ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Monodisperse Core−Shell Poly(methyl methacrylate) Latex Colloids

View Author Information
Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
Cite this: Langmuir 2003, 19, 15, 5963–5966
Publication Date (Web):June 27, 2003
https://doi.org/10.1021/la034636q
Copyright © 2003 American Chemical Society

    Article Views

    1273

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Monodisperse cross-linked composite PMMA latex particles have been developed. The chemical cross-linking of the PMMA facilitates the preparation of particles consisting of a fluorescent core and a large nonfluorescent shell. These core−shell spheres can be dispersed in a density and refractive index matching mixture. This results in an ideal colloidal hard sphere model system that can be used to study many fundamental problems such as freezing, melting, and the glass transistion using quantitative confocal scanning laser microscopy. Furthermore, precize control over the size and the properties of the core and the shell(s) facilitates other applications of this model system.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

     Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University.

     Soft Condensed Matter, Debye Institute, Utrecht University.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Description of the procedure to readsorb the PHS on the particles after the removal of the migrating polymers and information about Exxsol D 100. This material is available free of charge via the Internet at http://www.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Ruth A. Crothers, Nicholas H. P. Orr, Berend van der Meer, Roel P. A. Dullens, Taiki Yanagishima. Characterization and Optimization of Fluorescent Organosilica Colloids for 3D Confocal Microscopy Prepared Under “Zero-Flow” Conditions. Langmuir 2023, 39 (15) , 5306-5314. https://doi.org/10.1021/acs.langmuir.2c03306
    2. James E. Hallett, Isabelle Grillo, Gregory N. Smith. A Neutron Scattering Study of the Structure of Poly(dimethylsiloxane)-Stabilized Poly(methyl methacrylate) (PDMS–PMMA) Latexes in Dodecane. Langmuir 2020, 36 (8) , 2071-2081. https://doi.org/10.1021/acs.langmuir.9b03911
    3. Yanyan Liu, Taiki Yanagishima, Arran Curran, Kazem V. Edmond, Stefano Sacanna, Roel P. A. Dullens. Colloidal Organosilica Spheres for Three-Dimensional Confocal Microscopy. Langmuir 2019, 35 (24) , 7962-7969. https://doi.org/10.1021/acs.langmuir.9b00963
    4. Matthias K. Klein, Nele Klinkenberg, Stefan Schuetter, Nicolai Saenger, Patrick Pfleiderer, and Andreas Zumbusch . PMMA/PMMA Core–Shell Particles with Ellipsoidal, Fluorescent Cores: Accessing Rotational Dynamics. Langmuir 2015, 31 (9) , 2655-2661. https://doi.org/10.1021/la5045046
    5. Matthias K. Klein, Nicolai R. Saenger, Stefan Schuetter, Patrick Pfleiderer, and Andreas Zumbusch . Shape-Tunable Core–Shell Microparticles. Langmuir 2014, 30 (42) , 12457-12464. https://doi.org/10.1021/la500504u
    6. Bo Peng, Ernest van der Wee, Arnout Imhof, and Alfons van Blaaderen . Synthesis of Monodisperse, Highly Cross-Linked, Fluorescent PMMA Particles by Dispersion Polymerization. Langmuir 2012, 28 (17) , 6776-6785. https://doi.org/10.1021/la301288r
    7. Mark T. Elsesser, Andrew D. Hollingsworth, Kazem V. Edmond, and David J. Pine . Large Core−Shell Poly(methyl methacrylate) Colloidal Clusters: Synthesis, Characterization, and Tracking. Langmuir 2011, 27 (3) , 917-927. https://doi.org/10.1021/la1034905
    8. Adeline Perro, Guangnan Meng, Jerome Fung and Vinothan N. Manoharan . Design and Synthesis of Model Transparent Aqueous Colloids with Optimal Scattering Properties. Langmuir 2009, 25 (19) , 11295-11298. https://doi.org/10.1021/la902861x
    9. Mark A. Rocco, Jae-Young Kim, Andrew Burns, Jan Kostecki, Anne Doody, Ulrich Wiesner and Matthew P. DeLisa . Site-Specific Labeling of Surface Proteins on Living Cells Using Genetically Encoded Peptides that Bind Fluorescent Nanoparticle Probes. Bioconjugate Chemistry 2009, 20 (8) , 1482-1489. https://doi.org/10.1021/bc9000118
    10. Daniel R. Larson, Hooisweng Ow, Harshad D. Vishwasrao, Ahmed A. Heikal, Ulrich Wiesner and Watt W. Webb . Silica Nanoparticle Architecture Determines Radiative Properties of Encapsulated Fluorophores. Chemistry of Materials 2008, 20 (8) , 2677-2684. https://doi.org/10.1021/cm7026866
    11. Zesheng An,, Wei Tang,, Craig J. Hawker, and, Galen D. Stucky. One-Step Microwave Preparation of Well-Defined and Functionalized Polymeric Nanoparticles. Journal of the American Chemical Society 2006, 128 (47) , 15054-15055. https://doi.org/10.1021/ja065250f
    12. Robert L. Sherman, Jr. and, Warren T. Ford. Small Core/Thick Shell Polystyrene/Poly(methyl methacrylate) Latexes. Industrial & Engineering Chemistry Research 2005, 44 (23) , 8538-8541. https://doi.org/10.1021/ie048867j
    13. Yuri Reyes and, Yurko Duda. Modeling of Drying in Films of Colloidal Particles. Langmuir 2005, 21 (15) , 7057-7060. https://doi.org/10.1021/la050167b
    14. R. P. A. Dullens,, E. M. Claesson, and, W. K. Kegel. Preparation and Properties of Cross-Linked Fluorescent Poly(methyl methacrylate) Latex Colloids. Langmuir 2004, 20 (3) , 658-664. https://doi.org/10.1021/la035729a
    15. Michio Tateno, Taiki Yanagishima, Hajime Tanaka. Microscopic structural origin behind slowing down of colloidal phase separation approaching gelation. The Journal of Chemical Physics 2022, 156 (8) https://doi.org/10.1063/5.0080403
    16. Nicholas H. P. Orr, Taiki Yanagishima, Eric Maire, Roel P. A. Dullens. Grain boundary characterization from particle coordinates. Physical Review Materials 2021, 5 (12) https://doi.org/10.1103/PhysRevMaterials.5.123605
    17. Andreas Zumbusch. Flüssiges Glas – optische Mikroskopie kolloidaler Suspensionen. Nachrichten aus der Chemie 2021, 69 (11) , 69-71. https://doi.org/10.1002/nadc.20214107313
    18. Taiki Yanagishima, Yanyan Liu, Hajime Tanaka, Roel P. A. Dullens. Particle-Level Visualization of Hydrodynamic and Frictional Couplings in Dense Suspensions of Spherical Colloids. Physical Review X 2021, 11 (2) https://doi.org/10.1103/PhysRevX.11.021056
    19. Yong Guo, Willem K. Kegel. Fabrication of floating colloidal crystal monolayers by convective deposition. Journal of Colloid and Interface Science 2021, 587 , 1-13. https://doi.org/10.1016/j.jcis.2020.12.037
    20. Alireza Hosseinzadeh, Younes Saadat, Soleyman Hosseinzadeh, Shahryar Pashaei. One-pot synthesis of cross-linked nonspherical polystyrene particles via dispersion polymerization: the effect of polymerization conditions on the morphology of the particles. Journal of Polymer Research 2021, 28 (1) https://doi.org/10.1007/s10965-020-02387-9
    21. J Roller, P Pfleiderer, J-M Meijer, A Zumbusch. Detection and tracking of anisotropic core-shell colloids. Journal of Physics: Condensed Matter 2018, 30 (39) , 395903. https://doi.org/10.1088/1361-648X/aadcbf
    22. Nayoung Park, Esmeralda J. Umanzor, Jacinta C. Conrad. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology. Frontiers in Physics 2018, 6 https://doi.org/10.3389/fphy.2018.00042
    23. M. Gerth, I. K. Voets. Molecular control over colloidal assembly. Chemical Communications 2017, 53 (32) , 4414-4428. https://doi.org/10.1039/C6CC09985H
    24. Stefan Schütter, Jörg Roller, Andrea Kick, Janne-Mieke Meijer, Andreas Zumbusch. Real-space imaging of translational and rotational dynamics of hard spheres from the fluid to the crystal. Soft Matter 2017, 13 (44) , 8240-8249. https://doi.org/10.1039/C7SM01400G
    25. Yanyan Liu, Kazem V. Edmond, Arran Curran, Charles Bryant, Bo Peng, Dirk G. A. L. Aarts, Stefano Sacanna, Roel P. A. Dullens. Core–Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials. Advanced Materials 2016, 28 (36) , 8001-8006. https://doi.org/10.1002/adma.201602137
    26. Thomas E. Kodger, Rodrigo E. Guerra, Joris Sprakel. Precise colloids with tunable interactions for confocal microscopy. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14635
    27. Tian Hui Zhang, Bonny W. M. Kuipers, Wen-de Tian, Jan Groenewold, Willem K. Kegel. Polydispersity and gelation in concentrated colloids with competing interactions. Soft Matter 2015, 11 (2) , 297-302. https://doi.org/10.1039/C4SM02273D
    28. Bo Peng, Arnout Imhof. Surface morphology control of cross-linked polymer particles via dispersion polymerization. Soft Matter 2015, 11 (18) , 3589-3598. https://doi.org/10.1039/C5SM00606F
    29. Alexandre P. Richez, Huai Nyin Yow, Simon Biggs, Olivier J. Cayre. Dispersion polymerization in non-polar solvent: Evolution toward emerging applications. Progress in Polymer Science 2013, 38 (6) , 897-931. https://doi.org/10.1016/j.progpolymsci.2012.12.001
    30. Matthias K. Klein, Andreas Zumbusch, Patrick Pfleiderer. Photo-crosslinkable, deformable PMMA colloids. Journal of Materials Chemistry C 2013, 1 (43) , 7228. https://doi.org/10.1039/c3tc31337a
    31. Lilian C. Hsiao, Richmond S. Newman, Sharon C. Glotzer, Michael J. Solomon. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proceedings of the National Academy of Sciences 2012, 109 (40) , 16029-16034. https://doi.org/10.1073/pnas.1206742109
    32. Tian Hui Zhang, Jan Klok, R. Hans Tromp, Jan Groenewold, Willem K. Kegel. Non-equilibrium cluster states in colloids with competing interactions. Soft Matter 2012, 8 (3) , 667-672. https://doi.org/10.1039/C1SM06570J
    33. Rebecca Rice, Roland Roth, C. Patrick Royall. Polyhedral colloidal ‘rocks’: low-dimensional networks. Soft Matter 2012, 8 (4) , 1163-1167. https://doi.org/10.1039/C1SM06663C
    34. Pedro V. Baptista, Gonçalo Doria, Pedro Quaresma, Miguel Cavadas, Cristina S. Neves, Inês Gomes, Peter Eaton, Eulália Pereira, Ricardo Franco. Nanoparticles in Molecular Diagnostics. 2011, 427-488. https://doi.org/10.1016/B978-0-12-416020-0.00011-5
    35. Sevket Tolga Camli, Fatih Buyukserin, Mustafa Selman Yavuz, Gürer Güven Budak. Fine-tuning of functional poly(methylmethacrylate) nanoparticle size at the sub-100nm scale using surfactant-free emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 366 (1-3) , 141-146. https://doi.org/10.1016/j.colsurfa.2010.05.037
    36. R. Udagama, T. F. L. Mckenna. Strategies for the production of high solids acrylic/methacrylic core‐shell latices. Journal of Applied Polymer Science 2010, 115 (5) , 2668-2676. https://doi.org/10.1002/app.30342
    37. Beate Ullrich, Günter K. Auernhammer, Ebie M. Sam, Doris Vollmer. Tracer colloids close to an isotropic–nematic domain interface with phase transition-induced solute transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 354 (1-3) , 298-307. https://doi.org/10.1016/j.colsurfa.2009.11.023
    38. Lucio Isa, Rut Besseling, Andrew B. Schofield, Wilson C. K. Poon. Quantitative Imaging of Concentrated Suspensions Under Flow. 2010, 163-202. https://doi.org/10.1007/12_2009_38
    39. Joseph L. Keddie, Alexander F. Routh. Established and Emerging Techniques of Studying Latex Film Formation. 2010, 27-94. https://doi.org/10.1007/978-90-481-2845-7_2
    40. N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, D. Babić. Field-Induced Self-Assembly of Suspended Colloidal Membranes. Physical Review Letters 2009, 103 (22) https://doi.org/10.1103/PhysRevLett.103.228301
    41. Olivier Marnette, Eric Perez, Frederic Pincet, Gary Bryant. Two-dimensional crystallization of hard sphere particles at a liquid–liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 346 (1-3) , 208-212. https://doi.org/10.1016/j.colsurfa.2009.06.018
    42. Ying-Ling Liu, Shi-Yi Chen, Ko-Shung Wang. Polymeric spheres on substrates from a spin-coating process. Journal of Colloid and Interface Science 2009, 330 (1) , 73-76. https://doi.org/10.1016/j.jcis.2008.10.037
    43. S. Jabbari-Farouji, D. Mizuno, D. Derks, G. H. Wegdam, F. C. MacKintosh, C. F. Schmidt, D. Bonn. Effective temperatures from the fluctuation-dissipation measurements in soft glassy materials. EPL (Europhysics Letters) 2008, 84 (2) , 20006. https://doi.org/10.1209/0295-5075/84/20006
    44. Yuri Reyes-Mercado, Flavio Vázquez, Francisco J. Rodríguez-Gómez, Yurko Duda. Effect of the acrylic acid content on the permeability and water uptake of poly(styrene-co-butyl acrylate) latex films. Colloid and Polymer Science 2008, 286 (5) , 603-609. https://doi.org/10.1007/s00396-008-1838-6
    45. R. P.A. Dullens, W. K. Kegel, D. G.A.L. Aarts. Direct Measurement of Thermodynamic Properties of Colloidal Hard Spheres. Oil & Gas Science and Technology - Revue de l'IFP 2008, 63 (3) , 295-303. https://doi.org/10.2516/ogst:2008015
    46. Michael Kogan, Clare J. Dibble, Reginald E. Rogers, Michael J. Solomon. Viscous solvent colloidal system for direct visualization of suspension structure, dynamics and rheology. Journal of Colloid and Interface Science 2008, 318 (2) , 252-263. https://doi.org/10.1016/j.jcis.2007.10.064
    47. R. P. A. Dullens, D. G. A. L. Aarts, W. K. Kegel. Colloidal crystal–fluid interfaces. Philosophical Magazine Letters 2007, 87 (11) , 893-898. https://doi.org/10.1080/09500830701397578
    48. V Prasad, D Semwogerere, Eric R Weeks. Confocal microscopy of colloids. Journal of Physics: Condensed Matter 2007, 19 (11) , 113102. https://doi.org/10.1088/0953-8984/19/11/113102
    49. Jeffrey M. Stubbs, Donald C. Sundberg. Nonequilibrium morphology development in seeded emulsion polymerization. V. The effect of crosslinking agent. Journal of Applied Polymer Science 2006, 102 (3) , 2043-2054. https://doi.org/10.1002/app.24063
    50. Roel P. A. Dullens, Dirk G. A. L. Aarts, Willem K. Kegel. Dynamic Broadening of the Crystal-Fluid Interface of Colloidal Hard Spheres. Physical Review Letters 2006, 97 (22) https://doi.org/10.1103/PhysRevLett.97.228301
    51. Kai Zhang, Linli Zheng, Xuehai Zhang, Xin Chen, Bai Yang. Silica-PMMA core-shell and hollow nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 277 (1-3) , 145-150. https://doi.org/10.1016/j.colsurfa.2005.11.049
    52. Nikoleta B. Simeonova, Roel P. A. Dullens, Dirk G. A. L. Aarts, Volkert W. A. de Villeneuve, Henk N. W. Lekkerkerker, Willem K. Kegel. Devitrification of colloidal glasses in real space. Physical Review E 2006, 73 (4) https://doi.org/10.1103/PhysRevE.73.041401
    53. Roel P. A. Dullens, Dirk G. A. L. Aarts, Willem K. Kegel. Direct measurement of the free energy by optical microscopy. Proceedings of the National Academy of Sciences 2006, 103 (3) , 529-531. https://doi.org/10.1073/pnas.0507052103
    54. Roel P. A. Dullens. Colloidal hard spheres: cooking and looking. Soft Matter 2006, 2 (10) , 805. https://doi.org/10.1039/b607017e
    55. Didi Derks, Hans Wisman, Alfons van Blaaderen, Arnout Imhof. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone–plate shear cell. Journal of Physics: Condensed Matter 2004, 16 (38) , S3917-S3927. https://doi.org/10.1088/0953-8984/16/38/010

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect