Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Microfluidic Multicompartment Device for Neuroscience Research
My Activity
    Research Article

    Microfluidic Multicompartment Device for Neuroscience Research
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biomedical Engineering and Institute of Brain Aging and Dementia, University of California at Irvine, Irvine, California 92697
    Other Access Options

    Langmuir

    Cite this: Langmuir 2003, 19, 5, 1551–1556
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la026417v
    Published December 4, 2002
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    This paper describes and characterizes a novel microfabricated neuronal culture device. This device combines microfabrication, microfluidic, and surface micropatterning techniques to create a multicompartment neuronal culturing device that can be used in a number of neuroscience research applications. The device is fabricated in poly(dimethylsiloxane), PDMS, using soft lithography techniques. The PDMS device is placed on a tissue culture dish (polystyrene) or glass substrate, forming two compartments with volumes of less than 2 μL each. These two compartments are separated by a physical barrier in which a number of micron-size grooves are embedded to allow growth of neurites across the compartments while maintaining fluidic isolation. Cells are plated into the somal (cell body) compartment, and after 3−4 days, neurites extend into the neuritic compartment via the grooves. Viability of the neurons in the devices is between 50 and 70% after 7 days in culture; this is slightly lower than but comparable to values for a control grown on tissue culture dishes. Healthy neuron morphology is evident in both the devices and controls. We demonstrate the ability to use hydrostatic pressure to isolate insults to one compartment and, thus, expose localized areas of neurons to insults applied in soluble form. Due to the high resistance of the microgrooves for fluid transport, insults are contained in the neuritic compartment without appreciable leakage into the somal compartment for over 15 h. Finally, we demonstrate the use of polylysine patterning in combination with the microfabricated device to facilitate identification and visualization of neurons. The ability to direct sites of neuronal attachment and orientation of neurite outgrowth by micropatterning techniques, combined with fluidically isolated compartments within the culture area, offers significant advantages over standard open culture methods and other conventional methods for manipulating distinct neuronal microenvironments.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Part of the Langmuir special issue entitled The Biomolecular Interface.

     Department of Biomedical Engineering.

    §

     Institute of Brain Aging and Dementia.

    *

     To whom correspondence should be addressed. Phone:  949-824-9032. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 245 publications.

    1. Kevin S. Zhang, Ambika V. Nadkarni, Rajorshi Paul, Adrian M. Martin, Sindy K. Y. Tang. Microfluidic Surgery in Single Cells and Multicellular Systems. Chemical Reviews 2022, 122 (7) , 7097-7141. https://doi.org/10.1021/acs.chemrev.1c00616
    2. Jiandi Wan, Sitong Zhou, Hing Jii Mea, Yaojun Guo, Hansol Ku, Brianna M. Urbina. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chemical Reviews 2022, 122 (7) , 7142-7181. https://doi.org/10.1021/acs.chemrev.1c00480
    3. Baiwen Luo, Arjun Prasad Tiwari, Nuan Chen, Seeram Ramakrishna, In Hong Yang. Development of an Axon-Guiding Aligned Nanofiber-Integrated Compartmentalized Microfluidic Neuron Culture System. ACS Applied Bio Materials 2021, 4 (12) , 8424-8432. https://doi.org/10.1021/acsabm.1c00960
    4. Laura V. J. Behm, Susanna Gerike, M. Katharina Grauel, Katja Uhlig, Felix Pfisterer, Werner Baumann, Frank F. Bier, Claus Duschl, Michael Kirschbaum. Micropatterned Thermoresponsive Cell Culture Substrates for Dynamically Controlling Neurite Outgrowth and Neuronal Connectivity in Vitro. ACS Applied Bio Materials 2019, 2 (7) , 2853-2861. https://doi.org/10.1021/acsabm.9b00246
    5. Hae Ung Lee, Sudip Nag, Agata Blasiak, Yan Jin, Nitish Thakor, and In Hong Yang . Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform. ACS Chemical Neuroscience 2016, 7 (10) , 1317-1324. https://doi.org/10.1021/acschemneuro.6b00157
    6. Agata Blasiak, Gil U. Lee, and Devrim Kilinc . Neuron Subpopulations with Different Elongation Rates and DCC Dynamics Exhibit Distinct Responses to Isolated Netrin-1 Treatment. ACS Chemical Neuroscience 2015, 6 (9) , 1578-1590. https://doi.org/10.1021/acschemneuro.5b00142
    7. Fabio Bianco, Noemi Tonna, Robert D. Lovchik, Rosa Mastrangelo, Raffaella Morini, Ana Ruiz, Emmanuel Delamarche, and Michela Matteoli . Overflow Microfluidic Networks: Application to the Biochemical Analysis of Brain Cell Interactions in Complex Neuroinflammatory Scenarios. Analytical Chemistry 2012, 84 (22) , 9833-9840. https://doi.org/10.1021/ac302094z
    8. Robert D. Lovchik, Fabio Bianco, Noemi Tonna, Ana Ruiz, Michela Matteoli and Emmanuel Delamarche . Overflow Microfluidic Networks for Open and Closed Cell Cultures on Chip. Analytical Chemistry 2010, 82 (9) , 3936-3942. https://doi.org/10.1021/ac100771r
    9. Vishnu Vardhan Pully, Aufried Lenferink, Henk-Jan van Manen, Vinod Subramaniam, Clemens A. van Blitterswijk and Cees Otto . Microbioreactors for Raman Microscopy of Stromal Cell Differentiation. Analytical Chemistry 2010, 82 (5) , 1844-1850. https://doi.org/10.1021/ac902515c
    10. Gregory Girardi, Danielle Zumpano, Helen Raybould, Erkin Seker. Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis. Bioelectronic Medicine 2024, 10 (1) https://doi.org/10.1186/s42234-023-00140-3
    11. Omnya A. Sharallah, Nitesh Kumar Poddar, Omnia A. Alwadan. Delineation of the role of G6PD in Alzheimer’s disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Research Reviews 2024, 99 , 102394. https://doi.org/10.1016/j.arr.2024.102394
    12. Michael J. Rupar, Hannah Hanson, Stephanie Rogers, Brianna Botlick, Steven Trimmer, James J. Hickman. Modelling the innate immune system in microphysiological systems. Lab on a Chip 2024, 24 (15) , 3604-3625. https://doi.org/10.1039/D3LC00812F
    13. Andrey Vinogradov, Emre Fikret Kapucu, Susanna Narkilahti. Exploring Kainic Acid-Induced Alterations in Circular Tripartite Networks with Advanced Analysis Tools. eneuro 2024, 11 (7) , ENEURO.0035-24.2024. https://doi.org/10.1523/ENEURO.0035-24.2024
    14. Guillermo Moya-Alvarado, Xavier Valero-Peña, Alejandro Aguirre-Soto, Fernando J. Bustos, Oscar M. Lazo, Francisca C. Bronfman. PLC-γ-Ca2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Frontiers in Molecular Neuroscience 2024, 17 https://doi.org/10.3389/fnmol.2024.1009404
    15. Eleonora De Vitis, Antonella Stanzione, Alessandro Romano, Angelo Quattrini, Giuseppe Gigli, Lorenzo Moroni, Francesca Gervaso, Alessandro Polini. The Evolution of Technology‐Driven In Vitro Models for Neurodegenerative Diseases. Advanced Science 2024, 11 (16) https://doi.org/10.1002/advs.202304989
    16. J. C. Mateus, M. M. Sousa, J. Burrone, P. Aguiar. Beyond a Transmission Cable—New Technologies to Reveal the Richness in Axonal Electrophysiology. The Journal of Neuroscience 2024, 44 (11) , e1446232023. https://doi.org/10.1523/JNEUROSCI.1446-23.2023
    17. Joydeb Mukherjee, Deepa Chaturvedi, Shlok Mishra, Ratnesh Jain, Prajakta Dandekar. Microfluidic technology for cell biology–related applications: a review. Journal of Biological Physics 2024, 50 (1) , 1-27. https://doi.org/10.1007/s10867-023-09646-y
    18. Markus Brüll, Nils Geese, Ivana Celardo, Michael Laumann, Marcel Leist. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024, 13 (3) , 242. https://doi.org/10.3390/cells13030242
    19. Yang Liu, Xiangyun Yao, Cunyi Fan, Guifeng Zhang, Xi Luo, Yun Qian. Microfabrication and lab-on-a-chip devices promote in vitro modeling of neural interfaces for neuroscience researches and preclinical applications. Biofabrication 2024, 16 (1) , 012002. https://doi.org/10.1088/1758-5090/ad032a
    20. David Choy Buentello, Mariana García-Corral, Grissel Trujillo-de Santiago, Mario Moisés Alvarez. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Reviews in Biomedical Engineering 2024, 17 , 243-263. https://doi.org/10.1109/RBME.2022.3217486
    21. Gabriel Philippe Lachance, Dominic Gauvreau, Élodie Boisselier, Mounir Boukadoum, Amine Miled. Breaking Barriers: Exploring Neurotransmitters through In Vivo vs. In Vitro Rivalry. Sensors 2024, 24 (2) , 647. https://doi.org/10.3390/s24020647
    22. Sanjeev Kumar, Narender Kumar, Shivam Tiwari, Sandeep. Role of nanotechnology in microfluidic device-based smart sensors. 2024, 17-42. https://doi.org/10.1016/B978-0-323-98805-6.00005-1
    23. Menghua Liu, Anping Wu, Jiaxin Liu, Yanfeng Zhao, Xinyi Dong, Tao Sun, Qing Shi, Huaping Wang. TPP-Based Microfluidic Chip Design and Fabrication Method for Optimized Nerve Cells Directed Growth. Cyborg and Bionic Systems 2024, 5 https://doi.org/10.34133/cbsystems.0095
    24. Nicolai Winter-Hjelm, Pawel Sikorski, Axel Sandvig, Ioanna Sandvig. Engineered cortical microcircuits for investigations of neuroplasticity. Lab on a Chip 2024, 373 https://doi.org/10.1039/D4LC00546E
    25. Sukmin Han, Seokyoung Bang, Hong Nam Kim, Nakwon Choi, Sung Hyun Kim. Modulating and monitoring the functionality of corticostriatal circuits using an electrostimulable microfluidic device. Molecular Brain 2023, 16 (1) https://doi.org/10.1186/s13041-023-01007-z
    26. Victor Dupuit, Anne Briançon-Marjollet, Cécile Delacour. Portrait of intense communications within microfluidic neural networks. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-39477-9
    27. Chie Tamatani, Kenta Shimba, Kiyoshi Kotani, Yasuhiko Jimbo. Activity- and Spatial-dependent Variations in Axonal Conduction Recorded from Microtunnel Electrodes. 2023, 1-3. https://doi.org/10.1109/BMEiCON60347.2023.10321980
    28. Nicolai Winter-Hjelm, Åste Brune Tomren, Pawel Sikorski, Axel Sandvig, Ioanna Sandvig. Structure-function dynamics of engineered, modular neuronal networks with controllable afferent-efferent connectivity. Journal of Neural Engineering 2023, 20 (4) , 046024. https://doi.org/10.1088/1741-2552/ace37f
    29. Shihong Xu, Yaoyao Liu, Yan Yang, Kui Zhang, Wei Liang, Zhaojie Xu, Yirong Wu, Jinping Luo, Chengyu Zhuang, Xinxia Cai. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. Micromachines 2023, 14 (4) , 709. https://doi.org/10.3390/mi14040709
    30. Martina Brofiga, Fabio Poggio, Francesca Callegari, Mariateresa Tedesco, Paolo Massobrio. Modularity and neuronal heterogeneity: Two properties that influence in vitro neuropharmacological experiments. Frontiers in Cellular Neuroscience 2023, 17 https://doi.org/10.3389/fncel.2023.1147381
    31. Noah Goshi, Hyehyun Kim, Gregory Girardi, Alexander Gardner, Erkin Seker. Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures. Cells 2023, 12 (5) , 821. https://doi.org/10.3390/cells12050821
    32. Guillermo Moya-Alvarado, Reynaldo Tiburcio-Felix, María Raquel Ibáñez, Alejandro A Aguirre-Soto, Miguel V Guerra, Chengbiao Wu, William C Mobley, Eran Perlson, Francisca C Bronfman. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. eLife 2023, 12 https://doi.org/10.7554/eLife.77455
    33. S. Reshma, K.B. Megha, S. Amir, S. Rukhiya, P.V. Mohanan. Blood brain barrier-on-a-chip to model neurological diseases. Journal of Drug Delivery Science and Technology 2023, 80 , 104174. https://doi.org/10.1016/j.jddst.2023.104174
    34. Agata Blasiak, Devrim Kilinc, Jean-Michel Peyrin. Subcellular Compartmentalization for Neurobiology: Focusing on the Axon. 2023, 3-37. https://doi.org/10.1007/978-981-16-5540-1_1
    35. Sergey A. Lobov, Alexey N. Mikhaylov, Ekaterina S. Berdnikova, Valeri A. Makarov, Victor B. Kazantsev. Spatial Computing in Modular Spiking Neural Networks with a Robotic Embodiment. Mathematics 2023, 11 (1) , 234. https://doi.org/10.3390/math11010234
    36. S. Sharma, A. S. Nain. Mimicking Fibrous Topographical Features of the Tumor Microenvironment. 2022, 30-59. https://doi.org/10.1039/9781839166013-00030
    37. Albin A. Bernardin, Sarah Colombani, Antoine Rousselot, Virginie Andry, Yannick Goumon, Hélène Delanoë-Ayari, Côme Pasqualin, Bernard Brugg, Etienne D. Jacotot, Jean-Luc Pasquié, Alain Lacampagne, Albano C. Meli. Impact of Neurons on Patient-Derived Cardiomyocytes Using Organ-On-A-Chip and iPSC Biotechnologies. Cells 2022, 11 (23) , 3764. https://doi.org/10.3390/cells11233764
    38. Laila A. Damiati, Marwa El-Yaagoubi, Safa A. Damiati, Rimantas Kodzius, Farshid Sefat, Samar Damiati. Role of Polymers in Microfluidic Devices. Polymers 2022, 14 (23) , 5132. https://doi.org/10.3390/polym14235132
    39. P. A. Goldsteen, A. M. Sabogal Guaqueta, P. P. M. F. A. Mulder, I. S. T. Bos, M. Eggens, L. Van der Koog, J. T. Soeiro, A. J. Halayko, K. Mathwig, L. E. M. Kistemaker, E. M. J. Verpoorte, A. M. Dolga, R. Gosens. Differentiation and on axon-guidance chip culture of human pluripotent stem cell-derived peripheral cholinergic neurons for airway neurobiology studies. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.991072
    40. Noah Goshi, Gregory Girardi, Felipe da Costa Souza, Alexander Gardner, Pamela J. Lein, Erkin Seker. Influence of microchannel geometry on device performance and electrophysiological recording fidelity during long-term studies of connected neural populations. Lab on a Chip 2022, 22 (20) , 3961-3975. https://doi.org/10.1039/D2LC00683A
    41. Francesca Callegari, Martina Brofiga, Fabio Poggio, Paolo Massobrio. Stimulus-Evoked Activity Modulation of In Vitro Engineered Cortical and Hippocampal Networks. Micromachines 2022, 13 (8) , 1212. https://doi.org/10.3390/mi13081212
    42. Louise Miny, Benoît G. C. Maisonneuve, Isabelle Quadrio, Thibault Honegger. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.919646
    43. D. Megarity, R. Vroman, M. Kriek, P. Downey, T. J. Bushell, M. Zagnoni. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. Lab on a Chip 2022, 22 (10) , 1989-2000. https://doi.org/10.1039/D2LC00115B
    44. Martina Brofiga, Marietta Pisano, Mariateresa Tedesco, Anna Boccaccio, Paolo Massobrio. Functional Inhibitory Connections Modulate the Electrophysiological Activity Patterns of Cortical-Hippocampal Ensembles. Cerebral Cortex 2022, 32 (9) , 1866-1881. https://doi.org/10.1093/cercor/bhab318
    45. Chuankai Dai, Xiaoming Liu, Rongyu Tang, Jiping He, Tatsuo Arai. A Review on Microfluidic Platforms Applied to Nerve Regeneration. Applied Sciences 2022, 12 (7) , 3534. https://doi.org/10.3390/app12073534
    46. Jana Schwieger, Anna Frisch, Thomas Rau, Thomas Lenarz, Silke Hügl, Verena Scheper. 3D Printed Cell Culture Chamber for Testing the Effect of Pump-Based Chronic Drug Delivery on Inner Ear Tissue. Biomolecules 2022, 12 (4) , 589. https://doi.org/10.3390/biom12040589
    47. Sophie Girardin, Blandine Clément, Stephan J. Ihle, Sean Weaver, Jana B. Petr, José C. Mateus, Jens Duru, Magdalena Krubner, Csaba Forró, Tobias Ruff, Isabelle Fruh, Matthias Müller, János Vörös. Topologically controlled circuits of human iPSC-derived neurons for electrophysiology recordings. Lab on a Chip 2022, 22 (7) , 1386-1403. https://doi.org/10.1039/D1LC01110C
    48. Paul M. Holloway. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. 2022, 193-224. https://doi.org/10.1007/978-1-0716-2289-6_11
    49. Subhadra Nandi, Satyajit Ghosh, Shubham Garg, Ankan Sarkar, Surajit Ghosh. Brain-on-a-Chip. 2022, 475-493. https://doi.org/10.1007/978-981-19-1379-2_21
    50. Asako Otomo, Suzuka Ono, Kai Sato, Shun Mitsui, Kento Shimakura, Hiroshi Kimura, Shinji Hadano. High-throughput quantitative analysis of axonal transport in cultured neurons from SOD1H46R ALS mice by using a microfluidic device. Neuroscience Research 2022, 174 , 46-52. https://doi.org/10.1016/j.neures.2021.07.005
    51. Ippokratis Pountos, Rumeysa Tutar, Nazzar Tellisi, Mohammad Ali Darabi, Anwarul Hasan, Nureddin Ashammakhi. The use of organ-on-a-chip methods for testing of nanomaterials. 2022, 147-161. https://doi.org/10.1016/B978-0-12-820558-7.00008-X
    52. Dhanesh G. Kasi, Mees N. S. de Graaf, Paul A. Motreuil-Ragot, Jean-Phillipe M. S. Frimat, Michel D. Ferrari, Pasqualina M. Sarro, Massimo Mastrangeli, Arn M. J. M. van den Maagdenberg, Christine L. Mummery, Valeria V. Orlova. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Micromachines 2022, 13 (1) , 49. https://doi.org/10.3390/mi13010049
    53. Eleonora De Vitis, Velia La Pesa, Francesca Gervaso, Alessandro Romano, Angelo Quattrini, Giuseppe Gigli, Lorenzo Moroni, Alessandro Polini. A microfabricated multi-compartment device for neuron and Schwann cell differentiation. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86300-4
    54. Pragya Prasanna, Shweta Rathee, Vedanabhatla Rahul, Debabrata Mandal, Macherla Sharath Chandra Goud, Pardeep Yadav, Susan Hawthorne, Ankur Sharma, Piyush Kumar Gupta, Shreesh Ojha, Niraj Kumar Jha, Chiara Villa, Saurabh Kumar Jha. Microfluidic Platforms to Unravel Mysteries of Alzheimer’s Disease: How Far Have We Come?. Life 2021, 11 (10) , 1022. https://doi.org/10.3390/life11101022
    55. Seokyoung Bang, Kyeong Seob Hwang, Sohyeon Jeong, Il-Joo Cho, Nakwon Choi, Jongbaeg Kim, Hong Nam Kim. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomaterialia 2021, 132 , 379-400. https://doi.org/10.1016/j.actbio.2021.06.024
    56. Yash S. Vakilna, William C. Tang, Bruce C. Wheeler, Gregory J. Brewer. The Flow of Axonal Information Among Hippocampal Subregions: 1. Feed-Forward and Feedback Network Spatial Dynamics Underpinning Emergent Information Processing. Frontiers in Neural Circuits 2021, 15 https://doi.org/10.3389/fncir.2021.660837
    57. Martina Brofiga, Marietta Pisano, Roberto Raiteri, Paolo Massobrio. On the road to the brain-on-a-chip: a review on strategies, methods, and applications. Journal of Neural Engineering 2021, 18 (4) , 041005. https://doi.org/10.1088/1741-2552/ac15e4
    58. L. Pasquardini, A. Roncador, V. Prusakova, L. Vanzetti, C. Potrich, L. Lunelli, C. Pederzolli, S. Iannotta, P. Macchi, S. Dirè. Functionalization of TiO2 sol-gel derived films for cell confinement. Colloids and Surfaces B: Biointerfaces 2021, 204 , 111787. https://doi.org/10.1016/j.colsurfb.2021.111787
    59. Mervi Ristola, Chiara Fedele, Sanna Hagman, Lassi Sukki, Fikret Emre Kapucu, Ropafadzo Mzezewa, Tanja Hyvärinen, Pasi Kallio, Arri Priimagi, Susanna Narkilahti. Directional Growth of Human Neuronal Axons in a Microfluidic Device with Nanotopography on Azobenzene‐Based Material. Advanced Materials Interfaces 2021, 8 (11) https://doi.org/10.1002/admi.202100048
    60. Emanuele Mauri, Sara Maria Giannitelli, Marcella Trombetta, Alberto Rainer. Synthesis of Nanogels: Current Trends and Future Outlook. Gels 2021, 7 (2) , 36. https://doi.org/10.3390/gels7020036
    61. Martina Brofiga, Marietta Pisano, Francesca Callegari, Paolo Massobrio. Exploring the Contribution of Thalamic and Hippocampal Input on Cortical Dynamics in a Brain-on-a-Chip Model. IEEE Transactions on Medical Robotics and Bionics 2021, 3 (2) , 315-327. https://doi.org/10.1109/TMRB.2021.3072234
    62. Paul M. Holloway, Sandrine Willaime‐Morawek, Richard Siow, Melissa Barber, Róisín M. Owens, Anup D. Sharma, Wendy Rowan, Eric Hill, Michele Zagnoni. Advances in microfluidic in vitro systems for neurological disease modeling. Journal of Neuroscience Research 2021, 99 (5) , 1276-1307. https://doi.org/10.1002/jnr.24794
    63. Xiongfeng Zhu, Tianxing Man, Xing Haw Marvin Tan, Pei-Shan Chung, Michael A. Teitell, Pei-Yu Chiou. Distributed colorimetric interferometer for mapping the pressure distribution in a complex microfluidics network. Lab on a Chip 2021, 21 (5) , 942-950. https://doi.org/10.1039/D0LC00960A
    64. Simon Scott, Zulfiqur Ali. Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, 12 (3) , 319. https://doi.org/10.3390/mi12030319
    65. Sabrina Petralla, Francesca De Chirico, Andrea Miti, Ottavia Tartagni, Francesca Massenzio, Eleonora Poeta, Marco Virgili, Giampaolo Zuccheri, Barbara Monti. Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021, 11 (2) , 306. https://doi.org/10.3390/biom11020306
    66. Agata Blasiak, Devrim Kilinc, Jean-Michel Peyrin. Subcellular Compartmentalization for Neurobiology: Focusing on the Axon. 2021, 1-35. https://doi.org/10.1007/978-981-15-2848-4_1-1
    67. Yuri Belotti, David McGloin, Cornelis J. Weijer. Effects of spatial confinement on migratory properties of Dictyostelium discoideum cells. Communicative & Integrative Biology 2021, 14 (1) , 5-14. https://doi.org/10.1080/19420889.2021.1872917
    68. Hsih-Yin Tan, Hansang Cho, Luke P. Lee. Human mini-brain models. Nature Biomedical Engineering 2021, 5 (1) , 11-25. https://doi.org/10.1038/s41551-020-00643-3
    69. Yang Wang, Binxi Li, Hao Xu, Shulin Du, Ting Liu, Jingyan Ren, Jiayi Zhang, Hao Zhang, Yi Liu, Laijin Lu. Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@PDA superparticles. Journal of Nanobiotechnology 2020, 18 (1) https://doi.org/10.1186/s12951-020-00621-6
    70. Anssi Pelkonen, Ropafadzo Mzezewa, Lassi Sukki, Tomi Ryynänen, Joose Kreutzer, Tanja Hyvärinen, Andrey Vinogradov, Laura Aarnos, Jukka Lekkala, Pasi Kallio, Susanna Narkilahti. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosensors and Bioelectronics 2020, 168 , 112553. https://doi.org/10.1016/j.bios.2020.112553
    71. Polyxeni Nikolakopoulou, Rossana Rauti, Dimitrios Voulgaris, Iftach Shlomy, Ben M Maoz, Anna Herland. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020, 143 (11) , 3181-3213. https://doi.org/10.1093/brain/awaa268
    72. Yuri Belotti, David McGloin, Cornelis J. Weijer. Analysis of barotactic and chemotactic guidance cues on directional decision-making of Dictyostelium discoideum cells in confined environments. Proceedings of the National Academy of Sciences 2020, 117 (41) , 25553-25559. https://doi.org/10.1073/pnas.2000686117
    73. Jose A. del Rio, Isidre Ferrer. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of “prion-like” Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.570692
    74. Pien A. Goldsteen, Amalia M. Dolga, Reinoud Gosens. Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology 2020, 35 (5) , 348-357. https://doi.org/10.1152/physiol.00010.2020
    75. Yan Li, Danni Li, Pei Zhao, Krishnaswamy Nandakumar, Liqiu Wang, Youqiang Song. Microfluidics-Based Systems in Diagnosis of Alzheimer’s Disease and Biomimetic Modeling. Micromachines 2020, 11 (9) , 787. https://doi.org/10.3390/mi11090787
    76. Erika Ferrari, Cecilia Palma, Simone Vesentini, Paola Occhetta, Marco Rasponi. Integrating Biosensors in Organs-on-Chip Devices: A Perspective on Current Strategies to Monitor Microphysiological Systems. Biosensors 2020, 10 (9) , 110. https://doi.org/10.3390/bios10090110
    77. Janko Kajtez, Sebastian Buchmann, Shashank Vasudevan, Marcella Birtele, Stefano Rocchetti, Christian Jonathan Pless, Arto Heiskanen, Roger A. Barker, Alberto Martínez‐Serrano, Malin Parmar, Johan Ulrik Lind, Jenny Emnéus. 3D‐Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices. Advanced Science 2020, 7 (16) , 2001150. https://doi.org/10.1002/advs.202001150
    78. Jeffrey W. Santoso, Megan L. McCain. Neuromuscular disease modeling on a chip. Disease Models & Mechanisms 2020, 13 (7) https://doi.org/10.1242/dmm.044867
    79. Ida S. Opstad, Florian Ströhl, Marcus Fantham, Colin Hockings, Oliver Vanderpoorten, Francesca W. van Tartwijk, Julie Qiaojin Lin, Jean‐Claude Tinguely, Firehun T. Dullo, Gabriele S. Kaminski‐Schierle, Balpreet S. Ahluwalia, Clemens F. Kaminski. A waveguide imaging platform for live‐cell TIRF imaging of neurons over large fields of view. Journal of Biophotonics 2020, 13 (6) https://doi.org/10.1002/jbio.201960222
    80. Joseph A. Fantuzzo, Denise A. Robles, Vincent R. Mirabella, Ronald P. Hart, Zhiping P. Pang, Jeffrey D. Zahn. Development of a high-throughput arrayed neural circuitry platform using human induced neurons for drug screening applications. Lab on a Chip 2020, 20 (6) , 1140-1152. https://doi.org/10.1039/C9LC01179J
    81. Jordan Moore, Diego Alzate‐Correa, Devleena Dasgupta, William Lawrence, Daniel Dodd, Craig Mathews, Ian Valerio, Cameron Rink, Natalia Higuita‐Castro, Daniel Gallego‐Perez. Micro‐ and Nanoscale Biointerrogation and Modulation of Neural Tissue – From Fundamental to Clinical and Military Applications. 2020, 383-417. https://doi.org/10.1002/9783527818341.ch12
    82. Julia Sala-Jarque, Francina Mesquida-Veny, Maider Badiola-Mateos, Josep Samitier, Arnau Hervera, José Antonio del Río. Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after Injury in Microfluidic Lab-On-Chip Devices. Cells 2020, 9 (2) , 302. https://doi.org/10.3390/cells9020302
    83. Luke Kaplan, Bianxiao Cui. Multipolarization Dark-Field Imaging of Single Endosomes in Microfluidic Neuronal Culture for Simultaneous Orientation and Displacement Tracking. 2020, 157-171. https://doi.org/10.1007/978-1-0716-0532-5_8
    84. Kevin Danastas, Anthony L. Cunningham, Monica Miranda-Saksena. The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1. 2020, 409-418. https://doi.org/10.1007/978-1-4939-9814-2_25
    85. S.J. Le Marchand, M.B. Dalva. New imaging tools to study synaptogenesis. 2020, 119-148. https://doi.org/10.1016/B978-0-12-823672-7.00005-3
    86. Heinz D. Wanzenboeck, Petra Scholze, Johann K. Mika. Imaging and Electrophysiology of Individual Neurites Functionally Isolated in Microchannels. 2020, 341-377. https://doi.org/10.1007/978-1-0716-0428-1_12
    87. Boris Kirov. Development and Application of Microfluidics in Synthetic Biology. 2020, 321-335. https://doi.org/10.1007/978-981-15-0081-7_19
    88. Grace I. Hallinan, Mariana Vargas-Caballero, Jonathan West, Katrin Deinhardt. Tau Misfolding Efficiently Propagates between Individual Intact Hippocampal Neurons. The Journal of Neuroscience 2019, 39 (48) , 9623-9632. https://doi.org/10.1523/JNEUROSCI.1590-19.2019
    89. Tharkika Nagendran, Anne Marion Taylor. Unique Axon-to-Soma Signaling Pathways Mediate Dendritic Spine Loss and Hyper-Excitability Post-axotomy. Frontiers in Cellular Neuroscience 2019, 13 https://doi.org/10.3389/fncel.2019.00431
    90. Suruchi Poddar, Mrugesh Krishna Parasa, Kiran Yellappa Vajanthri, Anjali Chaudhary, Utkarsh Vinodchandra Pancholi, Arnab Sarkar, Ashish Kumar Singh, Sanjeev Kumar Mahto. Low density culture of mammalian primary neurons in compartmentalized microfluidic devices. Biomedical Microdevices 2019, 21 (3) https://doi.org/10.1007/s10544-019-0400-2
    91. M Kamudzandu, M Köse-Dunn, M G Evans, R A Fricker, P Roach. A micro-fabricated in vitro complex neuronal circuit platform. Biomedical Physics & Engineering Express 2019, 5 (4) , 045016. https://doi.org/10.1088/2057-1976/ab2307
    92. Tian Tian, Sujin Cho, Seog Woo Rhee. Microfluidic Devices for Eye Irritation Tests of Cosmetics and Cosmetic Ingredients. BioChip Journal 2019, 13 (2) , 142-150. https://doi.org/10.1007/s13206-018-3204-1
    93. Angela R. Dixon, Eric N. Horst, Jeniffer J. Garcia, Patricia R. Ndjouyep-Yamaga, Geeta Mehta. Morphometric and computational assessments to evaluate neuron survival and maturation within compartmentalized microfluidic devices: The influence of design variation on diffusion-driven nutrient transport. Neuroscience Letters 2019, 703 , 58-67. https://doi.org/10.1016/j.neulet.2019.03.025
    94. Kevin J Pollard, Anup D Sharma, Michael J Moore. Neural microphysiological systems for in vitro modeling of peripheral nervous system disorders. Bioelectronics in Medicine 2019, 2 (2) , 101-117. https://doi.org/10.2217/bem-2019-0018
    95. Joyce W. Kamande, Tharkika Nagendran, Joseph Harris, Anne Marion Taylor. Multi-compartment Microfluidic Device Geometry and Covalently Bound Poly-D-Lysine Influence Neuronal Maturation. Frontiers in Bioengineering and Biotechnology 2019, 7 https://doi.org/10.3389/fbioe.2019.00084
    96. Jean-Philippe Frimat, Regina Luttge. The Need for Physiological Micro-Nanofluidic Systems of the Brain. Frontiers in Bioengineering and Biotechnology 2019, 7 https://doi.org/10.3389/fbioe.2019.00100
    97. Grace I. Hallinan, Aleksandra P. Pitera, Prutha Patel, Jonathan West, Katrin Deinhardt. Minimalistic in vitro systems for investigating tau pathology. Journal of Neuroscience Methods 2019, 319 , 69-76. https://doi.org/10.1016/j.jneumeth.2018.09.032
    98. S. Yokoyama, A. Otomo, S. Hadano, H. Kimura. An open-type microdevice to improve the quality of fluorescence labeling for axonal transport analysis in neurons. Biomicrofluidics 2019, 13 (3) https://doi.org/10.1063/1.5090968
    99. Paul M. Holloway, Grace I. Hallinan, Manjunath Hegde, Simon I. R. Lane, Katrin Deinhardt, Jonathan West. Asymmetric confinement for defining outgrowth directionality. Lab on a Chip 2019, 19 (8) , 1484-1489. https://doi.org/10.1039/C9LC00078J
    100. Sahba Mobini, Young Hye Song, Michaela W. McCrary, Christine E. Schmidt. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials 2019, 198 , 146-166. https://doi.org/10.1016/j.biomaterials.2018.05.012
    Load more citations

    Langmuir

    Cite this: Langmuir 2003, 19, 5, 1551–1556
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la026417v
    Published December 4, 2002
    Copyright © 2003 American Chemical Society

    Article Views

    3350

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.