ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

C−H Bond Dissociation Energy of Malononitrile

View Author Information
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041
*To whom correspondence should be addressed. E-mail: [email protected]
Cite this: J. Phys. Chem. Lett. 2010, 1, 4, 792–795
Publication Date (Web):February 2, 2010
https://doi.org/10.1021/jz900379t
Copyright © 2010 American Chemical Society

    Article Views

    755

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The C−H bond dissociation energies of closed-shell molecules decrease with increasing stability of the resulting radicals. From the electron affinity of the dicyanomethyl radical, CH(CN)2, EA[CH(CN)2] = 2.88 ± 0.01 eV, measured by photoelectron imaging of the CH(CN)2 anion, and the acidity/electron affinity thermodynamic cycle, we obtained the C−H bond dissociation enthalpy of malononitrile, CH2(CN)2, DH298[H−CH(CN)2] = 87 ± 2 kcal/mol. This result is compared to the corresponding value for acetonitrile, DH298(H−CH2CN) = 93 ± 2 kcal/mol, determined from a similar measurement of EA(CH2CN) = 1.53 ± 0.01 eV. The relative weakness of the C−H bonds in malononitrile and acetonitrile, compared to most closed-shell neutral organic molecules, is attributed to π-resonance stabilization of the unpaired electrons in CH(CN)2 and CH2CN.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 30 publications.

    1. Jiayang Wang, Baoer Shao, Haixia Ge, Yongjin Li, Huan Qi, Li Xiao. Visible-Light-Induced Regioselective Radical Oxo-Amination of Alkenes with O2 as the Oxygen Source. Organic Letters 2023, 25 (28) , 5333-5338. https://doi.org/10.1021/acs.orglett.3c01910
    2. Kie T. Workman, Rebecca A. Firth, Wilson K. Gichuhi. From Benzonitrile to Dicyanobenzenes: The Effect of an Additional CN Group on the Thermochemistry and Negative Ion Photoelectron Spectra of Dicyanobenzene Radical Anions. The Journal of Physical Chemistry A 2023, 127 (1) , 181-194. https://doi.org/10.1021/acs.jpca.2c07655
    3. Rebecca A. Firth, Taylor L. Dimino, Wilson K. Gichuhi. Negative Ion Photoelectron Spectra of Deprotonated Benzonitrile Isomers via Computation of Franck–Condon Factors. The Journal of Physical Chemistry A 2022, 126 (29) , 4781-4790. https://doi.org/10.1021/acs.jpca.2c03220
    4. Hao Li, Xiao-Fei Gao, Xin Meng, Shan Xi Tian. Dissociative Electron Attachment to Molecular Acetonitrile. The Journal of Physical Chemistry A 2019, 123 (42) , 9089-9095. https://doi.org/10.1021/acs.jpca.9b07399
    5. Cezar C. Comanescu and Vlad M. Iluc . C–H Activation Reactions of a Nucleophilic Palladium Carbene. Organometallics 2015, 34 (19) , 4684-4692. https://doi.org/10.1021/acs.organomet.5b00414
    6. Andrew R. Dixon, Dmitry Khuseynov, and Andrei Sanov . Heterogeneously Substituted Radicals and Carbenes: Photoelectron Imaging of the FC(H)CN– and FCCN– Anions. The Journal of Physical Chemistry A 2014, 118 (37) , 8533-8541. https://doi.org/10.1021/jp5024229
    7. Dmitry Khuseynov, Andrew R. Dixon, Daniel J. Goebbert, and Andrei Sanov . Heterogeneous Substitution Effects in Chlorocyanomethyl Radical and Chlorocyanocarbene. The Journal of Physical Chemistry A 2013, 117 (41) , 10681-10691. https://doi.org/10.1021/jp4053117
    8. Ashwini Bundhun, Hassan H. Abdallah, Ponnadurai Ramasami, Peter P. Gaspar, and Henry F. Schaefer, III . Dicyanogermylenes: A Tale of Isomers and Interconversions. Inorganic Chemistry 2012, 51 (22) , 12152-12164. https://doi.org/10.1021/ic301225w
    9. Valeria B. Arce, Sonia G. Bertolotti, Fernando J. V. E. Oliveira, Claudio Airoldi, Mónica C. Gonzalez, Patricia E. Allegretti, and Daniel O. Mártire . Safranine-T Triplet-State Quenching by Modified Silica Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (37) , 18122-18130. https://doi.org/10.1021/jp205112u
    10. Daniel J. Goebbert, Dmitry Khuseynov, and Andrei Sanov . O− + Acetaldehyde Reaction Products: Search for Singlet Formylmethylene, a Wolff Rearrangement Intermediate. The Journal of Physical Chemistry A 2011, 115 (15) , 3208-3217. https://doi.org/10.1021/jp112331y
    11. Saeed Askari, Mohammad Mehdi Khodaei, Enrico Benassi, Mohammad Jafarzadeh. Hybridization of NH2-MIL-88B/Deep eutectic solvent: A novel multifunctional heterogeneous catalyst for the synthesis of spirooxindoles. Journal of Molecular Liquids 2023, 387 , 122646. https://doi.org/10.1016/j.molliq.2023.122646
    12. Andrew M. Boldt, Sidney I. Dickinson, Jonathan R. Ramirez, Anna M. Benz-Weeden, David S. Wilson, Susan M. Stevenson. Reactions of benzyltriphenylphosphonium salts under photoredox catalysis. Organic & Biomolecular Chemistry 2021, 19 (36) , 7810-7815. https://doi.org/10.1039/D1OB01570B
    13. Ariana Z. Spentzos, Michael R. Gau, Patrick J. Carroll, Neil C. Tomson. Unusual cyanide and methyl binding modes at a dicobalt macrocycle following acetonitrile C–C bond activation. Chemical Communications 2020, 56 (67) , 9675-9678. https://doi.org/10.1039/D0CC03521A
    14. Yufei Zhang, Yu Huang, Shun Cheng Lee, Jun-ji Cao. The mechanism of room temperature catalytic C–H dissociation and oxygenation of formaldehyde over nano-zirconia phase-junction. Chemical Engineering Journal 2020, 380 , 122498. https://doi.org/10.1016/j.cej.2019.122498
    15. Joshua D. Parham, Gayan B. Wijeratne, Jaycee R. Mayfield, Timothy A. Jackson. Steric control of dioxygen activation pathways for Mn II complexes supported by pentadentate, amide-containing ligands. Dalton Transactions 2019, 48 (34) , 13034-13045. https://doi.org/10.1039/C9DT02682G
    16. Stanislav A. Pshenichnyuk, Ilya I. Fabrikant, Alberto Modelli, Sylwia Ptasińska, Alexei S. Komolov. Resonance electron interaction with five-membered heterocyclic compounds: Vibrational Feshbach resonances and hydrogen-atom stripping. Physical Review A 2019, 100 (1) https://doi.org/10.1103/PhysRevA.100.012708
    17. Claudio F. Meyer, Sandrine M. Hell, Antonio Misale, Andrés A. Trabanco, Véronique Gouverneur. Hydrodifluoromethylation of Alkenes with Difluoroacetic Acid. Angewandte Chemie 2019, 131 (26) , 8921-8925. https://doi.org/10.1002/ange.201903801
    18. Claudio F. Meyer, Sandrine M. Hell, Antonio Misale, Andrés A. Trabanco, Véronique Gouverneur. Hydrodifluoromethylation of Alkenes with Difluoroacetic Acid. Angewandte Chemie International Edition 2019, 58 (26) , 8829-8833. https://doi.org/10.1002/anie.201903801
    19. Justin Lyle, Olivia Wedig, Sahil Gulania, Anna I. Krylov, Richard Mabbs. Channel branching ratios in CH2CN− photodetachment: Rotational structure and vibrational energy redistribution in autodetachment. The Journal of Chemical Physics 2017, 147 (23) https://doi.org/10.1063/1.5001475
    20. N. M. Igidov, A. V. Zakhmatov, A. E. Rubtsov. Chemistry of iminofurans: XIII. Recyclization of 4-arylamino-2-tert-butyl-5-oxo-2,5-dihydrofuran-2-yl acetates with ethyl cyanoacetate. Russian Journal of Organic Chemistry 2016, 52 (7) , 974-977. https://doi.org/10.1134/S1070428016070083
    21. D. V. Ivanov, N. M. Igidov, A. E. Rubtsov. Synthesis of 2-amino-5-(2-aryl-2-oxoethylidene)-4-oxo-1H-4,5-dihydrofuran-3-carboxylic acids derivatives by recyclization of 5-arylfuran-2,3-diones under the action of cyanoacetic acid derivatives. Russian Journal of Organic Chemistry 2016, 52 (5) , 676-681. https://doi.org/10.1134/S1070428016050109
    22. Rudrodip Majumdar, Mohamed Bourham. Effect of Plasma Temperature and Nonlinearity of the Adiabatic Compressibility Index on Flow Parameters for Hypersonic Aerosol Expansion Following a Plasma Disruption. Journal of Fusion Energy 2015, 34 (6) , 1269-1277. https://doi.org/10.1007/s10894-015-9960-1
    23. Andrew R. Dixon, Dmitry Khuseynov, Andrei Sanov. Cyanobenzyl and chlorobenzyl radicals via anion photoelectron imaging spectroscopy. Chemical Physics Letters 2014, 614 , 72-77. https://doi.org/10.1016/j.cplett.2014.09.001
    24. Thomas Just Sørensen, Merete F. Nielsen, Bo W. Laursen. Synthesis and Stability of N , N ′‐Dialkyl‐1,13‐dimethoxyquinacridinium (DMQA + ): A [4]Helicene with Multiple Redox States. ChemPlusChem 2014, 79 (7) , 1030-1035. https://doi.org/10.1002/cplu.201402058
    25. Marissa L. Weichman, Jongjin B. Kim, Daniel M. Neumark. Rovibronic structure in slow photoelectron velocity-map imaging spectroscopy of CH2CN− and CD2CN−. The Journal of Chemical Physics 2014, 140 (10) https://doi.org/10.1063/1.4867501
    26. S. S. Kharitonova, N. M. Igidov, A. V. Zakhmatov, A. E. Rubtsov. Chemistry of iminofuran: VIII. Recyclization of 5-aryl-3-arylimino-3H-furan-2-ones effected by cyanoacetic acid derivatives. Russian Journal of Organic Chemistry 2013, 49 (2) , 243-252. https://doi.org/10.1134/S1070428013020115
    27. Kristen M. Vogelhuber, Scott W. Wren, Christopher J. Shaffer, Robert J. McMahon, Anne B. McCoy, W. Carl Lineberger. Photoelectron spectroscopy of HC4N−. The Journal of Chemical Physics 2011, 135 (20) https://doi.org/10.1063/1.3663617
    28. Davide Ravelli, Angelo Albini, Maurizio Fagnoni. Smooth Photocatalytic Preparation of 2‐Substituted 1,3‐Benzodioxoles. Chemistry – A European Journal 2011, 17 (2) , 572-579. https://doi.org/10.1002/chem.201002546
    29. Ambili S. Menon, David J. Henry, Thomas Bally, Leo Radom. Effect of substituents on the stabilities of multiply-substituted carbon-centered radicals. Organic & Biomolecular Chemistry 2011, 9 (10) , 3636. https://doi.org/10.1039/c1ob05196b
    30. Daniel J. Goebbert, Kostyantyn Pichugin, Dmitry Khuseynov, Paul G. Wenthold, Andrei Sanov. Photoelectron imaging of NCCCN−: The triplet ground state and the singlet-triplet splitting of dicyanocarbene. The Journal of Chemical Physics 2010, 132 (22) https://doi.org/10.1063/1.3436717

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect