ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Pd/CO Average Chemisorption Stoichiometry in Highly Dispersed Supported Pd/γ-Al2O3 Catalysts

View Author Information
Dipartimento di Chimica Fisica, Università di Venezia, Via Torino 155b, I-30170 Venezia-Mestre, Italy; Dipartimento di Chimica, Università di Venezia, DD2137, I-30123 Venezia, Italy; and Consultant, Via Pansa 7/c, I-28100 Novara, Italy
Cite this: Langmuir 2002, 18, 17, 6530–6535
Publication Date (Web):July 23, 2002
https://doi.org/10.1021/la015650a
Copyright © 2002 American Chemical Society

    Article Views

    2966

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Following our previous papers regarding Pd/C and Pd/SiO2 catalysts, the determination of the Pd/CO average chemisorption stoichiometry from experimental data has been extended to the Pd/alumina system. To this purpose, the Pd crystallite size determined by the well-established line-broadening (LB) method, using X-ray powder diffraction (XRPD) associated with the Fourier analysis of suitable best-fitted peak profiles, and the chemisorbed CO volume, determined by the pulse flow method, were employed. HRTEM was also used to check the structural features of the Pd particles, which proved to be monodomains of cubooctahedral shape. A high-dispersion 5 wt % Pd/alumina catalyst was prepared by impregnation and thermally treated at different temperatures up to 1073 K. Even at this high temperature a good Pd dispersion was retained. A suitable subtraction of the X-ray scattering, due to the support, was done to obtain the real profile of the supported metal, from which the surface-weighted average particle diameters were calculated. Using these values and the corresponding CO chemisorbed volumes, a Pd/CO average chemisorption stoichiometry close to 2 was obtained. On the basis also of our previous work regarding Pd/C and Pd/SiO2 catalysts, it can be concluded that for all supported Pd catalysts such stoichiometry is close to 2, independent of support nature and Pd dispersion, when chemisorbed volumes are measured by the routinely used pulse flow method.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Dipartimento di Chimica Fisica, Università Ca' Foscari di Venezia.

    *

     To whom correspondence should be addressed:  Phone:  +39-041-2348545. Fax:  +39-041-2346747. E-mail:  [email protected].

     Dipartimento di Chimica, Università Ca' Foscari di Venezia.

    §

     Consultant.

    Cited By

    This article is cited by 87 publications.

    1. Claudia E. Berdugo-Díaz, Yang Sik Yun, Melissa T. Manetsch, Jing Luo, David G. Barton, Xue Chen, David W. Flaherty. Pathways for Reactions of Esters with H2 over Supported Pd Catalysts: Elementary Steps, Site Requirements, and Particle Size Effects. ACS Catalysis 2022, 12 (15) , 9717-9734. https://doi.org/10.1021/acscatal.2c02129
    2. Phuoc Hoang Ho, Jung-Won Woo, Rojin Feizie Ilmasani, Joonsoo Han, Louise Olsson. The role of Pd–Pt Interactions in the Oxidation and Sulfur Resistance of Bimetallic Pd–Pt/γ-Al2O3 Diesel Oxidation Catalysts. Industrial & Engineering Chemistry Research 2021, 60 (18) , 6596-6612. https://doi.org/10.1021/acs.iecr.0c05622
    3. Klaus Dobrezberger, Johannes Bosters, Nico Moser, Nevzat Yigit, Andreas Nagl, Karin Föttinger, David Lennon, Günther Rupprechter. Hydrogenation on Palladium Nanoparticles Supported by Graphene Nanoplatelets. The Journal of Physical Chemistry C 2020, 124 (43) , 23674-23682. https://doi.org/10.1021/acs.jpcc.0c06636
    4. Garam Lee, Weiqing Zheng, Konstantinos A. Goulas, Ivan C. Lee, Dionisios G. Vlachos. 110th Anniversary: Kinetics and X-ray Absorption Spectroscopy in Methane Total Oxidation over Alumina-Supported Pt, Pd, and Ag–Pd Catalysts. Industrial & Engineering Chemistry Research 2019, 58 (38) , 17718-17726. https://doi.org/10.1021/acs.iecr.9b03094
    5. Qinghe Zheng, Shaojun Zhou, Marty Lail, and Kelly Amato . Oxygen Removal from Oxy-Combustion Flue Gas for CO2 Purification via Catalytic Methane Oxidation. Industrial & Engineering Chemistry Research 2018, 57 (6) , 1954-1960. https://doi.org/10.1021/acs.iecr.7b04577
    6. Natalia M. Martin, Johan Nilsson, Magnus Skoglundh, Emma C. Adams, Xueting Wang, Peter Velin, Gudmund Smedler, Agnes Raj, David Thompsett, Hidde H. Brongersma, Thomas Grehl, Giovanni Agostini, Olivier Mathon, Stefan Carlson, Katarina Norén, Francisco J. Martinez-Casado, Zdenek Matej, Olivier Balmes, and Per-Anders Carlsson . Characterization of Surface Structure and Oxidation/Reduction Behavior of Pd–Pt/Al2O3 Model Catalysts. The Journal of Physical Chemistry C 2016, 120 (49) , 28009-28020. https://doi.org/10.1021/acs.jpcc.6b09223
    7. Konstantinos A. Goulas, Sanil Sreekumar, Yuying Song, Purnima Kharidehal, Gorkem Gunbas, Paul J. Dietrich, Gregory R. Johnson, Y. C. Wang, Adam M. Grippo, Lars C. Grabow, Amit A. Gokhale, and F. Dean Toste . Synergistic Effects in Bimetallic Palladium–Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions. Journal of the American Chemical Society 2016, 138 (21) , 6805-6812. https://doi.org/10.1021/jacs.6b02247
    8. Neil M. Wilson and David W. Flaherty . Mechanism for the Direct Synthesis of H2O2 on Pd Clusters: Heterolytic Reaction Pathways at the Liquid–Solid Interface. Journal of the American Chemical Society 2016, 138 (2) , 574-586. https://doi.org/10.1021/jacs.5b10669
    9. Giovanni Agostini, Andrea Piovano, Luca Bertinetti, Riccardo Pellegrini, Giuseppe Leofanti, Elena Groppo, and Carlo Lamberti . Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C 2014, 118 (8) , 4085-4094. https://doi.org/10.1021/jp4091014
    10. Fernando Cárdenas-Lizana, Yufen Hao, Micaela Crespo-Quesada, Igor Yuranov, Xiaodong Wang, Mark A. Keane, and Lioubov Kiwi-Minsker . Selective Gas Phase Hydrogenation of p-Chloronitrobenzene over Pd Catalysts: Role of the Support. ACS Catalysis 2013, 3 (6) , 1386-1396. https://doi.org/10.1021/cs4001943
    11. Danmeng Shuai, Jong Kwon Choe, John R. Shapley, and Charles J. Werth . Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction. Environmental Science & Technology 2012, 46 (5) , 2847-2855. https://doi.org/10.1021/es203200d
    12. Yunxia Zhang, Keith D. Hurley, and John R. Shapley . Heterogeneous Catalytic Reduction of Perchlorate in Water with Re−Pd/C Catalysts Derived from an Oxorhenium(V) Molecular Precursor. Inorganic Chemistry 2011, 50 (4) , 1534-1543. https://doi.org/10.1021/ic102158a
    13. Sonia Domínguez-Domínguez,, Ángel Berenguer-Murcia,, Bhabendra K. Pradhan,, Ángel Linares-Solano, and, Diego Cazorla-Amorós. Semihydrogenation of Phenylacetylene Catalyzed by Palladium Nanoparticles Supported on Carbon Materials. The Journal of Physical Chemistry C 2008, 112 (10) , 3827-3834. https://doi.org/10.1021/jp710693u
    14. Jacinto Sá,, Geomar D. Arteaga,, Robert A. Daley,, Johannes Bernardi, and, James A. Anderson. Factors Influencing Hydride Formation in a Pd/TiO2 Catalyst. The Journal of Physical Chemistry B 2006, 110 (34) , 17090-17095. https://doi.org/10.1021/jp062205l
    15. Anastasios I. Tsiotsias, Nikolaos D. Charisiou, Cristina Italiano, Giovanni D. Ferrante, Lidia Pino, Antonio Vita, Victor Sebastian, Steven J. Hinder, Mark A. Baker, Abhishek Sharan, Nirpendra Singh, Kyriaki Polychronopoulou, Maria A. Goula. Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation. Applied Surface Science 2024, 646 , 158945. https://doi.org/10.1016/j.apsusc.2023.158945
    16. Anil C. Banerjee, Laura Proaño, Alexis Alvarez, Imani Rogers, Jihyeon Park, Maddison Montgomery, Mehmet Z. Billor, Bert M. Weckhuysen, Matteo Monai. Stabilizing Pd–cerium oxide–aluminum oxide catalysts for methane oxidation by reduction pretreatments. Catalysis Science & Technology 2024, 39 https://doi.org/10.1039/D3CY01193C
    17. Xiaohui Zhang, Zhihu Sun, Rui Jin, Chuwei Zhu, Chuanlin Zhao, Yue Lin, Qiaoqiao Guan, Lina Cao, Hengwei Wang, Shang Li, Hancheng Yu, Xinyu Liu, Leilei Wang, Shiqiang Wei, Wei-Xue Li, Junling Lu. Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36147-2
    18. Anthony De Bruyne, Wouter Stuyck, Willem Deleu, Jarne Leinders, Carlos Marquez, Kwinten Janssens, Dimitrios Sakellariou, Ruben Ghillebert, Dirk E. De Vos. Efficient two-step production of biobased plasticizers: dehydration-hydrogenation of citric acid followed by Fischer esterification. Green Chemistry 2023, 25 (10) , 3896-3908. https://doi.org/10.1039/D2GC04678D
    19. Jung-Hyun Park. Enhanced catalytic activity of H2O2 treated-PdO/θ-Al2O3 catalysts in methane oxidation. Reaction Kinetics, Mechanisms and Catalysis 2022, 135 (6) , 2945-2958. https://doi.org/10.1007/s11144-022-02296-6
    20. Miao Guo, Sanjeevi Jayakumar, Mengfei Luo, Xiangtao Kong, Chunzhi Li, He Li, Jian Chen, Qihua Yang. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29299-0
    21. Koen Adriaensen, Jannick Vercammen, Cédric Van Goethem, Kumar Varoon Agrawal, Dirk De Vos. In depth analysis of heterogeneous catalysts for the chemoenzymatic dynamic kinetic resolution of β-amino esters. Catalysis Science & Technology 2022, 12 (9) , 2894-2902. https://doi.org/10.1039/D1CY02329B
    22. Sidónia Molitorisová, Yuyan Zhang, Martin Kubů, Ang Li, Zdeněk Tošner, Mariya Shamzhy. 2D-to-3D zeolite transformation for the preparation of Pd@MWW catalysts with tuneable acidity. Catalysis Today 2022, 390-391 , 109-116. https://doi.org/10.1016/j.cattod.2021.11.041
    23. Zachary Blanchette, Jing Zhang, Sadegh Yazdi, Michael B. Griffin, Daniel K. Schwartz, J. Will Medlin. Investigating deposition sequence during synthesis of Pd/Al 2 O 3 catalysts modified with organic monolayers. Catalysis Science & Technology 2022, 12 (7) , 2306-2314. https://doi.org/10.1039/D1CY02131A
    24. Lakshmiprasad Gurrala, M. Midhun Kumar, Shweta Sharma, Changyub Paek, R. Vinu. Selective production of C9 monomeric phenols via hydrogenolysis of lignin using Pd-(W/Zr/Mo oxides)-supported on biochar catalyst. Fuel 2022, 308 , 121818. https://doi.org/10.1016/j.fuel.2021.121818
    25. Gabriel Fraga, Mirella S. Santos, Muxina Konarova, M. D. Hasan, Bronwyn Laycock, Nuno Batalha, Steven Pratt. Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts. ChemCatChem 2021, 13 (24) , 5191-5202. https://doi.org/10.1002/cctc.202101170
    26. Nikolay Cherkasov, Dmitry Yu. Murzin, C. Richard A. Catlow, Arunabhiram Chutia. Selectivity of the Lindlar catalyst in alkyne semi-hydrogenation: a direct liquid-phase adsorption study. Catalysis Science & Technology 2021, 11 (18) , 6205-6216. https://doi.org/10.1039/D1CY01016F
    27. Xiaohui Zhang, Qingqing Gu, Yanfu Ma, Qiaoqiao Guan, Rui Jin, Hengwei Wang, Bing Yang, Junling Lu. Support-Induced unusual size dependence of Pd catalysts in chemoselective hydrogenation of para-chloronitrobenzene. Journal of Catalysis 2021, 400 , 173-183. https://doi.org/10.1016/j.jcat.2021.06.002
    28. Hanan Althikrallah, Elena F. Kozhevnikova, Ivan V. Kozhevnikov. Hydrodeoxygenation of 2,5-dimethyltetrahydrofuran over bifunctional metal-acid catalyst Pt–Cs2.5H0.5PW12O40 in the gas phase: Kinetics and mechanism. Molecular Catalysis 2021, 510 , 111711. https://doi.org/10.1016/j.mcat.2021.111711
    29. Yongwoo Kim, Do Heui Kim. Hydrogen production from formic acid dehydrogenation over a Pd supported on N-doped mesoporous carbon catalyst: A role of nitrogen dopant. Applied Catalysis A: General 2020, 608 , 117887. https://doi.org/10.1016/j.apcata.2020.117887
    30. Wangyang Wang, Wei Zhou, Wei Li, Xuewei Xiong, Yuhao Wang, Kang Cheng, Jincan Kang, Qinghong Zhang, Ye Wang. In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Applied Catalysis B: Environmental 2020, 276 , 119142. https://doi.org/10.1016/j.apcatb.2020.119142
    31. Hanan Althikrallah, Casper Kunstmann-Olsen, Elena F. Kozhevnikova, Ivan V. Kozhevnikov. Turnover Rate of Metal-Catalyzed Hydroconversion of 2,5-Dimethylfuran: Gas-Phase Versus Liquid-Phase. Catalysts 2020, 10 (10) , 1171. https://doi.org/10.3390/catal10101171
    32. Nawaf M. Alghamdi, Juan Restrepo Cano, Dalaver H. Anjum, Hong G. Im, Christos Kalamaras, Jorge Gascon, S. Mani Sarathy. Hydrogen Selective Catalytic Reduction of Nitrogen Oxide on Pt- and Pd-Based Catalysts for Lean-Burn Automobile Applications. 2020https://doi.org/10.4271/2020-01-2173
    33. Yongwoo Kim, Seung-hoon Kim, Hyung Chul Ham, Do Heui Kim. Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C catalyst for efficient hydrogen production. Journal of Catalysis 2020, 389 , 506-516. https://doi.org/10.1016/j.jcat.2020.06.033
    34. Carl-Robert Florén, Cansunur Demirci, Per-Anders Carlsson, Derek Creaser, Magnus Skoglundh. Total oxidation of methane over Pd/Al 2 O 3 at pressures from 1 to 10 atm. Catalysis Science & Technology 2020, 10 (16) , 5480-5486. https://doi.org/10.1039/D0CY00813C
    35. Zhiqiang Zhang, Jinsuo Lu, Bing Zhang, Wenxin Shi, Yuan Guo, Fuyi Cui. Insight into the size effect of Pd nanoparticles on the catalytic reduction of nitrite in water over Pd/C catalysts. Environmental Science: Nano 2020, 7 (7) , 2117-2129. https://doi.org/10.1039/D0EN00417K
    36. Anish Dasgupta, Eric K. Zimmerer, Randall J. Meyer, Robert M. Rioux. Generalized approach for the synthesis of silica supported Pd-Zn, Cu-Zn and Ni-Zn gamma brass phase nanoparticles. Catalysis Today 2019, 334 , 231-242. https://doi.org/10.1016/j.cattod.2018.10.050
    37. Jia Zhao, Yuxue Yue, Gangfeng Sheng, Bolin Wang, Huixia Lai, Shuxia Di, Yuanyuan Zhai, Lingling Guo, Xiaonian Li. Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chemical Engineering Journal 2019, 360 , 38-46. https://doi.org/10.1016/j.cej.2018.11.179
    38. Jack Jarvis, Ashley Wong, Peng He, Qingyin Li, Hua Song. Catalytic aromatization of naphtha under methane environment: Effect of surface acidity and metal modification of HZSM-5. Fuel 2018, 223 , 211-221. https://doi.org/10.1016/j.fuel.2018.03.045
    39. Mi Yeon Byun, Ji Sun Kim, Dae-Won Park, Man Sig Lee. Influence of calcination temperature on the structure and properties of Al2O3 as support for Pd catalyst. Korean Journal of Chemical Engineering 2018, 35 (5) , 1083-1088. https://doi.org/10.1007/s11814-018-0015-y
    40. Edelmira González, Cristian Marchant, Catherine Sepúlveda, Rafael García, I.Tyrone Ghampson, Nestor Escalona, Jose Luis García-Fierro. Hydrogenation of sodium hydrogen carbonate in aqueous phase using metal/activated carbon catalysts. Applied Catalysis B: Environmental 2018, 224 , 368-375. https://doi.org/10.1016/j.apcatb.2017.10.038
    41. Anna M. Wise, Peter W. Richardson, Stephen W.T. Price, Gaël Chouchelamane, Laura Calvillo, Patrick J. Hendra, Michael F. Toney, Andrea E. Russell. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study. Electrochimica Acta 2018, 262 , 27-38. https://doi.org/10.1016/j.electacta.2017.12.161
    42. Neil M. Wilson, Pranjali Priyadarshini, Sebastian Kunz, David W. Flaherty. Direct synthesis of H2O2 on Pd and AuxPd1 clusters: Understanding the effects of alloying Pd with Au. Journal of Catalysis 2018, 357 , 163-175. https://doi.org/10.1016/j.jcat.2017.10.028
    43. Konstantinos A. Goulas, Yuying Song, Gregory R. Johnson, Justin P. Chen, Amit A. Gokhale, Lars C. Grabow, F. Dean Toste. Selectivity tuning over monometallic and bimetallic dehydrogenation catalysts: effects of support and particle size. Catalysis Science & Technology 2018, 8 (1) , 314-327. https://doi.org/10.1039/C7CY01306J
    44. Jiajie Huo, Robert L. Johnson, Pu Duan, Hien N. Pham, Deyny Mendivelso-Perez, Emily A. Smith, Abhaya K. Datye, Klaus Schmidt-Rohr, Brent H. Shanks. Stability of Pd nanoparticles on carbon-coated supports under hydrothermal conditions. Catalysis Science & Technology 2018, 8 (4) , 1151-1160. https://doi.org/10.1039/C7CY02098H
    45. Jun Hirayama, Yuichi Kamiya. Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate. Catalysis Science & Technology 2018, 8 (19) , 4985-4993. https://doi.org/10.1039/C8CY00730F
    46. Jiajie Huo, Pu Duan, Hien N. Pham, Yee Jher Chan, Abhaya K. Datye, Klaus Schmidt-Rohr, Brent H. Shanks. Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports. Catalysis Science & Technology 2018, 8 (14) , 3548-3561. https://doi.org/10.1039/C8CY00947C
    47. Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NO x storage and reduction process. Frontiers of Environmental Science & Engineering 2017, 11 (6) https://doi.org/10.1007/s11783-017-0976-9
    48. Johan Nilsson, Per-Anders Carlsson, Natalia M. Martin, Emma C. Adams, Giovanni Agostini, Henrik Grönbeck, Magnus Skoglundh. Methane oxidation over Pd/Al2O3 under rich/lean cycling followed by operando XAFS and modulation excitation spectroscopy. Journal of Catalysis 2017, 356 , 237-245. https://doi.org/10.1016/j.jcat.2017.10.018
    49. Junjie Li, Wei Chen, Han Zhao, Xusheng Zheng, Lihui Wu, Haibin Pan, Junfa Zhu, Yanxia Chen, Junling Lu. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis 2017, 352 , 371-381. https://doi.org/10.1016/j.jcat.2017.06.007
    50. Adam F. Lee, Christopher M. A. Parlett, Karen Wilson. Adsorption Methods. 2017, 525-540. https://doi.org/10.1039/9781849739900-00525
    51. Masaaki Haneda, Mina Todo, Yuichiro Nakamura, Mastomo Hattori. Effect of Pd dispersion on the catalytic activity of Pd/Al2O3 for C3H6 and CO oxidation. Catalysis Today 2017, 281 , 447-453. https://doi.org/10.1016/j.cattod.2016.05.025
    52. Valentin N. Sapunov, Аntonina А. Stepacheva, Esther M. Sulman, Johan Wärnå, Päivi Mäki-Arvela, Mikhail G. Sulman, Alexander I. Sidorov, Barry D. Stein, Dmitry Yu. Murzin, Valentina G. Matveeva. Stearic acid hydrodeoxygenation over Pd nanoparticles embedded in mesoporous hypercrosslinked polystyrene. Journal of Industrial and Engineering Chemistry 2017, 46 , 426-435. https://doi.org/10.1016/j.jiec.2016.11.013
    53. Miao Guo, Can Li, Qihua Yang. Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catalysis Science & Technology 2017, 7 (11) , 2221-2227. https://doi.org/10.1039/C7CY00394C
    54. Yuan Chen, Saemin Choi, Levi T. Thompson. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. Journal of Catalysis 2016, 343 , 147-156. https://doi.org/10.1016/j.jcat.2016.01.016
    55. Rodrigo Suárez París, Mario Enrico L’Abbate, Leonarda Francesca Liotta, Vicente Montes, Javier Barrientos, Francesco Regali, Atte Aho, Magali Boutonnet, Sven Järås. Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica–alumina. Catalysis Today 2016, 275 , 141-148. https://doi.org/10.1016/j.cattod.2015.11.026
    56. Wenjie Qi, Jingyu Ran, Ruirui Wang, Xuesen Du, Jun Shi, Juntian Niu, Peng Zhang, Mingchu Ran. Kinetic consequences of methane combustion on Pd, Pt and Pd–Pt catalysts. RSC Advances 2016, 6 (111) , 109834-109845. https://doi.org/10.1039/C6RA21150J
    57. Qinghe Zheng, Robert Farrauto, Michel Deeba, Ioannis Valsamakis. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts. Catalysts 2015, 5 (4) , 1770-1796. https://doi.org/10.3390/catal5041770
    58. Stuart F. Miller, Holger B. Friedrich, Cedric W. Holzapfel, Venkata D. B. C. Dasireddy. Effects of Organic Modifiers on a Palladium Catalyst in the Competitive Hydrogenation of 1‐Octene Versus Octanal: An Evaluation of Solid Catalysts with an Ionic Liquid Layer. ChemCatChem 2015, 7 (17) , 2628-2636. https://doi.org/10.1002/cctc.201500401
    59. Thomas J. Schwartz, Zachary J. Brentzel, James A. Dumesic. Inhibition of Metal Hydrogenation Catalysts by Biogenic Impurities. Catalysis Letters 2015, 145 (1) , 15-22. https://doi.org/10.1007/s10562-014-1441-z
    60. Daisuke Nagai, Maiko Nishibori, Toshio Itoh, Tsutomu Kawabe, Kazuo Sato, Woosuck Shin. Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sensors and Actuators B: Chemical 2015, 206 , 488-494. https://doi.org/10.1016/j.snb.2014.09.059
    61. Oscar G. Marin-Flores, Ayman M. Karim, Yong Wang. Role of tungsten in the aqueous phase hydrodeoxygenation of ethylene glycol on tungstated zirconia supported palladium. Catalysis Today 2014, 237 , 118-124. https://doi.org/10.1016/j.cattod.2014.03.068
    62. Farid Aiouache, Lisa McAleer, Quan Gan, Ala’a H. Al-Muhtaseb, Mohammad N. Ahmad. Path lumping kinetic model for aqueous phase reforming of sorbitol. Applied Catalysis A: General 2013, 466 , 240-255. https://doi.org/10.1016/j.apcata.2013.06.039
    63. A. Pashkova, L. Greiner, U. Krtschil, C. Hofmann, R. Zapf. Direct synthesis of hydrogen peroxide over supported Pd catalysts: Turning to dense CO2 as an alternative solvent. Applied Catalysis A: General 2013, 464-465 , 281-287. https://doi.org/10.1016/j.apcata.2013.06.007
    64. Rui Zhang, Danmeng Shuai, Kathryn A. Guy, John R. Shapley, Timothy J. Strathmann, Charles J. Werth. Elucidation of Nitrate Reduction Mechanisms on a Pd‐In Bimetallic Catalyst using Isotope Labeled Nitrogen Species. ChemCatChem 2013, 5 (1) , 313-321. https://doi.org/10.1002/cctc.201200457
    65. Haibo Yu, Zuwang Mao, Wei Dai, Jing Peng, Maolin Zhai, Genshuan Wei. Highly selective Pd/Al2O3 catalyst for hydrogenation of methylacetylene and propadiene in propylene stream prepared by γ-radiation. Applied Catalysis A: General 2012, 445-446 , 246-251. https://doi.org/10.1016/j.apcata.2012.08.036
    66. Miguel A.G. Hevia, Blaise Bridier, Javier Pérez-Ramírez. Mechanistic study of the palladium-catalyzed ethyne hydrogenation by the Temporal Analysis of Products technique. Applied Catalysis A: General 2012, 439-440 , 163-170. https://doi.org/10.1016/j.apcata.2012.07.001
    67. F. Menegazzo, M. Signoretto, G. Frison, F. Pinna, G. Strukul, M. Manzoli, F. Boccuzzi. When high metal dispersion has a detrimental effect: Hydrogen peroxide direct synthesis under very mild and nonexplosive conditions catalyzed by Pd supported on silica. Journal of Catalysis 2012, 290 , 143-150. https://doi.org/10.1016/j.jcat.2012.03.010
    68. Malte Behrens, Robert Schlögl. X‐Ray Diffraction and Small Angle X‐Ray Scattering. 2012, 609-653. https://doi.org/10.1002/9783527645329.ch15
    69. Niko M. Kinnunen, Janne T. Hirvi, Mika Suvanto, Tapani A. Pakkanen. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter. Journal of Molecular Catalysis A: Chemical 2012, 356 , 20-28. https://doi.org/10.1016/j.molcata.2011.12.023
    70. Zdeněk Vít, Hana Kmentová, Luděk Kaluža, Daniela Gulková, Marta Boaro. Effect of preparation of Pd and Pd–Pt catalysts from acid leached silica–alumina on their activity in HDS of thiophene and benzothiophene. Applied Catalysis B: Environmental 2011, 108-109 , 152-160. https://doi.org/10.1016/j.apcatb.2011.08.022
    71. Wanjin Yu, Yang Tang, Liuye Mo, Ping Chen, Hui Lou, Xiaoming Zheng. One-step hydrogenation–esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresource Technology 2011, 102 (17) , 8241-8246. https://doi.org/10.1016/j.biortech.2011.06.015
    72. Niko M. Kinnunen, Janne T. Hirvi, Tapani Venäläinen, Mika Suvanto, Tapani A. Pakkanen. Procedure to tailor activity of methane combustion catalyst: Relation between Pd/PdOx active sites and methane oxidation activity. Applied Catalysis A: General 2011, 397 (1-2) , 54-61. https://doi.org/10.1016/j.apcata.2011.02.013
    73. Hien N. Pham, Yomaira J. Pagan-Torres, Juan Carlos Serrano-Ruiz, Dong Wang, James A. Dumesic, Abhaya K. Datye. Improved hydrothermal stability of niobia-supported Pd catalysts. Applied Catalysis A: General 2011, 397 (1-2) , 153-162. https://doi.org/10.1016/j.apcata.2011.02.026
    74. Päivi Mäki-Arvela, Anton V. Tokarev, Elena V. Murzina, Betiana Campo, Teemu Heikkilä, Jenny-Maria Brozinski, Dorit Wolf, Dmitry Yu. Murzin. Kinetics of lactose and rhamnose oxidation over supported metal catalysts. Physical Chemistry Chemical Physics 2011, 13 (20) , 9268. https://doi.org/10.1039/c1cp20081j
    75. Bright T. Kusema, Betiana C. Campo, Päivi Mäki-Arvela, Tapio Salmi, Dmitry Yu. Murzin. Selective catalytic oxidation of arabinose—A comparison of gold and palladium catalysts. Applied Catalysis A: General 2010, 386 (1-2) , 101-108. https://doi.org/10.1016/j.apcata.2010.07.037
    76. Serap Sahin, Päivi Mäki-Arvela, Jean-Philippe Tessonnier, Alberto Villa, Lidong Shao, Dang Sheng Su, Robert Schlögl, Tapio Salmi, Dmitry Yu. Murzin. Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl acetate. 2010, 283-287. https://doi.org/10.1016/S0167-2991(10)75043-6
    77. Luke M. Neal, Daniel Hernandez, Helena E. Hagelin-Weaver. Effects of nanoparticle and porous metal oxide supports on the activity of palladium catalysts in the oxidative coupling of 4-methylpyridine. Journal of Molecular Catalysis A: Chemical 2009, 307 (1-2) , 29-36. https://doi.org/10.1016/j.molcata.2009.03.006
    78. Olga P. Tkachenko, Leonid M. Kustov, Andrey L. Tarasov, Konstantin V. Klementiev, Narendra Kumar, Dmitry Yu. Murzin. Pd/H-Beta catalysts: Characterization and reactivity in piperonyl alcohol selective oxidation. Applied Catalysis A: General 2009, 359 (1-2) , 144-150. https://doi.org/10.1016/j.apcata.2009.02.049
    79. Robert Schlögl. Chapter 5 X‐ray Diffraction. 2009, 273-338. https://doi.org/10.1016/S0360-0564(08)00005-9
    80. M. Jason Kelly, Jaehoon Kim, George W. Roberts, H. Henry Lamb. Characterization of Pd/γ-Al2O3 Catalysts Prepared Using [Pd(hfac)2] in Liquid CO2. Topics in Catalysis 2008, 49 (3-4) , 178-186. https://doi.org/10.1007/s11244-008-9075-2
    81. Sonia Domínguez-Domínguez, Ángel Berenguer-Murcia, Ángel Linares-Solano, Diego Cazorla-Amorós. Inorganic materials as supports for palladium nanoparticles: Application in the semi-hydrogenation of phenylacetylene. Journal of Catalysis 2008, 257 (1) , 87-95. https://doi.org/10.1016/j.jcat.2008.04.008
    82. Luke M. Neal, Helena E. Hagelin-Weaver. C–H activation and C–C coupling of 4-methylpyridine using palladium supported on nanoparticle alumina. Journal of Molecular Catalysis A: Chemical 2008, 284 (1-2) , 141-148. https://doi.org/10.1016/j.molcata.2008.01.008
    83. Gérard Bergeret, Pierre Gallezot. Particle Size and Dispersion Measurements. 2008, 738-765. https://doi.org/10.1002/9783527610044.hetcat0038
    84. Chaikarn Liewhiran, Sukon Phanichphant. Effects of Palladium Loading on the Response of Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor. Sensors 2007, 7 (7) , 1159-1184. https://doi.org/10.3390/s7071159
    85. L.M. Gómez-Sainero, R.T. Baker, I.S. Metcalfe, M. Sahibzada, P. Concepción, J.M. López-Nieto. Investigation of Sm2O3–CeO2-supported palladium catalysts for the reforming of methanol: The role of the support. Applied Catalysis A: General 2005, 294 (2) , 177-187. https://doi.org/10.1016/j.apcata.2005.07.022
    86. Benedetto Corain, Karel Jerabek, Paolo Centomo, Patrizia Canton. Generation of Size‐Controlled Pd 0 Nanoclusters inside Nanoporous Domains of Gel‐Type Resins: Diverse and Convergent Evidence That Supports a Strategy of Template‐Controlled Synthesis. Angewandte Chemie 2004, 116 (8) , 977-980. https://doi.org/10.1002/ange.200352640
    87. Benedetto Corain, Karel Jerabek, Paolo Centomo, Patrizia Canton. Generation of Size‐Controlled Pd 0 Nanoclusters inside Nanoporous Domains of Gel‐Type Resins: Diverse and Convergent Evidence That Supports a Strategy of Template‐Controlled Synthesis. Angewandte Chemie International Edition 2004, 43 (8) , 959-962. https://doi.org/10.1002/anie.200352640

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect