, 7 (11) , 3753-3760. https://doi.org/10.1021/acsenergylett.2c01710
    29. Joshua A. Kress, Claudio Quarti, Qingzhi An, Sapir Bitton, Nir Tessler, David Beljonne, Yana Vaynzof. Persistent Ion Accumulation at Interfaces Improves the Performance of Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10) , 3302-3310. https://doi.org/10.1021/acsenergylett.2c01636
    30. Han Lin, Zhenfang Zhang, Huihui Zhang, Keng-Te Lin, Xiaoming Wen, Yao Liang, Yang Fu, Alan Kin Tak Lau, Tianyi Ma, Cheng-Wei Qiu, Baohua Jia. Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews 2022, 122 (19) , 15204-15355. https://doi.org/10.1021/acs.chemrev.2c00048
    31. Cedric Gonzales, Antonio Guerrero, Juan Bisquert. Transition from Capacitive to Inductive Hysteresis: A Neuron-Style Model to Correlate I–V Curves to Impedances of Metal Halide Perovskites. The Journal of Physical Chemistry C 2022, 126 (32) , 13560-13578. https://doi.org/10.1021/acs.jpcc.2c02729
    32. Pankaj Yadav, Nishi Parikh, Daniel Prochowicz, Abul Kalam, Mohammad Mahdi Tavakoli, Seckin Akin, Murali Banavoth. Probing the Surface and Bulk Electrical Response of MAPbBr3 Single Crystals. The Journal of Physical Chemistry C 2022, 126 (30) , 12399-12404. https://doi.org/10.1021/acs.jpcc.2c03713
    33. Ghadah Alkhalifah, Angelo D. Marshall, Fatimah Rudayni, Shanika Wanigasekara, Judy Z. Wu, Wai-Lun Chan. Defect-Polaron and Enormous Light-Induced Fermi-Level Shift at Halide Perovskite Surface. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6711-6720. https://doi.org/10.1021/acs.jpclett.2c01940
    34. Fangfang Cai, Jianming Lin, Weichun Pan, Sijia Zhu, Wenjing Li, Yitian Du, Juanmei Liu, Minmin Yang, Jihuai Wu. Performance Improvement of Planar Perovskite Solar Cells Using Lauric Acid as Interfacial Modifier. ACS Applied Energy Materials 2022, 5 (7) , 8501-8509. https://doi.org/10.1021/acsaem.2c01035
    35. Sarah Wieghold, Emily M. Cope, Gregory Moller, Nozomi Shirato, Burak Guzelturk, Volker Rose, Lea Nienhaus. Stressing Halide Perovskites with Light and Electric Fields. ACS Energy Letters 2022, 7 (7) , 2211-2218. https://doi.org/10.1021/acsenergylett.2c00866
    36. Alan Jiwan Yun, Bumjin Gil, Seokjoo Ryu, Jinhyun Kim, Byungwoo Park. Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Applied Energy Materials 2022, 5 (6) , 7192-7198. https://doi.org/10.1021/acsaem.2c00743
    37. Yu-Tao Li, Jun-Ze Li, Li Ren, Kui Xu, Sheng Chen, Lei Han, Hang Liu, Xiao-Liang Guo, Du-Li Yu, De-Hui Li, Li Ding, Lian-Mao Peng, Tian-Ling Ren. Light-Controlled Reconfigurable Optical Synapse Based on Carbon Nanotubes/2D Perovskite Heterostructure for Image Recognition. ACS Applied Materials & Interfaces 2022, 14 (24) , 28221-28229. https://doi.org/10.1021/acsami.2c05818
    38. Jing Cai, Tong Zhao, Mingming Chen, Jiayun Su, Xuemin Shen, Yuan Liu, Dawei Cao. Ion Migration in the All-Inorganic Perovskite CsPbBr3 and Its Impacts on Photodetection. The Journal of Physical Chemistry C 2022, 126 (23) , 10007-10013. https://doi.org/10.1021/acs.jpcc.2c03175
    39. Osbel Almora, Gebhard J. Matt, Albert These, Andrii Kanak, Ievgen Levchuk, Shreetu Shrestha, Andres Osvet, Christoph J. Brabec, Germà Garcia-Belmonte. Surface versus Bulk Currents and Ionic Space-Charge Effects in CsPbBr3 Single Crystals. The Journal of Physical Chemistry Letters 2022, 13 (17) , 3824-3830. https://doi.org/10.1021/acs.jpclett.2c00804
    40. Wenjian Shen, Zhengli Wu, Gaoyuan Yang, Yingjie Kong, Wangnan Li, Guijie Liang, Fuzhi Huang, Yi-Bing Cheng, Jie Zhong. Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2022, 13 (14) , 3188-3196. https://doi.org/10.1021/acs.jpclett.2c00626
    41. Shuai Yuan, Xiaopeng Zheng, Wan-Shan Shen, Jiakai Liu, Lin-Song Cui, Congcong Zhang, Qi-Sheng Tian, Jun-Jie Wu, Yu-Hang Zhou, Xue-Dong Wang, Zhao-Kui Wang, Peigang Han, Joseph M. Luther, Osman M. Bakr, Liang-Sheng Liao. Overcoming Degradation Pathways to Achieve Stable Blue Perovskite Light-Emitting Diodes. ACS Energy Letters 2022, 7 (4) , 1348-1354. https://doi.org/10.1021/acsenergylett.2c00465
    42. Marisé García-Batlle, Javier Mayén Guillén, Marian Chapran, Oriane Baussens, Julien Zaccaro, Jean-Marie Verilhac, Eric Gros-Daillon, Antonio Guerrero, Osbel Almora, Germà Garcia-Belmonte. Coupling between Ion Drift and Kinetics of Electronic Current Transients in MAPbBr3 Single Crystals. ACS Energy Letters 2022, 7 (3) , 946-951. https://doi.org/10.1021/acsenergylett.1c02578
    43. Mariana Berruet, José Carlos Pérez-Martínez, Beatriz Romero, Cedric Gonzales, Abdullah M. Al-Mayouf, Antonio Guerrero, Juan Bisquert. Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors. ACS Energy Letters 2022, 7 (3) , 1214-1222. https://doi.org/10.1021/acsenergylett.2c00121
    44. Stener Lie, Annalisa Bruno, Lydia Helena Wong, Lioz Etgar. Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods. ACS Applied Materials & Interfaces 2022, 14 (9) , 11339-11349. https://doi.org/10.1021/acsami.1c22748
    45. Xiayan Chen, Yongkang Xia, Ziwei Zheng, Xuan Xiao, Chenxi Ling, Minghao Xia, Yue Hu, Anyi Mei, Rongrong Cheacharoen, Yaoguang Rong, Hongwei Han. In Situ Formation of δ-FAPbI3 at the Perovskite/Carbon Interface for Enhanced Photovoltage of Printable Mesoscopic Perovskite Solar Cells. Chemistry of Materials 2022, 34 (2) , 728-735. https://doi.org/10.1021/acs.chemmater.1c03505
    46. Cinthya Trujillo Herrera, John G. Labram. An Organic Retinomorphic Sensor. ACS Applied Electronic Materials 2022, 4 (1) , 92-98. https://doi.org/10.1021/acsaelm.1c00955
    47. Hanming Li, Wei Dong, Xinyu Shen, Chengda Ge, Yilong Song, Zisheng Wang, Anran Wang, Ziqi Yang, Mingwei Hao, Yu Zhang, Weitao Zheng, Xiaoyu Zhang, Qingfeng Dong. Enhancing the Efficiency and Stability of CsPbI3 Nanocrystal-Based Light-Emitting Diodes through Ligand Engineering with Octylamine. The Journal of Physical Chemistry C 2022, 126 (2) , 1085-1093. https://doi.org/10.1021/acs.jpcc.1c10115
    48. Masoud Karimipour, Sepideh Khazraei, Byeong Jo Kim, Gerrit Boschloo, Erik M. J. Johansson. Efficiency and Stability Enhancement of Perovskite Solar Cells Utilizing a Thiol Ligand and MoS2 (100) Nanosheet Surface Modification. ACS Applied Energy Materials 2021, 4 (12) , 14080-14092. https://doi.org/10.1021/acsaem.1c02412
    49. Linlin Duan, Changyao Wang, Wei Zhang, Bing Ma, Yonghui Deng, Wei Li, Dongyuan Zhao. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews 2021, 121 (23) , 14349-14429. https://doi.org/10.1021/acs.chemrev.1c00236
    50. Juan Bisquert, Antonio Guerrero, Cedric Gonzales. Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit. ACS Physical Chemistry Au 2021, 1 (1) , 25-44. https://doi.org/10.1021/acsphyschemau.1c00009
    51. Marcelo A. Martínez-Puente, Juan Tirado, Franklin Jaramillo, Raquel Garza-Hernández, Paul Horley, L. Gerardo Silva Vidaurri, F. Servando Aguirre-Tostado, Eduardo Martínez-Guerra. Unintentional Hydrogen Incorporation into the SnO2 Electron Transport Layer by ALD and Its Effect on the Electronic Band Structure. ACS Applied Energy Materials 2021, 4 (10) , 10896-10908. https://doi.org/10.1021/acsaem.1c01836
    52. Efat Jokar, He-Shiang Chuang, Chun-Hsiao Kuan, Hui-Ping Wu, Cheng-Hung Hou, Jing-Jong Shyue, Eric Wei-Guang Diau. Slow Passivation and Inverted Hysteresis for Hybrid Tin Perovskite Solar Cells Attaining 13.5% via Sequential Deposition. The Journal of Physical Chemistry Letters 2021, 12 (41) , 10106-10111. https://doi.org/10.1021/acs.jpclett.1c03107
    53. Aihui Liang, Yao Gao, Reza Asadpour, Zitang Wei, Blake P. Finkenauer, Linrui Jin, Jiaqi Yang, Kang Wang, Ke Chen, Peilin Liao, Chenhui Zhu, Libai Huang, Bryan W. Boudouris, Muhammad Ashraf Alam, Letian Dou. Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors. Journal of the American Chemical Society 2021, 143 (37) , 15215-15223. https://doi.org/10.1021/jacs.1c06337
    54. Yingzhen Hu, Tingting Niu, Yanghua Liu, Yipeng Zhou, Yingdong Xia, Chenxin Ran, Zhongbin Wu, Lin Song, Peter Müller-Buschbaum, Yonghua Chen, Wei Huang. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. ACS Energy Letters 2021, 6 (8) , 2917-2943. https://doi.org/10.1021/acsenergylett.1c01193
    55. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
    56. Qixing Wang, Andrew T. S. Wee. Upconversion Photovoltaic Effect of WS2/2D Perovskite Heterostructures by Two-Photon Absorption. ACS Nano 2021, 15 (6) , 10437-10443. https://doi.org/10.1021/acsnano.1c02782
    57. Chien-Hung Chiang, Chun-Wei Kan, Chun-Guey Wu. Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (20) , 23606-23615. https://doi.org/10.1021/acsami.1c02105
    58. Namrata Pant, Ashish Kulkarni, Masatoshi Yanagida, Yasuhiro Shirai, Syuhei Yashiro, Masatomo Sumiya, Tsutomu Miyasaka, Kenjiro Miyano. Passivation of Bulk and Interface Defects in Sputtered-NiOx-Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts. ACS Applied Energy Materials 2021, 4 (5) , 4530-4540. https://doi.org/10.1021/acsaem.1c00032
    59. Taylor Moot, Jay B. Patel, Gabriel McAndrews, Eli J. Wolf, Daniel Morales, Isaac E. Gould, Bryan A. Rosales, Caleb C. Boyd, Lance M. Wheeler, Philip A. Parilla, Steven W. Johnston, Laura T. Schelhas, Michael D. McGehee, Joseph M. Luther. Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Letters 2021, 6 (5) , 2038-2047. https://doi.org/10.1021/acsenergylett.1c00748
    60. Yuetong Fang, Shuaibo Zhai, Liang Chu, Jiasong Zhong. Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Applied Materials & Interfaces 2021, 13 (15) , 17141-17157. https://doi.org/10.1021/acsami.1c03433
    61. Davide Moia, Joachim Maier. Ion Transport, Defect Chemistry, and the Device Physics of Hybrid Perovskite Solar Cells. ACS Energy Letters 2021, 6 (4) , 1566-1576. https://doi.org/10.1021/acsenergylett.1c00227
    62. Kuo Su, Peng Zhao, Yu Ren, Yi Zhang, Guang Yang, Yuqiong Huang, Yaqing Feng, Bao Zhang. A Porphyrin-Involved Benzene-1,3,5-Tricarboxamide Dendrimer (Por-BTA) as a Multifunctional Interface Material for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (12) , 14248-14257. https://doi.org/10.1021/acsami.1c00146
    63. Muyi Zhang, Yuhao Liu, Bo Yang, Xuetian Lin, Yue Lu, Jiajia Zheng, Chao Chen, Jiang Tang. Efficiency Improvement of Bournonite CuPbSbS3 Solar Cells via Crystallinity Enhancement. ACS Applied Materials & Interfaces 2021, 13 (11) , 13273-13280. https://doi.org/10.1021/acsami.1c00689
    64. Vincent M. Le Corre, Elisabeth A. Duijnstee, Omar El Tambouli, James M. Ball, Henry J. Snaith, Jongchul Lim, L. Jan Anton Koster. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS Energy Letters 2021, 6 (3) , 1087-1094. https://doi.org/10.1021/acsenergylett.0c02599
    65. Haochen Ye, Yucheng Liu, Yunxia Zhang, Zhuo Xu, Jiaxue You, Lili Gao, Bing Li, Zhou Yang, Bobo Zhang, Shengzhong Frank Liu. Inner Strain Regulation in Perovskite Single Crystals through Fine-Tuned Halide Composition. Crystal Growth & Design 2021, 21 (3) , 1741-1750. https://doi.org/10.1021/acs.cgd.0c01631
    66. Bekir Turedi, Vishal Yeddu, Xiaopeng Zheng, Do Young Kim, Osman M. Bakr, Makhsud I. Saidaminov. Perovskite Single-Crystal Solar Cells: Going Forward. ACS Energy Letters 2021, 6 (2) , 631-642. https://doi.org/10.1021/acsenergylett.0c02573
    67. Supriya Ghosh, Rajeev Ray, Suman Kalyan Pal. Ultrafast Many-Particle Phenomena in Lead Bromide Hybrid Perovskite Nanocrystals Under Strong Optical Excitation. The Journal of Physical Chemistry C 2021, 125 (5) , 3198-3205. https://doi.org/10.1021/acs.jpcc.0c10140
    68. Yi-Min Chang, Chia-Wei Li, Yu-Lin Lu, Meng-Shian Wu, Hsin Li, Ying-Sheng Lin, Chin-Wei Lu, Chih-Ping Chen, Yuan Jay Chang. Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Applied Materials & Interfaces 2021, 13 (5) , 6450-6460. https://doi.org/10.1021/acsami.0c18245
    69. Xiang-Yang Liu, Jia-Jia Yang, Wen-Kai Chen, Alexey V. Akimov, Wei-Hai Fang, Ganglong Cui. Spin–Orbit Coupling Accelerates the Photoinduced Interfacial Electron Transfer in a Fullerene-Based Perovskite Heterojunction. The Journal of Physical Chemistry Letters 2021, 12 (4) , 1131-1137. https://doi.org/10.1021/acs.jpclett.0c03782
    70. Qian Ye, He Yang, Jin Zhang, Meijuan Long, Pengfei Guo, Hongqiang Wang. Bifunctional Interfacial Modification Engineering with Biomimetic Perfluoro-Copolymer-Enabled High-Efficiency and Moisture-Resistant Perovskite Solar Cells. ACS Applied Electronic Materials 2021, 3 (1) , 238-247. https://doi.org/10.1021/acsaelm.0c00808
