Molecular Imaging of a Micropatterned Biological Ligand on an Activated Polymer SurfaceClick to copy article linkArticle link copied!
Abstract
We report here molecular characterization of a new method derived from reactive microcontact printingmicrostamping on an activated polymer surface (MAPS)which enables biological ligands and proteins to be patterned on a polymer surface with a spatial resolution of at least 5 μm and good reproducibility. MAPS is a multistep procedure: first, the surface of a polymer is modified, in one or more steps, to introduce a reactive group of interest. In a subsequent step, an elastomeric stamp, inked with a biological ligand containing a complementary terminal reactive group, is brought into contact with the activated surface of the polymer. This results in spatially resolved transfer and coupling of the biological ligand to the reactive surface of the polymer. We used MAPS to pattern biotin on carboxylic acid derivatized poly(ethylene terephthalate) (PET), and subsequently with streptavidin, mediated by the high affinity streptavidin−biotin interaction. X-ray photoelectron spectroscopy of biotin-derivatized PET showed that approximately one in five PET repeat units in the top 50−100 Å were functionalized with biotin. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) suggested an increased concentration of PET oligomers in the top 10 Å due to chain scission during modification and clearly identified the derivatization of PET with biotin. TOF-SIMS imaging mapped biotin and streptavidin to the stamped regions. TOF-SIMS also imaged the spatial distribution of residual reagents from the multistep derivatization in MAPS, such as pentafluorophenol, Tween 20 surfactant, as well as poly(dimethylsiloxane) (PDMS), which was transferred from the elastomeric PDMS stamp to the surface during MAPS.
†
Duke University.
‡
Physical Electronics.
§
Becton Dickinson Research Center.
*
To whom correspondence should be addressed. Tel: (919) 660-5373. FAX: (919) 660-5362. E-mail: [email protected].
Cited By
This article is cited by 56 publications.
- Mitra Alidadykhah, Hossein Peyman, Hamideh Roshanfekr, Shohreh Azizi, Malik Maaza. Functionalization and Modification of Polyethylene Terephthalate Polymer by AgCl Nanoparticles under Ultrasound Irradiation as Bactericidal. ACS Omega 2022, 7
(23)
, 19141-19151. https://doi.org/10.1021/acsomega.1c07082
- Walid Bin Khaled and Dan Sameoto . Fabrication and Characterization of Thermoplastic Elastomer Dry Adhesives with High Strength and Low Contamination. ACS Applied Materials & Interfaces 2014, 6
(9)
, 6806-6815. https://doi.org/10.1021/am500616a
- Joanna Zemła, Małgorzata Lekka, Joanna Raczkowska, Andrzej Bernasik, Jakub Rysz and Andrzej Budkowski . Selective Protein Adsorption on Polymer Patterns Formed by Self-Organization and Soft Lithography. Biomacromolecules 2009, 10
(8)
, 2101-2109. https://doi.org/10.1021/bm900598s
- Li Yang, Naoto Shirahata, Gaurav Saini, Feng Zhang, Lei Pei, Matthew C. Asplund, Dirk G. Kurth, Katsuhiko Ariga, Ken Sautter, Takashi Nakanishi, Vincent Smentkowski and Matthew R. Linford . Effect of Surface Free Energy on PDMS Transfer in Microcontact Printing and Its Application to ToF-SIMS to Probe Surface Energies. Langmuir 2009, 25
(10)
, 5674-5683. https://doi.org/10.1021/la804272n
- Jeffrey R. Lancaster, Jeiran Jehani, Gregory T. Carroll, Yong Chen, Nicholas J. Turro and Jeffrey T. Koberstein. Toward a Universal Method To Pattern Metals on a Polymer. Chemistry of Materials 2008, 20
(21)
, 6583-6585. https://doi.org/10.1021/cm801639n
- F. Pan,, P. Wang,, K. Lee,, A. Wu,, N. J. Turro, and, J. T. Koberstein. Photochemical Modification and Patterning of Polymer Surfaces by Surface Adsorption of Photoactive Block Copolymers. Langmuir 2005, 21
(8)
, 3605-3612. https://doi.org/10.1021/la0477439
- Kyung-Bok Lee,, Dong Jin Kim,, Zee-Won Lee,, Seong Ihl Woo, and, Insung S. Choi. Pattern Generation of Biological Ligands on a Biodegradable Poly(glycolic acid) Film. Langmuir 2004, 20
(7)
, 2531-2535. https://doi.org/10.1021/la036209i
- Karin Glasmästar,, Julie Gold,, Ann-Sofie Andersson,, Duncan S. Sutherland, and, Bengt Kasemo. Silicone Transfer during Microcontact Printing. Langmuir 2003, 19
(13)
, 5475-5483. https://doi.org/10.1021/la026558x
- Jörg Lahann,, Mercedes Balcells,, Teresa Rodon,, Jinwook Lee,, Insung S. Choi,, Klavs F. Jensen, and, Robert Langer. Reactive Polymer Coatings: A Platform for Patterning Proteins and Mammalian Cells onto a Broad Range of Materials. Langmuir 2002, 18
(9)
, 3632-3638. https://doi.org/10.1021/la011464t
- Martin K. Erhardt and, Ralph G. Nuzzo. Driven Pattern Formation in Organic Thin Film Materials: Complex Mesoscopic Organization in Microcontact Printing on Si/SiO2 via the Spontaneous Dewetting of a Functionalized Perfluoropolyether Ink. The Journal of Physical Chemistry B 2001, 105
(37)
, 8776-8784. https://doi.org/10.1021/jp010946a
- Jinho Hyun and, Ashutosh Chilkoti. Micropatterning Biological Molecules on a Polymer Surface Using Elastomeric Microwells. Journal of the American Chemical Society 2001, 123
(28)
, 6943-6944. https://doi.org/10.1021/ja015798g
- Maitri Bhatt, Pravin Shende. Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures. Journal of Materials Chemistry B 2022, 10
(8)
, 1176-1195. https://doi.org/10.1039/D1TB02455H
- Balaji Ramachandran, Sudip Chakraborty, Madhulika Dixit, Vignesh Muthuvijayan. A comparative study of polyethylene terephthalate surface carboxylation techniques: Characterization, in vitro haemocompatibility and endothelialization. Reactive and Functional Polymers 2018, 122 , 22-32. https://doi.org/10.1016/j.reactfunctpolym.2017.11.001
- Cristina Cazan, Mihaela Cosnita, Anca Duta. Effect of PET functionalization in composites of rubber–PET–HDPE type. Arabian Journal of Chemistry 2017, 10
(3)
, 300-312. https://doi.org/10.1016/j.arabjc.2015.10.005
- T. P. O. Nguyen, B. M. Tran, N. Y. Lee. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer–plastic hybrid microdevices. Lab on a Chip 2016, 16
(17)
, 3251-3259. https://doi.org/10.1039/C6LC00751A
- Chi-Ying Lee, Lara J. Gamble, Gregory M. Harbers, Ping Gong, David W. Grainger, David G. Castner. Multi-technique Characterization of DNA-Modified Surfaces for Biosensing and Diagnostic Applications. 2014, 289-314. https://doi.org/10.1007/978-3-319-01360-2_11
- Nae Yoon Lee. Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography. Colloids and Surfaces B: Biointerfaces 2013, 111 , 313-320. https://doi.org/10.1016/j.colsurfb.2013.06.027
- Shaoying Li, Zhongkui Wu, Hongxiao Tang, Jun Yang. Selective adsorption of protein on micropatterned flexible poly(ethylene terephthalate) surfaces modified by vacuum ultraviolet lithography. Applied Surface Science 2012, 258
(10)
, 4222-4227. https://doi.org/10.1016/j.apsusc.2011.12.027
- Tobias Kaufmann, Bart Jan Ravoo. Stamps, inks and substrates: polymers in microcontact printing. Polymer Chemistry 2010, 1
(4)
, 371-387. https://doi.org/10.1039/B9PY00281B
- Chang-Ying Xue, Kun-Lin Yang. One-step UV lithography for activation of inert hydrocarbon monolayers and preparation of protein micropatterns. Journal of Colloid and Interface Science 2010, 344
(1)
, 48-53. https://doi.org/10.1016/j.jcis.2009.12.015
- Lindsey K. Fiddes, Ho Ka C. Chan, Bryan Lau, Eugenia Kumacheva, Aaron R. Wheeler. Durable, region-specific protein patterning in microfluidic channels. Biomaterials 2010, 31
(2)
, 315-320. https://doi.org/10.1016/j.biomaterials.2009.09.040
- Ozge Akbulut, Arum Amy Yu, Francesco Stellacci. Fabrication of biomolecular devices via supramolecular contact-based approaches. Chem. Soc. Rev. 2010, 39
(1)
, 30-37. https://doi.org/10.1039/B915558A
- Min Jung Lee, Joohee Kim, Ji Soo Lee, Youn Sang Kim. Pressure-assisted printing with crack-free metal electrodes using an anti-adhesive rigiflex stamp. Journal of Materials Chemistry 2010, 20
(14)
, 2746. https://doi.org/10.1039/c0jm00249f
