ACS Publications. Most Trusted. Most Cited. Most Read
Giant Vesicles under Flows:  Extrusion and Retraction of Tubes
My Activity
    Research Article

    Giant Vesicles under Flows:  Extrusion and Retraction of Tubes
    Click to copy article linkArticle link copied!

    View Author Information
    Groupe Surfaces douces, Laboratoire PhysicoChimie Curie UMR 168 CNRS/ Institut Curie, 26, rue d'Ulm, 75005 Paris, France
    Other Access Options

    Langmuir

    Cite this: Langmuir 2003, 19, 3, 575–584
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la026236t
    Published January 11, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The formation of membrane tubes (or tethers), which is a crucial event in many biological processes, is intrinsically a dynamic process. In this paper, we discuss both theoretically and experimentally the dynamical laws that govern extrusion and retraction of tubes extracted from lipid vesicles at high speed and under strong flows. A detailed description of the tether shape provides the first evidence that the tension along the tube increases from the vesicle body to the tip of the tube, while the tube radius decreases. As the pulling force is suppressed suddenly, the tube can relax only from the free end, and the velocity of retraction is a direct measurement of the frozen tension along the tube. We also report experiments on tethers pulled out either by mechanical point-forces or by hydrodynamic (electroosmosis-induced) flow, and we show that the observed dynamical laws for retraction are in good quantitative agreement with our theoretical predictions.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence and requests for materials should be addressed. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 95 publications.

    1. Dinesh Kumar, Charles M. Schroeder. Nonlinear Transient and Steady State Stretching of Deflated Vesicles in Flow. Langmuir 2021, 37 (48) , 13976-13984. https://doi.org/10.1021/acs.langmuir.1c01275
    2. Ashley M. Baxter, Luke R. Jordan, Monicka Kullappan, Nathan J. Wittenberg. Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation. Langmuir 2021, 37 (19) , 5753-5762. https://doi.org/10.1021/acs.langmuir.0c03363
    3. Debjit Roy, Jan Steinkühler, Ziliang Zhao, Reinhard Lipowsky, Rumiana Dimova. Mechanical Tension of Biomembranes Can Be Measured by Super Resolution (STED) Microscopy of Force-Induced Nanotubes. Nano Letters 2020, 20 (5) , 3185-3191. https://doi.org/10.1021/acs.nanolett.9b05232
    4. Wenlang Liang, Xu He, Nitin Ramesh Reddy, Yuanli Bai, Linan An, Jiyu Fang. Morphology Transformation of Supramolecular Structures in Aqueous Mixtures of Two Oppositely Charged Amphiphiles. Langmuir 2019, 35 (27) , 9004-9010. https://doi.org/10.1021/acs.langmuir.9b01140
    5. Raffaele Mezzenga, Maria Mitsi. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2019, 20 (1) , 55-72. https://doi.org/10.1021/acs.biomac.8b01258
    6. Nan-Nan Deng, Maaruthy Yelleswarapu, and Wilhelm T. S. Huck . Monodisperse Uni- and Multicompartment Liposomes. Journal of the American Chemical Society 2016, 138 (24) , 7584-7591. https://doi.org/10.1021/jacs.6b02107
    7. Grégory Beaune, Françoise M. Winnik, and Françoise Brochard-Wyart . Formation of Tethers from Spreading Cellular Aggregates. Langmuir 2015, 31 (47) , 12984-12992. https://doi.org/10.1021/acs.langmuir.5b02785
    8. Christian Hentrich and Jack W. Szostak . Controlled Growth of Filamentous Fatty Acid Vesicles under Flow. Langmuir 2014, 30 (49) , 14916-14925. https://doi.org/10.1021/la503933x
    9. Hongmei Bi, Dingguo Fu, Lei Wang, and Xiaojun Han . Lipid Nanotube Formation Using Space-Regulated Electric Field above Interdigitated Electrodes. ACS Nano 2014, 8 (4) , 3961-3969. https://doi.org/10.1021/nn500876z
    10. Jürgen Gewinner and Thomas M. Fischer . Heterogeneous Nucleation of Giant Bubbles from a Langmuir Monolayer in a Laser Focus. The Journal of Physical Chemistry B 2013, 117 (47) , 14749-14753. https://doi.org/10.1021/jp407291a
    11. Andrew F. Loftus, Sigrid Noreng, Vivian L. Hsieh, and Raghuveer Parthasarathy . Robust Measurement of Membrane Bending Moduli Using Light Sheet Fluorescence Imaging of Vesicle Fluctuations. Langmuir 2013, 29 (47) , 14588-14594. https://doi.org/10.1021/la403837d
    12. Kaori Sugihara, Mohamed Chami, Imre Derényi, János Vörös, and Tomaso Zambelli . Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures. ACS Nano 2012, 6 (8) , 6626-6632. https://doi.org/10.1021/nn300557s
    13. Jonathan West, Andreas Manz and Petra S. Dittrich. Lipid Nanotubule Fabrication by Microfluidic Tweezing. Langmuir 2008, 24 (13) , 6754-6758. https://doi.org/10.1021/la8004823
    14. Jing Yuan,, Steven M. Hira,, Geoffrey F. Strouse, and, Linda S. Hirst. Lipid Bilayer Discs and Banded Tubules:  Photoinduced Lipid Sorting in Ternary Mixtures. Journal of the American Chemical Society 2008, 130 (6) , 2067-2072. https://doi.org/10.1021/ja710305c
    15. Max Davidson,, Paul Dommersnes,, Martin Markström,, Jean-Francois Joanny,, Mattias Karlsson, and, Owe Orwar. Fluid Mixing in Growing Microscale Vesicles Conjugated by Surfactant Nanotubes. Journal of the American Chemical Society 2005, 127 (4) , 1251-1257. https://doi.org/10.1021/ja0451113
    16. P.-H. Puech,, H. Feracci, and, F. Brochard-Wyart. Adhesion between Giant Vesicles and Supported Bilayers Decorated with Chelated E-Cadherin Fragments. Langmuir 2004, 20 (22) , 9763-9768. https://doi.org/10.1021/la048682h
    17. Chengying Yin, Xinran Yu, Baohu Wu, Liangfei Tian. Spontaneous Emergence of Lipid Vesicles in a Coacervate‐Based Compartmentalized System. Angewandte Chemie International Edition 2025, 64 (5) https://doi.org/10.1002/anie.202414372
    18. Chengying Yin, Xinran Yu, Baohu Wu, Liangfei Tian. Spontaneous Emergence of Lipid Vesicles in a Coacervate‐Based Compartmentalized System. Angewandte Chemie 2025, 137 (5) https://doi.org/10.1002/ange.202414372
    19. Lancelot Pincet, Frédéric Pincet. Membrane Tubulation with a Biomembrane Force Probe. Membranes 2023, 13 (12) , 910. https://doi.org/10.3390/membranes13120910
    20. Xia Cao, Qi Liu, Michael Adu-Frimpong, Wenwan Shi, Kai liu, Tianwen Deng, Hui Yuan, Xuedi Weng, Yihong Gao, Qingtong Yu, Wenwen Deng, Jiangnan Yu, Qilong Wang, Gao Xiao, Ximing Xu. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023, 24 (4) https://doi.org/10.1208/s12249-023-02539-2
    21. T. Bhatia. Micromechanics of Biomembranes. The Journal of Membrane Biology 2022, 255 (6) , 637-649. https://doi.org/10.1007/s00232-022-00254-w
    22. Hongmei Bi, Zeqin Chen, Liuchun Guo, Yingmei Zhang, Xinru Zeng, Liuyi Xu. Fabrication, modification and application of lipid nanotubes. Chemistry and Physics of Lipids 2022, 248 , 105242. https://doi.org/10.1016/j.chemphyslip.2022.105242
    23. Chandra Has. Recent advancements to measure membrane mechanical and transport properties. Journal of Liposome Research 2022, 32 (1) , 1-21. https://doi.org/10.1080/08982104.2020.1850776
    24. Joanna Doskocz, Paulina Dałek, Magdalena Przybyło, Barbara Trzebicka, Aleksander Foryś, Anastasiia Kobyliukh, Aleš Iglič, Marek Langner. The Elucidation of the Molecular Mechanism of the Extrusion Process. Materials 2021, 14 (15) , 4278. https://doi.org/10.3390/ma14154278
    25. Xuejing Wang, Hang Du, Zhao Wang, Wei Mu, Xiaojun Han. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. Advanced Materials 2021, 33 (6) https://doi.org/10.1002/adma.202002635
    26. A. H. Karimi, M. Rahimi, S. Ziaei-Rad, H. R. Mirdamadi. Instability and critical pulling rate of tethers in tether extension process using a mathematical model. Mechanics of Soft Materials 2020, 2 (1) https://doi.org/10.1007/s42558-019-0015-z
    27. Irep Gözen, Paul Dommersnes. Biological lipid nanotubes and their potential role in evolution. The European Physical Journal Special Topics 2020, 229 (17-18) , 2843-2862. https://doi.org/10.1140/epjst/e2020-000130-7
    28. C. Has, P. Sunthar. A comprehensive review on recent preparation techniques of liposomes. Journal of Liposome Research 2020, 30 (4) , 336-365. https://doi.org/10.1080/08982104.2019.1668010
    29. Dinesh Kumar, Channing M. Richter, Charles M. Schroeder. Double-mode relaxation of highly deformed anisotropic vesicles. Physical Review E 2020, 102 (1) https://doi.org/10.1103/PhysRevE.102.010605
    30. A. Allard, M. Bouzid, T. Betz, C. Simon, M. Abou-Ghali, J. Lemière, F. Valentino, J. Manzi, F. Brochard-Wyart, K. Guevorkian, J. Plastino, M. Lenz, C. Campillo, C. Sykes. Actin modulates shape and mechanics of tubular membranes. Science Advances 2020, 6 (17) https://doi.org/10.1126/sciadv.aaz3050
    31. Alexander R. Klotz, Beatrice W. Soh, Patrick S. Doyle. Equilibrium structure and deformation response of 2D kinetoplast sheets. Proceedings of the National Academy of Sciences 2020, 117 (1) , 121-127. https://doi.org/10.1073/pnas.1911088116
    32. Nina Filipczak, Jiayi Pan, Satya Siva Kishan Yalamarty, Vladimir P. Torchilin. Recent advancements in liposome technology. Advanced Drug Delivery Reviews 2020, 156 , 4-22. https://doi.org/10.1016/j.addr.2020.06.022
    33. Yuwei Huang, Ben Zucker, Shaojin Zhang, Sharon Elias, Yun Zhu, Hui Chen, Tianlun Ding, Ying Li, Yujie Sun, Jizhong Lou, Michael M. Kozlov, Li Yu. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nature Cell Biology 2019, 21 (8) , 991-1002. https://doi.org/10.1038/s41556-019-0367-5
    34. M. Rigby, M. Anthonisen, X. Y. Chua, A. Kaplan, A. E. Fournier, P. Grütter. Building an artificial neural network with neurons. AIP Advances 2019, 9 (7) https://doi.org/10.1063/1.5086873
    35. Ji-Lin Jou, Shu-Chen Liu, Lin I. Tail shape evolution dynamics of MDCK cells on fibronectin substrates. Biomedical Physics & Engineering Express 2019, 5 (4) , 045001. https://doi.org/10.1088/2057-1976/ab1e11
    36. Françoise Brochard-Wyart. A Tour of My Soft Matter Garden: From Shining Globules and Soap Bubbles to Cell Aggregates. Annual Review of Condensed Matter Physics 2019, 10 (1) , 1-23. https://doi.org/10.1146/annurev-conmatphys-031218-013454
    37. Emma L. Talbot, Jurij Kotar, Lorenzo Di Michele, Pietro Cicuta. Directed tubule growth from giant unilamellar vesicles in a thermal gradient. Soft Matter 2019, 15 (7) , 1676-1683. https://doi.org/10.1039/C8SM01892H
    38. Arthur Charles-Orszag, Feng-Ching Tsai, Daria Bonazzi, Valeria Manriquez, Martin Sachse, Adeline Mallet, Audrey Salles, Keira Melican, Ralitza Staneva, Aurélie Bertin, Corinne Millien, Sylvie Goussard, Pierre Lafaye, Spencer Shorte, Matthieu Piel, Jacomine Krijnse-Locker, Françoise Brochard-Wyart, Patricia Bassereau, Guillaume Duménil. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06948-x
    39. Tripta Bhatia. An image-processing method to detect sub-optical features based on understanding noise in intensity measurements. European Biophysics Journal 2018, 47 (5) , 531-538. https://doi.org/10.1007/s00249-017-1273-z
    40. Thomas J Pucadyil. A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences 2018, 43 (3) , 431-435. https://doi.org/10.1007/s12038-018-9767-0
    41. Srishti Dar, Sukrut C Kamerkar, Thomas J Pucadyil. Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nature Protocols 2017, 12 (2) , 390-400. https://doi.org/10.1038/nprot.2016.173
    42. Muhammad Raza Shah, Muhammad Imran, Shafi Ullah. Lipid nanotubes. 2017, 173-190. https://doi.org/10.1016/B978-0-323-52729-3.00006-8
    43. Urška Jelerčič. Tubular Membrane Structures. 2017, 99-152. https://doi.org/10.1016/bs.abl.2017.06.003
    44. J. Lemière, F. Valentino, C. Campillo, C. Sykes. How cellular membrane properties are affected by the actin cytoskeleton. Biochimie 2016, 130 , 33-40. https://doi.org/10.1016/j.biochi.2016.09.019
    45. Chuntao Zhu, Ying Zhang, Yinan Wang, Qingchuan Li, Wei Mu, Xiaojun Han. Point‐to‐Plane Nonhomogeneous Electric‐Field‐Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry – A European Journal 2016, 22 (9) , 2906-2909. https://doi.org/10.1002/chem.201504389
    46. F. Valentino, P. Sens, J. Lemière, A. Allard, T. Betz, C. Campillo, C. Sykes. Fluctuations of a membrane nanotube revealed by high-resolution force measurements. Soft Matter 2016, 12 (47) , 9429-9435. https://doi.org/10.1039/C6SM02117D
    47. Maria Mitsi, Stephan Handschin, Isabel Gerber, Ruth Schwartländer, Enrico Klotzsch, Roger Wepf, Viola Vogel. The ultrastructure of fibronectin fibers pulled from a protein monolayer at the air-liquid interface and the mechanism of the sheet-to-fiber transition. Biomaterials 2015, 36 , 66-79. https://doi.org/10.1016/j.biomaterials.2014.08.012
    48. B. Ashok, G. Ananthakrishna. Dynamics of intermittent force fluctuations in vesicular nanotubulation. The Journal of Chemical Physics 2014, 141 (17) https://doi.org/10.1063/1.4900881
    49. Raktim Dasgupta, Rumiana Dimova. Inward and outward membrane tubes pulled from giant vesicles. Journal of Physics D: Applied Physics 2014, 47 (28) , 282001. https://doi.org/10.1088/0022-3727/47/28/282001
    50. Zheng Shi, Tobias Baumgart. Dynamics and instabilities of lipid bilayer membrane shapes. Advances in Colloid and Interface Science 2014, 208 , 76-88. https://doi.org/10.1016/j.cis.2014.01.004
    51. Patricia Bassereau, Benoit Sorre, Aurore Lévy. Bending lipid membranes: Experiments after W. Helfrich's model. Advances in Colloid and Interface Science 2014, 208 , 47-57. https://doi.org/10.1016/j.cis.2014.02.002
    52. David Abreu, Michael Levant, Victor Steinberg, Udo Seifert. Fluid vesicles in flow. Advances in Colloid and Interface Science 2014, 208 , 129-141. https://doi.org/10.1016/j.cis.2014.02.004
    53. Rumiana Dimova. Recent developments in the field of bending rigidity measurements on membranes. Advances in Colloid and Interface Science 2014, 208 , 225-234. https://doi.org/10.1016/j.cis.2014.03.003
    54. R. Dasgupta, R. Lipowsky, R. Dimova. Studying Membrane Tubes with Positive and Negative Curvatures in Giant Vesicles. 2014, JW2A.33. https://doi.org/10.1364/CLEO_AT.2014.JW2A.33
    55. Lorenzo Capretto, Dario Carugo, Stefania Mazzitelli, Claudio Nastruzzi, Xunli Zhang. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Advanced Drug Delivery Reviews 2013, 65 (11-12) , 1496-1532. https://doi.org/10.1016/j.addr.2013.08.002
    56. Gwenn Boedec, Marc Jaeger, Marc Leonetti. Sedimentation-induced tether on a settling vesicle. Physical Review E 2013, 88 (1) https://doi.org/10.1103/PhysRevE.88.010702
    57. Dirk van Swaay, Andrew deMello. Microfluidic methods for forming liposomes. Lab on a Chip 2013, 13 (5) , 752. https://doi.org/10.1039/c2lc41121k
    58. Natalia Stepanyants, Haijiang Zhang, Tatsiana Lobovkina, Paul Dommersnes, Gavin D. M. Jeffries, Aldo Jesorka, Owe Orwar. Spontaneous shape transformation of free-floating lipid membrane nanotubes. Soft Matter 2013, 9 (21) , 5155. https://doi.org/10.1039/c3sm50429h
    59. Aurélien Roux. The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 2013, 9 (29) , 6726. https://doi.org/10.1039/c3sm50514f
    60. Margarita Staykova, Marino Arroyo, Mohammad Rahimi, Howard A. Stone. Confined Bilayers Passively Regulate Shape and Stress. Physical Review Letters 2013, 110 (2) https://doi.org/10.1103/PhysRevLett.110.028101
    61. Baoyu Liu, Jin-Yu Shao. Tangential Tether Extraction and Spontaneous Tether Retraction of Human Neutrophils. Biophysical Journal 2012, 103 (11) , 2257-2264. https://doi.org/10.1016/j.bpj.2012.10.018
    62. Akihisa Yamamoto, Masatoshi Ichikawa. Direct measurement of single soft lipid nanotubes: Nanoscale information extracted in a noninvasive manner. Physical Review E 2012, 86 (6) https://doi.org/10.1103/PhysRevE.86.061905
    63. Hongyuan Jiang. Dynamic Sorting of Lipids and Proteins in Multicomponent Membranes. Physical Review Letters 2012, 109 (19) https://doi.org/10.1103/PhysRevLett.109.198101
    64. Mohammad Rahimi, Marino Arroyo. Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Physical Review E 2012, 86 (1) https://doi.org/10.1103/PhysRevE.86.011932
    65. Loïc Tadrist, Françoise Brochard-Wyart, Damien Cuvelier. Bilayer curling and winding in a viscous fluid. Soft Matter 2012, 8 (32) , 8517. https://doi.org/10.1039/c2sm25860a
    66. Margarita Staykova, Douglas P. Holmes, Clarke Read, Howard A. Stone. Mechanics of surface area regulation in cells examined with confined lipid membranes. Proceedings of the National Academy of Sciences 2011, 108 (22) , 9084-9088. https://doi.org/10.1073/pnas.1102358108
    67. Tatsiana Lobovkina, Aldo Jesorka, Björn Önfelt, Jan Lagerwall, Paul Dommersnes, Owe Orwar. Soft-Matter Nanotubes. 2011, 75-125. https://doi.org/10.1007/978-1-4419-9443-1_4
    68. S. Kremer, C. Campillo, F. Quemeneur, M. Rinaudo, B. Pépin-Donat, F. Brochard-Wyart. Nanotubes from asymmetrically decorated vesicles. Soft Matter 2011, 7 (3) , 946-951. https://doi.org/10.1039/C0SM00212G
    69. Irep Gözen, Celine Billerit, Paul Dommersnes, Aldo Jesorka, Owe Orwar. Calcium-ion-controlled nanoparticle-induced tubulation in supported flat phospholipid vesicles. Soft Matter 2011, 7 (20) , 9706. https://doi.org/10.1039/c1sm05677h
    70. Atefeh Khoshnood, Hiroshi Noguchi, Gerhard Gompper. Lipid membranes with transmembrane proteins in shear flow. The Journal of Chemical Physics 2010, 132 (2) https://doi.org/10.1063/1.3285269
    71. F. Campelo. Modeling morphological instabilities in lipid membranes with anchored amphiphilic polymers. Journal of Chemical Biology 2009, 2 (2) , 65-80. https://doi.org/10.1007/s12154-009-0020-z
    72. C. Barbetta, J. -B. Fournier. On the fluctuations of the force exerted by a lipid nanotubule. The European Physical Journal E 2009, 29 (2) , 183-189. https://doi.org/10.1140/epje/i2009-10468-8
    73. O. CAMPÀS, C. LEDUC, P. BASSEREAU, J.-F. JOANNY, J. PROST. COLLECTIVE OSCILLATIONS OF PROCESSIVE MOLECULAR MOTORS. Biophysical Reviews and Letters 2009, 04 (01n02) , 163-178. https://doi.org/10.1142/S1793048009000971
    74. Josemar A. Castillo, Mark A. Hayes. Bionanotubules Formed from Liposomes. 2009, 327-342. https://doi.org/10.1016/S0076-6879(09)64016-7
    75. Jin-Yu Shao. Chapter 2 Biomechanics of Leukocyte and Endothelial Cell Surface. 2009, 25-45. https://doi.org/10.1016/S1063-5823(09)64002-3
    76. J.-B. Fournier, N. Khalifat, N. Puff, M. I. Angelova. Chemically Triggered Ejection of Membrane Tubules Controlled by Intermonolayer Friction. Physical Review Letters 2009, 102 (1) https://doi.org/10.1103/PhysRevLett.102.018102
    77. Philippe Marmottant, Thierry Biben, Sascha Hilgenfeldt. Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2008, 464 (2095) , 1781-1800. https://doi.org/10.1098/rspa.2007.0362
    78. Vasiliy Kantsler, Enrico Segre, Victor Steinberg. Critical Dynamics of Vesicle Stretching Transition in Elongational Flow. Physical Review Letters 2008, 101 (4) https://doi.org/10.1103/PhysRevLett.101.048101
    79. Paige M. Shaklee, Timon Idema, Gerbrand Koster, Cornelis Storm, Thomas Schmidt, Marileen Dogterom. Bidirectional membrane tube dynamics driven by nonprocessive motors. Proceedings of the National Academy of Sciences 2008, 105 (23) , 7993-7997. https://doi.org/10.1073/pnas.0709677105
    80. Otger Campàs, Cécile Leduc, Patricia Bassereau, Jaume Casademunt, Jean-François Joanny, Jacques Prost. Coordination of Kinesin Motors Pulling on Fluid Membranes. Biophysical Journal 2008, 94 (12) , 5009-5017. https://doi.org/10.1529/biophysj.107.118554
    81. Jeanne C. Stachowiak, David L. Richmond, Thomas H. Li, Allen P. Liu, Sapun H. Parekh, Daniel A. Fletcher. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proceedings of the National Academy of Sciences 2008, 105 (12) , 4697-4702. https://doi.org/10.1073/pnas.0710875105
    82. Aurélien Roux, Damien Cuvelier, Patricia Bassereau, Bruno Goud. Intracellular Transport. Annals of the New York Academy of Sciences 2008, 1123 (1) , 119-125. https://doi.org/10.1196/annals.1420.014
    83. Aldo Jesorka, Michal Tokarz, Owe Orwar. Single Molecules and Nanoscale Surfactant Networks. 2008, 217-250. https://doi.org/10.1007/978-3-540-73924-1_9
    84. Jérôme Solon, Pia Streicher, Ralf Richter, Françoise Brochard-Wyart, Patricia Bassereau. Vesicles surfing on a lipid bilayer: Self-induced haptotactic motion. Proceedings of the National Academy of Sciences 2006, 103 (33) , 12382-12387. https://doi.org/10.1073/pnas.0601400103
    85. Pierre-Henri Puech, Kate Poole, Detlef Knebel, Daniel J. Muller. A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy 2006, 106 (8-9) , 637-644. https://doi.org/10.1016/j.ultramic.2005.08.003
    86. G. Ananthakrishna, R. De. Dynamics of Stick-Slip: Some Universal and Not So Universal Features. 2006, 423-457. https://doi.org/10.1007/3-540-35375-5_15
    87. Petra S. Dittrich, Martin Heule, Philippe Renaud, Andreas Manz. On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab on a Chip 2006, 6 (4) , 488. https://doi.org/10.1039/b517670k
    88. P.-H. PUECH, V. ASKOVIC, P.-G. DE GENNES, F. BROCHARD-WYART. DYNAMICS OF VESICLE ADHESION: SPREADING VERSUS DEWETTING COUPLED TO BINDER DIFFUSION. Biophysical Reviews and Letters 2006, 01 (01) , 85-95. https://doi.org/10.1142/S1793048006000082
    89. Pierre-Henri Puech, Anna Taubenberger, Florian Ulrich, Michael Krieg, Daniel J. Muller, Carl-Philipp Heisenberg. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. Journal of Cell Science 2005, 118 (18) , 4199-4206. https://doi.org/10.1242/jcs.02547
    90. Shin-ichiro M. Nomura, Yumi Mizutani, Kimio Kurita, Akihiko Watanabe, Kazunari Akiyoshi. Changes in the morphology of cell-size liposomes in the presence of cholesterol: Formation of neuron-like tubes and liposome networks. Biochimica et Biophysica Acta (BBA) - Biomembranes 2005, 1669 (2) , 164-169. https://doi.org/10.1016/j.bbamem.2005.02.005
    91. P. G Dommersnes, O Orwar, F Brochard-Wyart, J. F Joanny. Marangoni transport in lipid nanotubes. Europhysics Letters (EPL) 2005, 70 (2) , 271-277. https://doi.org/10.1209/epl/i2004-10477-9
    92. Mattias Karlsson, Max Davidson, Roger Karlsson, Anders Karlsson, Johan Bergenholtz, Zoran Konkoli, Aldo Jesorka, Tatsiana Lobovkina, Johan Hurtig, Marina Voinova, Owe Orwar. BIOMIMETIC NANOSCALE REACTORS AND NETWORKS. Annual Review of Physical Chemistry 2004, 55 (1) , 613-649. https://doi.org/10.1146/annurev.physchem.55.091602.094319
    93. Ana-Sunčana Smith, Erich Sackmann, Udo Seifert. Pulling Tethers from Adhered Vesicles. Physical Review Letters 2004, 92 (20) https://doi.org/10.1103/PhysRevLett.92.208101
    94. N Borghi, O Rossier, F Brochard-Wyart. Hydrodynamic extrusion of tubes from giant vesicles. Europhysics Letters (EPL) 2003, 64 (6) , 837-843. https://doi.org/10.1209/epl/i2003-00321-x
    95. I. Derényi, G. Koster, M.M. van Duijn, A. Czövek, M. Dogterom, J. Prost. Membrane Nanotubes. , 141-159. https://doi.org/10.1007/3-540-49522-3_7

    Langmuir

    Cite this: Langmuir 2003, 19, 3, 575–584
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la026236t
    Published January 11, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    1111

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.