    71. Abdullah, Eun-Bi Kim, M. Shaheer Akhtar, Hyung-Shik Shin, Sadia Ameen, Mohammad Khaja Nazeeruddin. Influence of Donor Groups on Benzoselenadiazole-Based Dopant-Free Hole Transporting Materials for High Performance Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (1) , 312-321. https://doi.org/10.1021/acsaem.0c02264
    72. Fangyuan Jiang, Justin Pothoof, Franziska Muckel, Rajiv Giridharagopal, Jian Wang, David S. Ginger. Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites. ACS Energy Letters 2021, 6 (1) , 100-108. https://doi.org/10.1021/acsenergylett.0c02032
    73. Wei-Wei Zuo, Meng Li, Wan-Sheng Zong, Shen-Gang Xu, Ying-Liang Liu, Zhen-Huang Su, Xing-Yu Gao, Shao-Kui Cao, Zhao-Kui Wang. Stabilization of Intrinsic Ions in Perovskite Solar Cells by Employment of a Bipolar Star-Shaped Organic Molecule as a Charge Transport Buffer. ACS Applied Energy Materials 2020, 3 (11) , 10632-10641. https://doi.org/10.1021/acsaem.0c01683
    74. Robert D. J. Oliver, Yen-Hung Lin, Alexander J. Horn, Chelsea Q. Xia, Jonathan H. Warby, Michael B. Johnston, Alexandra J. Ramadan, Henry J. Snaith. Thermally Stable Passivation toward High Efficiency Inverted Perovskite Solar Cells. ACS Energy Letters 2020, 5 (11) , 3336-3343. https://doi.org/10.1021/acsenergylett.0c01813
    75. Vincent Obiozo Eze, Yoshiyuki Seike, Tatsuo Mori. Synergistic Effect of Additive and Solvent Vapor Annealing on the Enhancement of MAPbI3 Perovskite Solar Cells Fabricated in Ambient Air. ACS Applied Materials & Interfaces 2020, 12 (41) , 46837-46845. https://doi.org/10.1021/acsami.0c08580
    76. Agustin O. Alvarez, Ramón Arcas, Clara A. Aranda, Loengrid Bethencourt, Elena Mas-Marzá, Michael Saliba, Francisco Fabregat-Santiago. Negative Capacitance and Inverted Hysteresis: Matching Features in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8417-8423. https://doi.org/10.1021/acs.jpclett.0c02331
    77. Panteha Toloueinia, Hamidreza Khassaf, Alireza Shirazi Amin, Zachary M. Tobin, S. Pamir Alpay, Steven L. Suib. Moisture-Induced Structural Degradation in Methylammonium Lead Iodide Perovskite Thin Films. ACS Applied Energy Materials 2020, 3 (9) , 8240-8248. https://doi.org/10.1021/acsaem.0c00638
    78. Hui Li, Wei Zhang. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews 2020, 120 (18) , 9835-9950. https://doi.org/10.1021/acs.chemrev.9b00780
    79. Jincheng Huang, Huibo Yan, Dingjian Zhou, Jianfeng Zhang, Sunbin Deng, Ping Xu, Rongsheng Chen, Hoi-Sing Kwok, Guijun Li. Introducing Ion Migration and Light-Induced Secondary Ion Redistribution for Phase-Stable and High-Efficiency Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (36) , 40364-40371. https://doi.org/10.1021/acsami.0c12068
    80. Jaume Llacer, David Moerman, Olivier Douhéret, Xavier Noirfalise, Claudio Quarti, Roberto Lazzaroni, Didier Théron, Philippe Leclère. Nanoscale Studies at the Early Stage of Water-Induced Degradation of CH3NH3PbI3 Perovskite Films Used for Photovoltaic Applications. ACS Applied Nano Materials 2020, 3 (8) , 8268-8277. https://doi.org/10.1021/acsanm.0c01687
    81. Jiangzhao Chen, Nam-Gyu Park. Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters 2020, 5 (8) , 2742-2786. https://doi.org/10.1021/acsenergylett.0c01240
    82. Shu Zhou, Guodong Zhou, Yuhao Li, Xin Xu, Yao-Jane Hsu, Jianbin Xu, Ni Zhao, Xinhui Lu. Understanding Charge Transport in All-Inorganic Halide Perovskite Nanocrystal Thin-Film Field Effect Transistors. ACS Energy Letters 2020, 5 (8) , 2614-2623. https://doi.org/10.1021/acsenergylett.0c01295
    83. Kyeong Su Kim, In Su Jin, Sang Hyun Park, Seung Ju Lim, Jae Woong Jung. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI2Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (32) , 36228-36236. https://doi.org/10.1021/acsami.0c11047
    84. Jonathan H. Warby, Bernard Wenger, Alexandra J. Ramadan, Robert D. J. Oliver, Harry C. Sansom, Ashley R. Marshall, Henry J. Snaith. Revealing Factors Influencing the Operational Stability of Perovskite Light-Emitting Diodes. ACS Nano 2020, 14 (7) , 8855-8865. https://doi.org/10.1021/acsnano.0c03516
    85. Jie Liu, Xingtian Yin, Yuxiao Guo, Meidan Que, Jing Chen, Zhong Chen, Wenxiu Que. Influence of Hole Transport Layers/Perovskite Interfaces on the Hysteresis Behavior of Inverted Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (7) , 6391-6399. https://doi.org/10.1021/acsaem.0c00612
    86. Jia Liu, Jiyou Jin, Zhu Yang, Jinzhong Cai, Junyi Yue, Julienne Impundu, Hui Liu, Haonan Wei, Zhisheng Peng, Yong Jun Li, Lianfeng Sun. Extremely Low Program Current Memory Based on Self-Assembled All-Inorganic Perovskite Single Crystals. ACS Applied Materials & Interfaces 2020, 12 (28) , 31776-31782. https://doi.org/10.1021/acsami.0c07186
    87. Liuwen Tian, Wenfeng Zhang, Yuelong Huang, Fang Wen, Hua Yu, Yuepeng Li, Qiyun Wang, Changtao Peng, Zhu Ma, Taotao Hu, Lin Du, Meng Zhang. Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (26) , 29344-29356. https://doi.org/10.1021/acsami.0c06558
    88. Luyao Zheng, Kai Wang, Tao Zhu, Yongrui Yang, Rui Chen, Kai Gu, Chunming Liu, Xiong Gong. High-Performance Perovskite Solar Cells by One-Step Self-Assembled Perovskite-Polymer Thin Films. ACS Applied Energy Materials 2020, 3 (6) , 5902-5912. https://doi.org/10.1021/acsaem.0c00823
    89. Hailin Zhang, Haiyang Xu, Xu Ji, Jingkang Liang, Qiongfen Yu. Progress toward Applications of Perovskite Solar Cells. Energy & Fuels 2020, 34 (6) , 6624-6633. https://doi.org/10.1021/acs.energyfuels.0c00485
    90. Preethi Susan Mathew, Gergely F. Samu, Csaba Janáky, Prashant V. Kamat. Iodine (I) Expulsion at Photoirradiated Mixed Halide Perovskite Interface. Should I Stay or Should I Go?. ACS Energy Letters 2020, 5 (6) , 1872-1880. https://doi.org/10.1021/acsenergylett.0c00925
    91. Anuja Vijayan, Malin B. Johansson, Sebastian Svanström, Ute B. Cappel, Håkan Rensmo, Gerrit Boschloo. Simple Method for Efficient Slot-Die Coating of MAPbI3 Perovskite Thin Films in Ambient Air Conditions. ACS Applied Energy Materials 2020, 3 (5) , 4331-4337. https://doi.org/10.1021/acsaem.0c00039
    92. Qing Lian, Muhamad Z. Mokhtar, Dongdong Lu, Mingning Zhu, Janet Jacobs, Andrew B. Foster, Andrew G. Thomas, Ben F. Spencer, Shanglin Wu, Chen Liu, Nigel W. Hodson, Benjamin Smith, Abdulaziz Alkaltham, Osama M. Alkhudhari, Trystan Watson, Brian R. Saunders. Using Soft Polymer Template Engineering of Mesoporous TiO2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency. ACS Applied Materials & Interfaces 2020, 12 (16) , 18578-18589. https://doi.org/10.1021/acsami.0c02248
    93. Zuobao Yang, Xiaohong Zhang, Weiyou Yang, Giles E. Eperon, David S. Ginger. Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials 2020, 32 (7) , 2782-2794. https://doi.org/10.1021/acs.chemmater.9b04265
    94. Liam Collins, Eric S. Muckley, Hsinhan Tsai, Dibyajyoti Ghosh, Amanda J. Neukirch, Sergei Tretiak, Sergei V. Kalinin, Wanyi Nie, Ilia N. Ivanov. Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Interfaces 2020, 12 (13) , 15380-15388. https://doi.org/10.1021/acsami.0c00561
    95. Gwang Su Shin, Yong Zhang, Nam-Gyu Park. Stability of Precursor Solution for Perovskite Solar Cell: Mixture (FAI + PbI2) versus Synthetic FAPbI3 Crystal. ACS Applied Materials & Interfaces 2020, 12 (13) , 15167-15174. https://doi.org/10.1021/acsami.9b23086
    96. Mohamed M. Elsenety, Maria Antoniadou, Nikolaos Balis, Andreas Kaltzoglou, Labrini Sygellou, Anastasios Stergiou, Nikos Tagmatarchis, Polycarpos Falaras. Stability Improvement and Performance Reproducibility Enhancement of Perovskite Solar Cells Following (FA/MA/Cs)PbI3–xBrx/(CH3)3SPbI3 Dimensionality Engineering. ACS Applied Energy Materials 2020, 3 (3) , 2465-2477. https://doi.org/10.1021/acsaem.9b02117
    97. Shivam Singh, Gangadhar Banappanavar, Dinesh Kabra. Correlation between Charge Transport Length Scales and Dielectric Relaxation Time Constant in Hybrid Halide Perovskite Semiconductors. ACS Energy Letters 2020, 5 (3) , 728-735. https://doi.org/10.1021/acsenergylett.0c00120
    98. Wei Ma, Xu Zhang, Zhe Xu, Haizhong Guo, Gang Lu, Sheng Meng. Reducing Anomalous Hysteresis in Perovskite Solar Cells by Suppressing the Interfacial Ferroelectric Order. ACS Applied Materials & Interfaces 2020, 12 (10) , 12275-12284. https://doi.org/10.1021/acsami.9b20988
    99. Nikita Rybin, Dibyajyoti Ghosh, Jeremy Tisdale, Shreetu Shrestha, Michael Yoho, Duc Vo, Jacky Even, Claudine Katan, Wanyi Nie, Amanda J. Neukirch, Sergei Tretiak. Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials 2020, 32 (5) , 1854-1863. https://doi.org/10.1021/acs.chemmater.9b04244
    100. Elisabeth A. Duijnstee, James M. Ball, Vincent M. Le Corre, L. Jan Anton Koster, Henry J. Snaith, Jongchul Lim. Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Letters 2020, 5 (2) , 376-384. https://doi.org/10.1021/acsenergylett.9b02720
    Load more citations

    The Journal of Physical Chemistry Letters

    Cite this: J. Phys. Chem. Lett. 2014, 5, 9, 1511–1515
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jz500113x
    Published March 24, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    27k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.