- Shih-Chun Huang, Ting-Chieh Tsao, Li-Jen Chen. Selective Electroless Copper Plating on Poly(ethylene terephthalate) Surfaces by Microcontact Printing. Journal of The Electrochemical Society 2010, 157
(4)
, D222. https://doi.org/10.1149/1.3306136
- Vignesh Muthuvijayan, Jun Gu, Randy S. Lewis. Analysis of functionalized polyethylene terephthalate with immobilized NTPDase and cysteine. Acta Biomaterialia 2009, 5
(9)
, 3382-3393. https://doi.org/10.1016/j.actbio.2009.05.020
- E Martínez, A Lagunas, CA Mills, S Rodríguez-Seguí, M Estévez, S Oberhansl, J Comelles, J Samitier. Stem Cell Differentiation by Functionalized Micro- and Nanostructured Surfaces. Nanomedicine 2009, 4
(1)
, 65-82. https://doi.org/10.2217/17435889.4.1.65
- Chuanzhen Zhou, Kai Qi, Karen L. Wooley, Amy V. Walker. Time-of-flight secondary ion mass spectrometry, fluorescence microscopy and scanning electron microscopy: Combined tools for monitoring the process of patterning and layer-by-layer assembly of synthetic and biological materials. Colloids and Surfaces B: Biointerfaces 2008, 65
(1)
, 85-91. https://doi.org/10.1016/j.colsurfb.2008.03.007
- Jinook Kim, Mikyung Park, Gee Sung Chae, In-Jae Chung. Influence of un-cured PDMS chains in stamp using PDMS-based lithography. Applied Surface Science 2008, 254
(16)
, 5266-5270. https://doi.org/10.1016/j.apsusc.2008.02.074
- Emmanuel Delamarche. Microcontact Printing of Proteins. 2008, 31-52. https://doi.org/10.1002/9783527610754.bt01
- D. W. Grainger, D. G. Castner. Nanobiomaterials and Nanoanalysis: Opportunities for Improving the Science to Benefit Biomedical Technologies. Advanced Materials 2008, 20
(5)
, 867-877. https://doi.org/10.1002/adma.200701760
- F. Khan, R. Zhang, A. Unciti‐Broceta, J. J. Díaz‐Mochón, M. Bradley. Flexible Fabrication of Microarrays of Microwells. Advanced Materials 2007, 19
(21)
, 3524-3528. https://doi.org/10.1002/adma.200700818
- Keith R. Milner, Christopher A. Siedlecki. Submicron poly(
L
‐lactic acid) pillars affect fibroblast adhesion and proliferation. Journal of Biomedical Materials Research Part A 2007, 82A
(1)
, 80-91. https://doi.org/10.1002/jbm.a.31049
- De‐Yao Wang, Yi‐Cheng Huang, Hongsen Chiang, Andrew M. Wo, Yi‐You Huang. Microcontact printing of laminin on oxygen plasma activated substrates for the alignment and growth of Schwann cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007, 80B
(2)
, 447-453. https://doi.org/10.1002/jbm.b.30616
- JianXin Tang, NongYue He, Song Li. In situ synthesis of DNA micro-arrays using typography technique. Science in China Series B: Chemistry 2007, 50
(1)
, 75-83. https://doi.org/10.1007/s11426-007-0005-0
- Chun Zhang, Scott M. Husson, Douglas E. Hirt. Patterning Proteins on Surfaces of Cross‐Sectioned Multilayer Polymer Films. Macromolecular Rapid Communications 2006, 27
(14)
, 1173-1179. https://doi.org/10.1002/marc.200600144
- Didier Falconnet, Gabor Csucs, H. Michelle Grandin, Marcus Textor. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27
(16)
, 3044-3063. https://doi.org/10.1016/j.biomaterials.2005.12.024
- Laia Francesch, Elena Garreta, Mercedes Balcells, Elazer R. Edelman, Salvador Borrós. Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate‐Derived Monomer. Plasma Processes and Polymers 2005, 2
(8)
, 605-611. https://doi.org/10.1002/ppap.200500042
- P. Yang, X. X. Zhang, B. Yang, H. C. Zhao, J. C. Chen, W. T. Yang. Facile Preparation of a Patterned, Aminated Polymer Surface by UV-Light-Induced Surface Aminolysis. Advanced Functional Materials 2005, 15
(9)
, 1415-1425. https://doi.org/10.1002/adfm.200400335
- W. Prissanaroon, N. Brack, P.J. Pigram, P. Hale, P. Kappen, J. Liesegang. Microcontact printing of copper and polypyrrole on fluoropolymers. Thin Solid Films 2005, 477
(1-2)
, 131-139. https://doi.org/10.1016/j.tsf.2004.08.180
- Syed S. Lateef, Samuel Boateng, Neil Ahluwalia, Thomas J. Hartman, Brenda Russell, Luke Hanley. Three‐dimensional chemical structures by protein functionalized micron‐sized beads bound to polylysine‐coated silicone surfaces. Journal of Biomedical Materials Research Part A 2005, 72A
(4)
, 373-380. https://doi.org/10.1002/jbm.a.30229
- Holger Schönherr, Geerten H. Degenhart, Barbara Dordi, Chuan Liang Feng, Dorota I. Rozkiewicz, Alexander Shovsky, G. Julius Vancso. Organic and Macromolecular Films and Assemblies as (Bio)reactive Platforms: From Model Studies on Structure–Reactivity Relationships to Submicrometer Patterning. 2005, 169-208. https://doi.org/10.1007/12_014
- G. Julius Vancso, Henrik Hillborg, Holger Schönherr. Chemical Composition of Polymer Surfaces Imaged by Atomic Force Microscopyand Complementary Approaches. 2005, 55-129. https://doi.org/10.1007/b135560
- Z ADEMOVIC, P KINGSHOTT. Micro- and nanoscale surface patterning techniques for localising biomolecules and cells: the essence of nanobiotechnology. 2005, 150-180. https://doi.org/10.1533/9781845690809.1.150
- K.E. Schmalenberg, H.M. Buettner, K.E. Uhrich. Microcontact printing of proteins on oxygen plasma-activated poly(methyl methacrylate). Biomaterials 2004, 25
(10)
, 1851-1857. https://doi.org/10.1016/j.biomaterials.2003.08.048
- X. C. Wu, A. M. Bittner, K. Kern. Microcontact Printing of CdS/Dendrimer Nanocomposite Patterns on Silicon Wafers. Advanced Materials 2004, 16
(5)
, 413-417. https://doi.org/10.1002/adma.200306040
- Anna M. Belu, Daniel J. Graham, David G. Castner. Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 2003, 24
(21)
, 3635-3653. https://doi.org/10.1016/S0142-9612(03)00159-5
- Gabor Csucs, Roger Michel, Jost W Lussi, Marcus Textor, Gaudenz Danuser. Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. Biomaterials 2003, 24
(10)
, 1713-1720. https://doi.org/10.1016/S0142-9612(02)00568-9
- . Pattern Generation of Cells on a Polymeric Surface Using Surface Functionalization and Microcontact Printing. Bulletin of the Korean Chemical Society 2003, 161-162. https://doi.org/10.5012/bkcs.2003.24.2.161
- Juriaan Huskens, Maik Liebau, David N. Reinhoudt. Molecules for Microcontact Printing. 2003, 167-180. https://doi.org/10.1007/978-1-4419-9204-8_9
- P F Xiao, N Y He, Z C Liu, Q G He, X Sun, Z H Lu. In situ
synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology 2002, 13
(6)
, 756-762. https://doi.org/10.1088/0957-4484/13/6/312
- Jean Philippe Renault, André Bernard, David Juncker, Bruno Michel, Hans Rudolf Bosshard, Emmanuel Delamarche. Fabricating Microarrays of Functional Proteins Using Affinity Contact Printing. Angewandte Chemie 2002, 114
(13)
, 2426-2429. https://doi.org/10.1002/1521-3757(20020703)114:13<2426::AID-ANGE2426>3.0.CO;2-Y
- Jean Philippe Renault, André Bernard, David Juncker, Bruno Michel, Hans Rudolf Bosshard, Emmanuel Delamarche. Fabricating Microarrays of Functional Proteins Using Affinity Contact Printing. Angewandte Chemie International Edition 2002, 41
(13)
, 2320-2323. https://doi.org/10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z
- Stéphane Biltresse, Dimitri Descamps, Cathy Henneuse‐Boxus, Jacqueline Marchand‐Brynaert. Effect of the chemical nature and length of spacer arms on the covalent grafting of fluorinated molecular probes at the surface of poly(ethylene terephthalate) membrane. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40
(6)
, 770-781. https://doi.org/10.1002/pola.10156
- Miyako Tozu, Takahiro Hoshi, Masahiro Kudo. Possibilities of TOF-SIMS Approach for Biometrics. Journal of Surface Analysis 2002, 9
(1)
, 99-108. https://doi.org/10.1384/jsa.9.99
- Jörg Lahann, Insung S. Choi, Jinwook Lee, Klavs F. Jensen, Robert Langer. Mikrostrukturierung von Oberflächen durch reaktive Polymerbeschichtungen. Angewandte Chemie 2001, 113
(17)
, 3273-3276. https://doi.org/10.1002/1521-3757(20010903)113:17<3273::AID-ANGE3273>3.0.CO;2-B
- Jörg Lahann, Insung S. Choi, Jinwook Lee, Klavs F. Jensen, Robert Langer. A New Method toward Microengineered Surfaces Based on Reactive Coating. Angewandte Chemie International Edition 2001, 40
(17)
, 3166-3169. https://doi.org/10.1002/1521-3773(20010903)40:17<3166::AID-ANIE3166>3.0.CO;2-#
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.