ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Micropipet-Assisted Formation of Microscopic Networks of Unilamellar Lipid Bilayer Nanotubes and Containers

View Author Information
Department of Physical Chemistry and Microtechnology Center, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, and Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden
Cite this: Langmuir 2001, 17, 22, 6754–6758
Publication Date (Web):October 6, 2001
https://doi.org/10.1021/la0108611
Copyright © 2001 American Chemical Society

    Article Views

    758

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    We describe a novel micropipet-assisted technique for the construction of complex, surface-immobilized two-dimensional microscopic networks of unilamellar phospholipid bilayer vesicles (1−50 μm in diameter, 10-15−10-12 L) interconnected by lipid nanotubes (100−300 nm in diameter). As starting material for the construction of networks, we used twinned vesicle pairs, one of which is multilamellar and functions as a membrane donor and the other unilamellar and functions as a membrane acceptor upon manipulation. By electromechanical insertion of a pipet tip into the unilamellar vesicle followed by lateral pulling of the micropipet away from the vesicle, a nanotube was formed. Buffer solution contained in the pipet was then injected into the nanotube orifice, forming a vesicle of controlled size that was immobilized on the surface. The networks have controlled connectivity and are well-defined with regard to the container size, angle between nanotube extensions, and nanotube length. The internal fluid composition of individual vesicles is defined during the formation of a network by selection of the solution contained in the micropipet.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Chalmers University of Technology.

     Göteborg University.

    *

     Corresponding author email:  [email protected], fax:  +46-31-7722785.

    Cited By

    This article is cited by 80 publications.

    1. Niki Baccile, Cédric Lorthioir, Abdoul Aziz Ba, Patrick Le Griel, Javier Pérez, Daniel Hermida-Merino, Wim Soetaert, Sophie L. K. W. Roelants. Topological Connection between Vesicles and Nanotubes in Single-Molecule Lipid Membranes Driven by Head–Tail Interactions. Langmuir 2022, 38 (48) , 14574-14587. https://doi.org/10.1021/acs.langmuir.2c01824
    2. Zhenyu Wang, Xiang Mao, Hua Wang, Shenggeng Wang, Zengtao Yang. Fabrication of Lipid Nanotubules by Ultrasonic Drag Force. Langmuir 2021, 37 (30) , 8945-8952. https://doi.org/10.1021/acs.langmuir.1c00731
    3. Elif S. Köksal, Susanne Liese, Ilayda Kantarci, Ragni Olsson, Andreas Carlson, Irep Gözen. Nanotube-Mediated Path to Protocell Formation. ACS Nano 2019, 13 (6) , 6867-6878. https://doi.org/10.1021/acsnano.9b01646
    4. Horst Pick, Ana Catarina Alves, Horst Vogel. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chemical Reviews 2018, 118 (18) , 8598-8654. https://doi.org/10.1021/acs.chemrev.7b00777
    5. Baharan Ali Doosti, Weria Pezeshkian, Dennis S. Bruhn, John H. Ipsen, Himanshu Khandelia, Gavin D. M. Jeffries, and Tatsiana Lobovkina . Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions. Langmuir 2017, 33 (41) , 11010-11017. https://doi.org/10.1021/acs.langmuir.7b01461
    6. Wade F. Zeno, Kaitlin E. Johnson, Darryl Y. Sasaki, Subhash H. Risbud, and Marjorie L. Longo . Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers. The Journal of Physical Chemistry B 2016, 120 (43) , 11180-11190. https://doi.org/10.1021/acs.jpcb.6b07119
    7. Wade F. Zeno, Alice Rystov, Darryl Y. Sasaki, Subhash H. Risbud, and Marjorie L. Longo . Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility. Langmuir 2016, 32 (18) , 4688-4697. https://doi.org/10.1021/acs.langmuir.6b00831
    8. Natalia Stepanyants, Gavin D. M. Jeffries, Owe Orwar, and Aldo Jesorka . Radial Sizing of Lipid Nanotubes Using Membrane Displacement Analysis. Nano Letters 2012, 12 (3) , 1372-1378. https://doi.org/10.1021/nl203983e
    9. Kelly L. Adams, Johan Engelbrektsson, Marina Voinova, Bo Zhang, Daniel J. Eves, Roger Karlsson, Michael L. Heien, Ann-Sofie Cans and Andrew G. Ewing . Steady-State Electrochemical Determination of Lipidic Nanotube Diameter Utilizing an Artificial Cell Model. Analytical Chemistry 2010, 82 (3) , 1020-1026. https://doi.org/10.1021/ac902282d
    10. Alar Ainla, Irep Gözen, Owe Orwar and Aldo Jesorka. A Microfluidic Diluter Based on Pulse Width Flow Modulation. Analytical Chemistry 2009, 81 (13) , 5549-5556. https://doi.org/10.1021/ac9010028
    11. Josemar A. Castillo, Daniel M. Narciso and Mark A. Hayes. Bionanotubule Formation from Surface-Attached Liposomes Using Electric Fields. Langmuir 2009, 25 (1) , 391-396. https://doi.org/10.1021/la8028897
    12. Yue Zhao and, Jiyu Fang. Positioning and Alignment of Lipid Tubules on Patterned Au Substrates. Langmuir 2006, 22 (4) , 1891-1895. https://doi.org/10.1021/la052777h
    13. Olga K. Dudko,, Alexander M. Berezhkovskii, and, George H. Weiss. Time-Dependent Diffusion Coefficients in Periodic Porous Materials. The Journal of Physical Chemistry B 2005, 109 (45) , 21296-21299. https://doi.org/10.1021/jp051172r
    14. Toshimi Shimizu,, Mitsutoshi Masuda, and, Hiroyuki Minamikawa. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews 2005, 105 (4) , 1401-1444. https://doi.org/10.1021/cr030072j
    15. Kenji Suzuki and, Hiroshi Masuhara. Growth of Giant Membrane Lobes Mechanically Driven by Wetting Fronts of Phospholipid Membranes at Water-Solid Interfaces. Langmuir 2005, 21 (2) , 537-544. https://doi.org/10.1021/la040027m
    16. Roger Karlsson,, Anders Karlsson, and, Owe Orwar. Formation and Transport of Nanotube-Integrated Vesicles in a Lipid Bilayer Network. The Journal of Physical Chemistry B 2003, 107 (40) , 11201-11207. https://doi.org/10.1021/jp034502l
    17. Roger Karlsson,, Anders Karlsson, and, Owe Orwar. A Nanofluidic Switching Device. Journal of the American Chemical Society 2003, 125 (28) , 8442-8443. https://doi.org/10.1021/ja0348748
    18. Roger Karlsson,, Mattias Karlsson,, Anders Karlsson,, Ann-Sofie Cans,, Johan Bergenholtz,, Björn Åkerman,, Andrew G. Ewing,, Marina Voinova, and, Owe Orwar. Moving-Wall-Driven Flows in Nanofluidic Systems. Langmuir 2002, 18 (11) , 4186-4190. https://doi.org/10.1021/la025533v
    19. Yiqing Wang, Jinwei Zhang, Haiping Gao, Yuan Sun, Lei Wang. Lipid nanotubes: Formation and applications. Colloids and Surfaces B: Biointerfaces 2022, 212 , 112362. https://doi.org/10.1016/j.colsurfb.2022.112362
    20. J. Lyu, K. Xie, R. Chachanidze, A. Kahli, G. Boëdec, M. Leonetti. Dynamics of pearling instability in polymersomes: The role of shear membrane viscosity and spontaneous curvature. Physics of Fluids 2021, 33 (12) https://doi.org/10.1063/5.0075266
    21. Xuejing Wang, Hang Du, Zhao Wang, Wei Mu, Xiaojun Han. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. Advanced Materials 2021, 33 (6) https://doi.org/10.1002/adma.202002635
    22. Rumiana Dimova. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annual Review of Biophysics 2019, 48 (1) , 93-119. https://doi.org/10.1146/annurev-biophys-052118-115342
    23. Guido Bolognesi. Manipulation of biomimetic soft interfaces by optical and microfluidic methods. 2019, 69-126. https://doi.org/10.1016/bs.abl.2019.02.002
    24. Vladimir Kirejev, Baharan Ali Doosti, Mehrnaz Shaali, Gavin D. M. Jeffries, Tatsiana Lobovkina. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients. Small 2018, 14 (21) https://doi.org/10.1002/smll.201703541
    25. Reinhard Lipowsky. Understanding Membranes and Vesicles: A Personal Recollection of the Last Two Decades. 2018, 3-44. https://doi.org/10.1007/978-3-030-00630-3_1
    26. Falin Tian, Tongtao Yue, Wei Dong, Xin Yi, Xianren Zhang. Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations. Physical Chemistry Chemical Physics 2018, 20 (5) , 3474-3483. https://doi.org/10.1039/C7CP06212E
    27. Sandra Jones, An Huynh, Yuan Gao, Yan Yu. Calcium ion-assisted lipid tubule formation. Materials Chemistry Frontiers 2018, 2 (3) , 603-608. https://doi.org/10.1039/C7QM00521K
    28. Pauline Lefrançois, Bertrand Goudeau, Stéphane Arbault. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer. Integrative Biology 2018, 10 (7) , 429-434. https://doi.org/10.1039/C8IB00074C
    29. Chuntao Zhu, Ying Zhang, Yinan Wang, Qingchuan Li, Wei Mu, Xiaojun Han. Point‐to‐Plane Nonhomogeneous Electric‐Field‐Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry – A European Journal 2016, 22 (9) , 2906-2909. https://doi.org/10.1002/chem.201504389
    30. Irep Gözen, Aldo Jesorka. Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology. Nanofabrication 2015, 2 (1) https://doi.org/10.1515/nanofab-2015-0003
    31. Raktim Dasgupta, Rumiana Dimova. Inward and outward membrane tubes pulled from giant vesicles. Journal of Physics D: Applied Physics 2014, 47 (28) , 282001. https://doi.org/10.1088/0022-3727/47/28/282001
    32. Linda Susan Hirst. Lipid Self‐Assembly. 2014, 1-17. https://doi.org/10.1002/9783527671403.hlc097
    33. Michael E. Kurczy, Lisa J. Mellander, Neda Najafinobar, Ann-Sofie Cans, . Composition Based Strategies for Controlling Radii in Lipid Nanotubes. PLoS ONE 2014, 9 (1) , e81293. https://doi.org/10.1371/journal.pone.0081293
    34. Hiroshige Hamano, Taishi Tonooka, Toshihisa Osaki, Shoji Takeuchi. Highly packed liposome assemblies toward synthetic tissue. 2014, 17-19. https://doi.org/10.1109/MEMSYS.2014.6765562
    35. Toshihisa Osaki, Koki Kamiya, Ryuji Kawano, Shoji Takeuchi. Batch release of monodisperse liposomes triggered by pulsed voltage stimulation. 2014, 257-258. https://doi.org/10.1109/MEMSYS.2014.6765675
    36. Haijiang Zhang, Shijun Xu, Gavin D.M. Jeffries, Owe Orwar, Aldo Jesorka. Artificial nanotube connections and transport of molecular cargo between mammalian cells. Nano Communication Networks 2013, 4 (4) , 197-204. https://doi.org/10.1016/j.nancom.2013.08.006
    37. Yukihisa Okumura. Electroformation of Giant Vesicles and Transformation to Oligovesicular Vesicles. 2013, 63-79. https://doi.org/10.1016/B978-0-12-411515-6.00003-5
    38. Maria O. Ogunyankin, Marjorie L. Longo. Metastability in pixelation patterns of coexisting fluid lipid bilayer phases imposed by e-beam patterned substrates. Soft Matter 2013, 9 (6) , 2037. https://doi.org/10.1039/c2sm27027g
    39. Kumari Priti Sinha, Siddharth Gadkari, Rochish M. Thaokar. Electric field induced pearling instability in cylindrical vesicles. Soft Matter 2013, 9 (30) , 7274. https://doi.org/10.1039/c3sm00052d
    40. Aurélien Roux. The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 2013, 9 (29) , 6726. https://doi.org/10.1039/c3sm50514f
    41. Toshihisa Osaki, Koki Kamiya, Ryuji Kawano, Shoji Takeuchi. Pendant liposome system to access the internal solution. 2013, 359-360. https://doi.org/10.1109/MEMSYS.2013.6474252
    42. Lisa Simonsson, Michael E. Kurczy, Raphaël Trouillon, Fredrik Hook, Ann-Sofie Cans. A functioning artificial secretory cell. Scientific Reports 2012, 2 (1) https://doi.org/10.1038/srep00824
    43. Toshihisa Osaki, Koki Kamiya, Ryuji Kawano, Hirotaka Sasaki, Shoji Takeuchi. Towards artificial cell array system: Encapsulation and hydration technologies integrated in liposome array. 2012, 333-336. https://doi.org/10.1109/MEMSYS.2012.6170203
    44. Roger Karlsson, Michael Kurczy, Richards Grzhibovskis, Kelly L Adams, Andrew G Ewing, Ann-Sofie Cans, Marina V Voinova. Mechanics of lipid bilayer junctions affecting the size of a connecting lipid nanotube. Nanoscale Research Letters 2011, 6 (1) https://doi.org/10.1186/1556-276X-6-421
    45. Yukihisa Okumura, Tohru Ohmiya, Toshiki Yamazaki. Formation of Oligovesicular Vesicles by Micromanipulation. Membranes 2011, 1 (4) , 265-274. https://doi.org/10.3390/membranes1040265
    46. C Patrick Collier, Michael L Simpson. Micro/nanofabricated environments for synthetic biology. Current Opinion in Biotechnology 2011, 22 (4) , 516-526. https://doi.org/10.1016/j.copbio.2011.05.002
    47. Aldo Jesorka, Natalia Stepanyants, Haijiang Zhang, Bahanur Ortmen, Bodil Hakonen, Owe Orwar. Generation of phospholipid vesicle-nanotube networks and transport of molecules therein. Nature Protocols 2011, 6 (6) , 791-805. https://doi.org/10.1038/nprot.2011.321
    48. YaJun Yin, JiYe Wu, Jie Yin, QinShan Fan. Steiner minimal trees—the final destinations for lipid nanotube networks with three-way junctions. Science China Physics, Mechanics and Astronomy 2011, 54 (4) , 586-592. https://doi.org/10.1007/s11433-011-4283-3
    49. Ilona Wegrzyn, Haijian Zhang, Owe Orwar, Aldo Jesorka. Nanotube-interconnected liposome networks. Nano Communication Networks 2011, 2 (1) , 4-15. https://doi.org/10.1016/j.nancom.2011.02.003
    50. Toshimi Shimizu. Self-Assembled Organic Nanotubes and Their Applications in Nano-Bio Fields. 2011, 31-74. https://doi.org/10.1007/978-1-4419-9443-1_3
    51. Tatsiana Lobovkina, Aldo Jesorka, Björn Önfelt, Jan Lagerwall, Paul Dommersnes, Owe Orwar. Soft-Matter Nanotubes. 2011, 75-125. https://doi.org/10.1007/978-1-4419-9443-1_4
    52. Céline Billerit, Ilona Wegrzyn, Gavin D. M. Jeffries, Paul Dommersnes, Owe Orwar, Aldo Jesorka. Heat-induced formation of single giant unilamellar vesicles. Soft Matter 2011, 7 (20) , 9751. https://doi.org/10.1039/c1sm05444a
    53. Marta Bally, Kelly Bailey, Kaori Sugihara, Dorothee Grieshaber, Janos Vörös, Brigitte Städler. Liposome and Lipid Bilayer Arrays Towards Biosensing Applications. Small 2010, 6 (22) , 2481-2497. https://doi.org/10.1002/smll.201000644
    54. Johan Hurtig, Daniel T. Chiu, Björn Önfelt. Intercellular nanotubes: insights from imaging studies and beyond. WIREs Nanomedicine and Nanobiotechnology 2010, 2 (3) , 260-276. https://doi.org/10.1002/wnan.80
    55. Jeanne C. Stachowiak, Carl C. Hayden, Darryl Y. Sasaki. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proceedings of the National Academy of Sciences 2010, 107 (17) , 7781-7786. https://doi.org/10.1073/pnas.0913306107
    56. Aldo Jesorka, Ludvig Lizana, Zoran Konkoli, Ilja Czolkos, Owe Orwar. Controlling Chemistry in Dynamic Nanoscale Systems. 2010, 449-468. https://doi.org/10.1007/978-3-642-02597-6_23
    57. Tatsiana Lobovkina, Irep Gözen, Yavuz Erkan, Jessica Olofsson, Stephen G. Weber, Owe Orwar. Protrusive growth and periodic contractile motion in surface-adhered vesicles induced by Ca2+-gradients. Soft Matter 2010, 6 (2) , 268-272. https://doi.org/10.1039/B916805M
    58. A. Schroeder, C. G. Levins, C. Cortez, R. Langer, D. G. Anderson. Lipid‐based nanotherapeutics for siRNA delivery. Journal of Internal Medicine 2010, 267 (1) , 9-21. https://doi.org/10.1111/j.1365-2796.2009.02189.x
    59. Linda S. Hirst, Jing Yuan. Light Induced Liquid Crystalline Phases in the Lipid Bilayer. Molecular Crystals and Liquid Crystals 2009, 508 (1) , 67/[429]-76/[438]. https://doi.org/10.1080/15421400903058767
    60. Linda S. Hirst, Jing Yuan. The effects of fluorescent probes on model membrane organization: photo-induced lipid sorting and soft structure formation. Liquid Crystals 2009, 36 (6-7) , 739-745. https://doi.org/10.1080/02678290902815244
    61. Josemar A. Castillo, Mark A. Hayes. Bionanotubules Formed from Liposomes. 2009, 327-342. https://doi.org/10.1016/S0076-6879(09)64016-7
    62. T. Lobovkina, P. G. Dommersnes, S. Tiourine, J. -F. Joanny, O. Orwar. Shape optimization in lipid nanotube networks. The European Physical Journal E 2008, 26 (3) , 295-300. https://doi.org/10.1140/epje/i2007-10325-x
    63. Aldo Jesorka, Owe Orwar. Liposomes: Technologies and Analytical Applications. Annual Review of Analytical Chemistry 2008, 1 (1) , 801-832. https://doi.org/10.1146/annurev.anchem.1.031207.112747
    64. L. Lizana, B. Bauer, O. Orwar. Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proceedings of the National Academy of Sciences 2008, 105 (11) , 4099-4104. https://doi.org/10.1073/pnas.0709932105
    65. Johan Hurtig, Owe Orwar. Injection and transport of bacteria in nanotube–vesicle networks. Soft Matter 2008, 4 (7) , 1515. https://doi.org/10.1039/b800333e
    66. Nathan J. Wittenberg, Andrew G. Ewing. Electrochemistry in and at single biological cells. 2007, 719-749. https://doi.org/10.1016/B978-044451958-0.50032-X
    67. Edward T. Castellana, Paul S. Cremer. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports 2006, 61 (10) , 429-444. https://doi.org/10.1016/j.surfrep.2006.06.001
    68. Tatsiana Lobovkina, Paul Dommersnes, Jean-François Joanny, Johan Hurtig, Owe Orwar. Zipper Dynamics of Surfactant Nanotube Y Junctions. Physical Review Letters 2006, 97 (18) https://doi.org/10.1103/PhysRevLett.97.188105
    69. Yu-Cheng Lin, Keng-Shiang Huang, Jen-Ta Chiang, Chih-Hui Yang, Tzung-Heng Lai. Manipulating self-assembled phospholipid microtubes using microfluidic technology. Sensors and Actuators B: Chemical 2006, 117 (2) , 464-471. https://doi.org/10.1016/j.snb.2005.12.054
    70. Toshimi Shimizu. Self‐assembled lipid nanotube hosts: The dimension control for encapsulation of nanometer‐scale guest substances. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (17) , 5137-5152. https://doi.org/10.1002/pola.21619
    71. Behrooz Nasseri, Alessandro Fasciolo. Exploring soft matter: Liposomal vesicles and their tethers. Journal of Drug Targeting 2005, 13 (8-9) , 471-477. https://doi.org/10.1080/10611860500246183
    72. Michal Tokarz, Björn Åkerman, Jessica Olofsson, Jean-Francois Joanny, Paul Dommersnes, Owe Orwar. Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes. Proceedings of the National Academy of Sciences 2005, 102 (26) , 9127-9132. https://doi.org/10.1073/pnas.0500081102
    73. P. G Dommersnes, O Orwar, F Brochard-Wyart, J. F Joanny. Marangoni transport in lipid nanotubes. Europhysics Letters (EPL) 2005, 70 (2) , 271-277. https://doi.org/10.1209/epl/i2004-10477-9
    74. D. Mijatovic, J. C. T. Eijkel, A. van den Berg. Technologies for nanofluidic systems: top-down vs. bottom-up—a review. Lab on a Chip 2005, 5 (5) , 492. https://doi.org/10.1039/b416951d
    75. Mattias Karlsson, Max Davidson, Roger Karlsson, Anders Karlsson, Johan Bergenholtz, Zoran Konkoli, Aldo Jesorka, Tatsiana Lobovkina, Johan Hurtig, Marina Voinova, Owe Orwar. BIOMIMETIC NANOSCALE REACTORS AND NETWORKS. Annual Review of Physical Chemistry 2004, 55 (1) , 613-649. https://doi.org/10.1146/annurev.physchem.55.091602.094319
    76. Tatsiana Lobovkina, Paul Dommersnes, Jean-Francois Joanny, Patricia Bassereau, Mattias Karlsson, Owe Orwar. Mechanical tweezer action by self-tightening knots in surfactant nanotubes. Proceedings of the National Academy of Sciences 2004, 101 (21) , 7949-7953. https://doi.org/10.1073/pnas.0401760101
    77. Leonardo Dagdug, Alexander M. Berezhkovskii, Stanislav Y. Shvartsman, George H. Weiss. Equilibration in two chambers connected by a capillary. The Journal of Chemical Physics 2003, 119 (23) , 12473-12478. https://doi.org/10.1063/1.1626639
    78. N Borghi, O Rossier, F Brochard-Wyart. Hydrodynamic extrusion of tubes from giant vesicles. Europhysics Letters (EPL) 2003, 64 (6) , 837-843. https://doi.org/10.1209/epl/i2003-00321-x
    79. Alexander M. Berezhkovskii, Vladimir Yu. Zitserman, Stanislav Y. Shvartsman. Diffusivity in periodic arrays of spherical cavities. The Journal of Chemical Physics 2003, 118 (15) , 7146-7147. https://doi.org/10.1063/1.1561615
    80. Mattias Karlsson, Kristin Sott, Maximillian Davidson, Ann-Sofie Cans, Pontus Linderholm, Daniel Chiu, Owe Orwar. Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proceedings of the National Academy of Sciences 2002, 99 (18) , 11573-11578. https://doi.org/10.1073/pnas.172183699

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect