ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Formation and Structure of Self-Assembled Silica Nanoparticles in Basic Solutions of Organic and Inorganic Cations

View Author Information
Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
Cite this: Langmuir 2005, 21, 11, 5197–5206
Publication Date (Web):April 30, 2005
https://doi.org/10.1021/la0468390
Copyright © 2005 American Chemical Society

    Article Views

    1750

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (329 KB)

    Abstract

    Abstract Image

    The phase behavior of silica solutions containing organic and inorganic cations was studied at room temperature using conductivity, pH, and small-angle scattering experiments. A critical aggregation concentration (cac) was observed at ∼1:1 ratio of SiO2/OH- for all cation solutions from conductivity and pH studies. From this cac, a phase diagram of the system was developed with three distinct phase regions in pseudoequilibrium:  a monomer/oligomer region (I), a monomer/oligomer/nanoparticle region (II), and a gel region (III). Small-angle X-ray and neutron scattering (SAXS and SANS) on solutions of region II formed with tetrapropylammonium hydroxide (TPAOH) revealed that the nanoparticles have a core−shell structure. Structure analysis of the SAXS and SANS data was best fit by a core−shell oblate ellipsoid model. A polydisperse set of core−shell spheres also fit the data well although with lower agreement factors. Similar nanoparticle morphologies were found in solutions of TMAOH, CsOH, and NaOH.

    *

     To whom correspondence should be addressed. E-mail:  [email protected] (D.G.V.); [email protected] (R.F.L.). Phone:  302-831-2830 (D.G.V.); 302-831-1261 (R.F.L.).

    Cited By

    This article is cited by 102 publications.

    1. Ian Colliard, Gregory Morrison, Hans-Conrad zur Loye, May Nyman. Supramolecular Assembly of U(IV) Clusters and Superatoms with Unconventional Countercations. Journal of the American Chemical Society 2020, 142 (19) , 9039-9047. https://doi.org/10.1021/jacs.0c03041
    2. Sanja Bosnar, Tatjana Antonić Jelić, Josip Bronić, Maja Dutour Sikirić, Suzana Šegota, Vida Čadež, Vilko Smrečki, Ana Palčić, Boris Subotić. Deep Insights into the Processes Occurring during Early Stages of the Formation and Room-Temperature Evolution of the Core (Amorphous SiO2)@Shell (Organocations) Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (17) , 9441-9454. https://doi.org/10.1021/acs.jpcc.8b00024
    3. Alexandra I. Lupulescu, Wei Qin, and Jeffrey D. Rimer . Tuning Zeolite Precursor Interactions by Switching the Valence of Polyamine Modifiers. Langmuir 2016, 32 (45) , 11888-11898. https://doi.org/10.1021/acs.langmuir.6b03212
    4. Szu-Chia Chien, Scott M. Auerbach, and Peter A. Monson . Modeling the Self-Assembly of Silica-Templated Nanoparticles in the Initial Stages of Zeolite Formation. Langmuir 2015, 31 (17) , 4940-4949. https://doi.org/10.1021/acs.langmuir.5b00382
    5. Yi Li and Jihong Yu . New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews 2014, 114 (14) , 7268-7316. https://doi.org/10.1021/cr500010r
    6. Nathan Hould, Mohamed Haouas, Vladimiros Nikolakis, Francis Taulelle, and Raul Lobo . Mechanisms of Quick Zeolite Beta Crystallization. Chemistry of Materials 2012, 24 (18) , 3621-3632. https://doi.org/10.1021/cm3020995
    7. Nan Ren, Boris Subotić, Josip Bronić, Yi Tang, Maja Dutour Sikirić, Tea Mišić, Vesna Svetličić, Sanja Bosnar, and Tatjana Antonić Jelić . Unusual Pathway of Crystallization of Zeolite ZSM-5 in a Heterogeneous System: Phenomenology and Starting Considerations. Chemistry of Materials 2012, 24 (10) , 1726-1737. https://doi.org/10.1021/cm203194v
    8. Einar A. Eilertsen, Mohamed Haouas, Ana B. Pinar, Nathan D. Hould, Raul F. Lobo, Karl P. Lillerud, and Francis Taulelle . NMR and SAXS Analysis of Connectivity of Aluminum and Silicon Atoms in the Clear Sol Precursor of SSZ-13 Zeolite. Chemistry of Materials 2012, 24 (3) , 571-578. https://doi.org/10.1021/cm2032515
    9. Alejandra Rivas-Cardona and Daniel F. Shantz . In Situ PFG NMR of Silicalite-1 Synthesis Mixtures. The Journal of Physical Chemistry C 2011, 115 (26) , 13016-13026. https://doi.org/10.1021/jp203298m
    10. Xiang Li and Daniel F. Shantz . PFG NMR Investigations of TPA−TMA−Silica Mixtures. Langmuir 2011, 27 (7) , 3849-3858. https://doi.org/10.1021/la104648s
    11. Xiang Li and Daniel F. Shantz . Specific Ion Effects on Nanoparticle Stability and Organocation−Particle Interactions in Tetraalkylammonium−Silica Mixtures. Langmuir 2010, 26 (23) , 18459-18467. https://doi.org/10.1021/la1035129
    12. Alejandra Rivas-Cardona and Daniel F. Shantz. Pulsed Field Gradient NMR Investigations of Alkyltripropylammonium−Silica Mixtures. The Journal of Physical Chemistry C 2010, 114 (47) , 20178-20188. https://doi.org/10.1021/jp1082483
    13. L. Jin, Scott M. Auerbach and P. A. Monson. Modeling Nanoparticle Formation during Early Stages of Zeolite Growth: A Low-Coordination Lattice Model of Template Penetration. The Journal of Physical Chemistry C 2010, 114 (34) , 14393-14401. https://doi.org/10.1021/jp1044207
    14. Xiang Li and Daniel F. Shantz. PFG NMR Investigations of Heated Tetrapropylammonium−Silica Mixtures. The Journal of Physical Chemistry C 2010, 114 (34) , 14561-14570. https://doi.org/10.1021/jp1053106
    15. Elizabeth A. Gorrepati, Pattanapong Wongthahan, Sasanka Raha and H. Scott Fogler. Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect. Langmuir 2010, 26 (13) , 10467-10474. https://doi.org/10.1021/la904685x
    16. Tom P. Caremans, Benoit Loppinet, Lana R. A. Follens, Titus S. van Erp, Jan Vermant, Bart Goderis, Christine E. A. Kirschhock, Johan A. Martens and Alexander Aerts . Investigation of Nanoparticles Occurring in the Colloidal Silicalite-1 Zeolite Crystallization Process Using Dissolution Experiments. Chemistry of Materials 2010, 22 (12) , 3619-3629. https://doi.org/10.1021/cm9023343
    17. Xiang Li and Daniel F. Shantz. PFG NMR Investigations of Tetraalkylammonium−Silica Mixtures. The Journal of Physical Chemistry C 2010, 114 (18) , 8449-8458. https://doi.org/10.1021/jp101006f
    18. Nathan D. Hould, Sandeep Kumar, Michael Tsapatsis, Vladimiros Nikolakis and Raúl F. Lobo . Structure and Colloidal Stability of Nanosized Zeolite Beta Precursors. Langmuir 2010, 26 (2) , 1260-1270. https://doi.org/10.1021/la902445c
    19. Mohamed Haouas, David P. Petry, Michael W. Anderson and Francis Taulelle . 29Si NMR Relaxation of Silicated Nanoparticles in Tetraethoxysilane−Tetrapropylammonium Hydroxide−Water System (TEOS−TPAOH−H2O). The Journal of Physical Chemistry C 2009, 113 (25) , 10838-10841. https://doi.org/10.1021/jp903454f
    20. Salvador Eslava, Jone Urrutia, Abheesh N. Busawon, Mikhail R. Baklanov, Francesca Iacopi, Steliana Aldea, Karen Maex, Johan A. Martens and Christine E. A. Kirschhock . Zeolite-Inspired Low-k Dielectrics Overcoming Limitations of Zeolite Films. Journal of the American Chemical Society 2008, 130 (51) , 17528-17536. https://doi.org/10.1021/ja8066572
    21. Jia Wang, Johan C. Groen and Marc-Olivier Coppens. Unified Formation Mechanism of Disordered Mesoporous Silica, Structured by Means of Nontemplating Organic Additives. The Journal of Physical Chemistry C 2008, 112 (49) , 19336-19345. https://doi.org/10.1021/jp805276j
    22. Jeffrey D. Rimer, Olga Trofymluk, Raul F. Lobo, Alexandra Navrotsky and Dionisios G. Vlachos . Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. The Journal of Physical Chemistry C 2008, 112 (38) , 14754-14761. https://doi.org/10.1021/jp802902x
    23. John L. Provis, John D. Gehman, Claire E. White and Dionisios G. Vlachos. Modeling Silica Nanoparticle Dissolution in TPAOH−TEOS−H2O Solutions. The Journal of Physical Chemistry C 2008, 112 (38) , 14769-14775. https://doi.org/10.1021/jp803506f
    24. Nathan D. Hould and Raul F. Lobo. Nanoparticle Precursors and Phase Selectivity in Hydrothermal Synthesis of Zeolite β. Chemistry of Materials 2008, 20 (18) , 5807-5815. https://doi.org/10.1021/cm800884q
    25. Colin A. Fyfe,, Richard J. Darton,, Celine Schneider, and, Franziska Scheffler. Solid-State NMR Investigation of the Possible Existence of “Nanoblocks” in the Clear Solution Synthesis of MFI Materials. The Journal of Physical Chemistry C 2008, 112 (1) , 80-88. https://doi.org/10.1021/jp7095955
    26. Angelos Patis,, Vassilios Dracopoulos, and, Vladimiros Nikolakis. Investigation of Silicalite-1 Crystallization Using Attenuated Total Reflection/Fourier Transform Infrared Spectroscopy. The Journal of Physical Chemistry C 2007, 111 (47) , 17478-17484. https://doi.org/10.1021/jp074600x
    27. Mark A. Snyder,, J. Alex Lee,, Tracy M. Davis,, L. E. Scriven, and, Michael Tsapatsis. Silica Nanoparticle Crystals and Ordered Coatings Using Lys-Sil and a Novel Coating Device. Langmuir 2007, 23 (20) , 9924-9928. https://doi.org/10.1021/la701063v
    28. Jeffrey D. Rimer,, Olga Trofymluk,, Alexandra Navrotsky,, Raul F. Lobo, and, Dionisios G. Vlachos. Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials 2007, 19 (17) , 4189-4197. https://doi.org/10.1021/cm070708d
    29. Alexander Aerts,, Lana R. A. Follens,, Mohamed Haouas,, Tom P. Caremans,, Marc-André Delsuc,, Benoit Loppinet,, Jan Vermant,, Bart Goderis,, Francis Taulelle,, Johan A. Martens, and, Christine E. A. Kirschhock. Combined NMR, SAXS, and DLS Study of Concentrated Clear Solutions Used in Silicalite-1 Zeolite Synthesis. Chemistry of Materials 2007, 19 (14) , 3448-3454. https://doi.org/10.1021/cm070693j
    30. Jeffrey D. Rimer,, Daniel D. Roth,, Dionisios G. Vlachos, and, Raul F. Lobo. Self-Assembly and Phase Behavior of Germanium Oxide Nanoparticles in Basic Aqueous Solutions. Langmuir 2007, 23 (5) , 2784-2791. https://doi.org/10.1021/la062828q
    31. Tracy M. Davis,, Mark A. Snyder,, John E. Krohn, and, Michael Tsapatsis. Nanoparticles in Lysine−Silica Sols. Chemistry of Materials 2006, 18 (25) , 5814-5816. https://doi.org/10.1021/cm061982v
    32. John L. Provis and, Dionisios G. Vlachos. Silica Nanoparticle Formation in the TPAOH−TEOS−H2O System:  A Population Balance Model. The Journal of Physical Chemistry B 2006, 110 (7) , 3098-3108. https://doi.org/10.1021/jp056658m
    33. Pieter C. M. M. Magusin,, Vadim E. Zorin,, Alexander Aerts,, Christophe J. Y. Houssin,, Alexei L. Yakovlev,, Christine E. A. Kirschhock,, Johan A. Martens, and, Rutger A. van Santen. Template-Aluminosilicate Structures at the Early Stages of Zeolite ZSM-5 Formation. A Combined Preparative, Solid-state NMR, and Computational Study. The Journal of Physical Chemistry B 2005, 109 (48) , 22767-22774. https://doi.org/10.1021/jp053217u
    34. Jeffrey D. Rimer,, Raul F. Lobo, and, Dionisios G. Vlachos. Physical Basis for the Formation and Stability of Silica Nanoparticles in Basic Solutions of Monovalent Cations. Langmuir 2005, 21 (19) , 8960-8971. https://doi.org/10.1021/la0511384
    35. Hasan Baser, Thangaraj Selvam, Wilhelm Schwieger, Martin Hartmann. In Situ Ultrasonic Measurements as a Tool to Characterize the Stages of the Zeolite A Crystallization Process . Chemie Ingenieur Technik 2023, 39 https://doi.org/10.1002/cite.202300095
    36. Motomu Sakai, Hayata Hori, Masahiko Matsukata. Alkaline-treatment with pore-filling agent for defect-healing of zeolite membrane. Microporous and Mesoporous Materials 2022, 336 , 111901. https://doi.org/10.1016/j.micromeso.2022.111901
    37. Ian Colliard, May Nyman. Ce IV 70 Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity**. Angewandte Chemie 2021, 133 (13) , 7384-7391. https://doi.org/10.1002/ange.202016522
    38. Ian Colliard, May Nyman. Ce IV 70 Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity**. Angewandte Chemie International Edition 2021, 60 (13) , 7308-7315. https://doi.org/10.1002/anie.202016522
    39. Joseph R. H. Manning, Carlos Brambila, Siddharth V. Patwardhan. Unified mechanistic interpretation of amine-assisted silica synthesis methods to enable design of more complex materials. Molecular Systems Design & Engineering 2021, 6 (3) , 170-196. https://doi.org/10.1039/D0ME00131G
    40. Ian Colliard, May Nyman. Building [U IV 70 (OH) 36 (O) 64 ] 4− Oxocluster Frameworks with Sulfate, Transition Metals, and U V. Chemistry – A European Journal 2020, 26 (54) , 12481-12488. https://doi.org/10.1002/chem.202002403
    41. Zengqing Sun, Anya Vollpracht, Hans A. van der Sloot. pH dependent leaching characterization of major and trace elements from fly ash and metakaolin geopolymers. Cement and Concrete Research 2019, 125 , 105889. https://doi.org/10.1016/j.cemconres.2019.105889
    42. Jieyu Wang, Zhen Guo, Jun Zhao, Qingqing Yang, Yihu Dai, Yanhui Yang, Chuan Wang. Preparation of silica as catalyst supports with controlled surface property using continuous flow reactor. Applied Catalysis A: General 2019, 585 , 117212. https://doi.org/10.1016/j.apcata.2019.117212
    43. Sanja Bosnar, Maja Dutour Sikirić, Vilko Smrečki, Josip Bronić, Suzana Šegota, Vida Strasser, Tatjana Antonić Jelić, Ana Palčić, Boris Subotić. Controlled aggregation of core(amorphous silica)@shell(TPA + -polysilicate) nanoparticles at room temperature by selective removal of TPA + ions from the nanoparticle shell. Inorganic Chemistry Frontiers 2019, 6 (7) , 1639-1653. https://doi.org/10.1039/C9QI00200F
    44. Phil Buckley, Natasha Hargreaves, Sharon Cooper. Nucleation of quartz under ambient conditions. Communications Chemistry 2018, 1 (1) https://doi.org/10.1038/s42004-018-0049-4
    45. Alejandro Garrido-Maestu, Zhengxin Ma, Sae-Yeol-Rim Paik, Nusheng Chen, Sanghoon Ko, Zhaohui Tong, KwangCheol Casey Jeong. Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydrate Polymers 2018, 197 , 623-630. https://doi.org/10.1016/j.carbpol.2018.06.046
    46. Mahmoud Moqadam, Enrico Riccardi, Thuat T. Trinh, Anders Lervik, Titus S. van Erp. Rare event simulations reveal subtle key steps in aqueous silicate condensation. Physical Chemistry Chemical Physics 2017, 19 (20) , 13361-13371. https://doi.org/10.1039/C7CP01268C
    47. Rafael Jesús González-Álvarez, Ignacio Naranjo-Rodríguez, María Purificación Hernández-Artiga, José María Palacios-Santander, Laura Cubillana-Aguilera, Dolores Bellido-Milla. Experimental design applied to optimisation of silica nanoparticles size obtained by sonosynthesis. Journal of Sol-Gel Science and Technology 2016, 80 (2) , 378-388. https://doi.org/10.1007/s10971-016-4129-6
    48. Mohamed Haouas, David Petry, Michael Anderson, Francis Taulelle. Tetrapropylammonium Occlusion in Nanoaggregates of Precursor of Silicalite-1 Zeolite Studied by 1H and 13C NMR. Inorganics 2016, 4 (2) , 18. https://doi.org/10.3390/inorganics4020018
    49. Julien Grand, Hussein Awala, Svetlana Mintova. Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm 2016, 18 (5) , 650-664. https://doi.org/10.1039/C5CE02286J
    50. G. Brabants, S. Lieben, E. Breynaert, E. K. Reichel, F. Taulelle, J. A. Martens, B. Jakoby, C. E. A. Kirschhock. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy. Chemical Communications 2016, 52 (31) , 5478-5481. https://doi.org/10.1039/C6CC01106C
    51. Mahmoud Moqadam, Enrico Riccardi, Thuat T. Trinh, Per-Olof Åstrand, Titus S. van Erp. A test on reactive force fields for the study of silica dimerization reactions. The Journal of Chemical Physics 2015, 143 (18) https://doi.org/10.1063/1.4935179
    52. Scott M. Auerbach, Wei Fan, Peter A. Monson. Modelling the assembly of nanoporous silica materials. International Reviews in Physical Chemistry 2015, 34 (1) , 35-70. https://doi.org/10.1080/0144235X.2014.988038
    53. T. Muthukumaran, John Philip. Enhanced thermal stability of phosphate capped magnetite nanoparticles. Journal of Applied Physics 2014, 115 (22) https://doi.org/10.1063/1.4882737
    54. Alexandra I. Lupulescu, Jeffrey D. Rimer. In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization. Science 2014, 344 (6185) , 729-732. https://doi.org/10.1126/science.1250984
    55. Matthew D. Oleksiak, Jeffrey D. Rimer. Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism. Reviews in Chemical Engineering 2014, 30 (1) , 1-49. https://doi.org/10.1515/revce-2013-0020
    56. Dimitriya Borisova, Dilek Akçakayıran, Matthias Schenderlein, Helmuth Möhwald, Dmitry G. Shchukin. Nanocontainer-Based Anticorrosive Coatings: Effect of the Container Size on the Self-Healing Performance. Advanced Functional Materials 2013, 23 (30) , 3799-3812. https://doi.org/10.1002/adfm.201203715
    57. Ivy H. Lim, Wolfgang Schrader, Ferdi Schüth. The formation of zeolites from solution – Analysis by mass spectrometry. Microporous and Mesoporous Materials 2013, 166 , 20-36. https://doi.org/10.1016/j.micromeso.2012.04.059
    58. . Nanoparticle Characterization. 2012, 128-194. https://doi.org/10.1002/9781118408995.ch3
    59. Xiang Li, Daniel F. Shantz. PFG NMR studies of lysine–silica solutions. Journal of Colloid and Interface Science 2012, 383 (1) , 19-27. https://doi.org/10.1016/j.jcis.2012.06.009
    60. Hale Gürbüz, Begüm Tokay, Ayşe Erdem-Şenatalar. Effects of ultrasound on the synthesis of silicalite-1 nanocrystals. Ultrasonics Sonochemistry 2012, 19 (5) , 1108-1113. https://doi.org/10.1016/j.ultsonch.2012.01.008
    61. Alejandra Rivas-Cardona, Miyuki Chovanetz, Daniel F. Shantz. A systematic investigation of silicalite-1 precursor mixtures with varying degrees of dilution. Microporous and Mesoporous Materials 2012, 155 , 56-64. https://doi.org/10.1016/j.micromeso.2011.12.048
    62. Begüm Tokay, Ayşe Erdem-Şenatalar. Variation of particle size and its distribution during the synthesis of silicalite-1 nanocrystals. Microporous and Mesoporous Materials 2012, 148 (1) , 43-52. https://doi.org/10.1016/j.micromeso.2011.07.011
    63. Gemma-Louise Davies, Joseph E. McCarthy, Aliaksandra Rakovich, Yurii K. Gun'ko. Towards white luminophores: developing luminescent silica on the nanoscale. Journal of Materials Chemistry 2012, 22 (15) , 7358. https://doi.org/10.1039/c2jm16086b
    64. Nathan D. Hould, Andrew Foster, Raul F. Lobo. Zeolite beta mechanisms of nucleation and growth. Microporous and Mesoporous Materials 2011, 142 (1) , 104-115. https://doi.org/10.1016/j.micromeso.2010.11.024
    65. Alexander Aerts, Lana R. A. Follens, Ellen Biermans, Sara Bals, Gustaaf Van Tendeloo, Benoit Loppinet, Christine E. A. Kirschhock, Johan A. Martens. Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization. Physical Chemistry Chemical Physics 2011, 13 (10) , 4318. https://doi.org/10.1039/c0cp01592j
    66. Istvan Halasz, Mukesh Agarwal, Runbo Li, Neil Miller. What can vibrational spectroscopy tell about the structure of dissolved sodium silicates?. Microporous and Mesoporous Materials 2010, 135 (1-3) , 74-81. https://doi.org/10.1016/j.micromeso.2010.06.013
    67. Begüm Tokay, Oğuz Karvan, Ayşe Erdem-Şenatalar. Nanoparticle silicalite-1 crystallization as monitored by nitrogen adsorption. Microporous and Mesoporous Materials 2010, 131 (1-3) , 230-237. https://doi.org/10.1016/j.micromeso.2009.12.028
    68. Ryan J. Murphy, Denis Pristinski, Kalman Migler, Jack F. Douglas, Vivek M. Prabhu. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump. The Journal of Chemical Physics 2010, 132 (19) , 194903. https://doi.org/10.1063/1.3425883
    69. Alexander Aerts, Mohamed Haouas, Tom P. Caremans, Lana R. A. Follens, Titus S. van Erp, Francis Taulelle, Jan Vermant, Johan A. Martens, Christine E. A. Kirschhock. Investigation of the Mechanism of Colloidal Silicalite-1 Crystallization by Using DLS, SAXS, and 29Si NMR Spectroscopy. Chemistry - A European Journal 2010, 16 (9) , 2764-2774. https://doi.org/10.1002/chem.200901688
    70. Matthew G. O'Brien, Andrew M. Beale, Bert M. Weckhuysen. The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. Chemical Society Reviews 2010, 39 (12) , 4767. https://doi.org/10.1039/c0cs00088d
    71. S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas. The role of hydrogen bonding in nanocolloidal amorphous silica particles in electrolyte solutions. Journal of Colloid and Interface Science 2009, 339 (2) , 351-361. https://doi.org/10.1016/j.jcis.2009.07.069
    72. S. Jenkins, S. R. Kirk, M. Persson, J. Carlen, Z. Abbas. Molecular dynamics simulation of nanocolloidal amorphous silica particles: Part III. The Journal of Chemical Physics 2009, 130 (13) https://doi.org/10.1063/1.3102957
    73. Nicole F. Steinmetz, Sachin N. Shah, J. Elaine Barclay, Ghanasyam Rallapalli, George P. Lomonossoff, David. J. Evans. Virus‐Templated Silica Nanoparticles. Small 2009, 5 (7) , 813-816. https://doi.org/10.1002/smll.200801348
    74. Begüm Tokay, Mehmet Somer, Ayşe Erdem-Şenatalar, Ferdi Schüth, Robert W. Thompson. Nanoparticle silicalite-1 crystallization from clear solutions: Nucleation. Microporous and Mesoporous Materials 2009, 118 (1-3) , 143-151. https://doi.org/10.1016/j.micromeso.2008.08.034
    75. Boris Subotić, Josip Bronić, Tatjana Antonić Jelić. Theoretical and Practical Aspects of Zeolite Nucleation. 2009, 127-185. https://doi.org/10.1016/B978-0-444-53189-6.00006-8
    76. Gemma-Louise Davies, Antoinette Barry, Yurii K. Gun’ko. Preparation and size optimisation of silica nanoparticles using statistical analyses. Chemical Physics Letters 2009, 468 (4-6) , 239-244. https://doi.org/10.1016/j.cplett.2008.12.031
    77. Pablo Botella, Avelino Corma, María Teresa Navarro, Manuel Quesada. Design of optically active nanoclusters of gold particles with mesostructured silica coating. Journal of Materials Chemistry 2009, 19 (20) , 3168. https://doi.org/10.1039/b820293a
    78. S. Jenkins, S. R. Kirk, M. Persson, J. Carlen, Z. Abbas. Molecular dynamics simulation of nanocolloidal amorphous silica particles: Part II. The Journal of Chemical Physics 2008, 128 (16) https://doi.org/10.1063/1.2906462
    79. L. R. A. Follens, A. Aerts, M. Haouas, T. P. Caremans, B. Loppinet, B. Goderis, J. Vermant, F. Taulelle, J. A. Martens, C. E. A. Kirschhock. Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS. Physical Chemistry Chemical Physics 2008, 10 (36) , 5574. https://doi.org/10.1039/b805520c
    80. S. Caratzoulas, D. G. Vlachos. Molecular Dynamics Study of the Stabilization of the Silica Hexamer Si 6 O 15 6- in Aqueous and Methanolic Solutions. The Journal of Physical Chemistry B 2008, 112 (1) , 7-10. https://doi.org/10.1021/jp7102269
    81. Mark A. Snyder, Michael Tsapatsis. Hierarchische Nanofertigung: von geformten Zeolithnanopartikeln zu hochleistungsfähigen Trennmembranen. Angewandte Chemie 2007, 119 (40) , 7704-7717. https://doi.org/10.1002/ange.200604910
    82. Mark A. Snyder, Michael Tsapatsis. Hierarchical Nanomanufacturing: From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes. Angewandte Chemie International Edition 2007, 46 (40) , 7560-7573. https://doi.org/10.1002/anie.200604910
    83. Istvan Halasz, Mukesh Agarwal, Runbo Li, Neil Miller. Vibrational spectra and dissociation of aqueous Na2SiO3 solutions. Catalysis Letters 2007, 117 (1-2) , 34-42. https://doi.org/10.1007/s10562-007-9141-6
    84. Istvan Halasz, Mukesh Agarwal, Runbo Li, Neil Miller. Monitoring the structure of water soluble silicates. Catalysis Today 2007, 126 (1-2) , 196-202. https://doi.org/10.1016/j.cattod.2006.09.032
    85. Luis Bollmann, Vikrant N. Urade, Hugh W. Hillhouse. Controlling Interfacial Curvature in Nanoporous Silica Films Formed by Evaporation-Induced Self-Assembly from Nonionic Surfactants. I. Evolution of Nanoscale Structures in Coating Solutions. Langmuir 2007, 23 (8) , 4257-4267. https://doi.org/10.1021/la0626407
    86. Joseph M. Fedeyko, Heather Egolf-Fox, Dustin W. Fickel, Dionisios G. Vlachos, Raul F. Lobo. Initial Stages of Self-Organization of Silica−Alumina Gels in Zeolite Synthesis. Langmuir 2007, 23 (8) , 4532-4540. https://doi.org/10.1021/la062808o
    87. Richard Catlow, Robert Bell, Furio Cora, Ben Slater. Molecular Modelling in Zeolite Science. 2007, 659-700. https://doi.org/10.1016/S0167-2991(07)80807-X
    88. J.D. Rimer, D.G. Vlachos, R.F. Lobo. Kinetics of silicalite-1 crystallization. 2007, 133-144. https://doi.org/10.1016/S0167-2991(07)80831-7
    89. S. Caratzoulas, D. G. Vlachos, M. Tsapatsis. Potential of Mean Force for Tetramethylammonium Binding to Cagelike Oligosilicates in Aqueous Solution. Journal of the American Chemical Society 2006, 128 (50) , 16138-16147. https://doi.org/10.1021/ja064597f
    90. Miguel Jorge, Scott M. Auerbach, Peter A. Monson. Modelling the thermal stability of precursor nanoparticles in zeolite synthesis. Molecular Physics 2006, 104 (22-24) , 3513-3522. https://doi.org/10.1080/00268970601014864
    91. Chil-Hung Cheng, Gopalakrishnan Juttu, Scott F. Mitchell, Daniel F. Shantz. Synthesis, Characterization, and Growth Rates of Aluminum- and Ge,Al-Substituted Silicalite-1 Materials Grown from Clear Solutions. The Journal of Physical Chemistry B 2006, 110 (45) , 22488-22495. https://doi.org/10.1021/jp0638538
    92. Chil-Hung Cheng, Gopalakrishnan Juttu, Scott F. Mitchell, Daniel F. Shantz. Synthesis, Characterization, and Growth Rates of Germanium Silicalite-1 Grown from Clear Solutions. The Journal of Physical Chemistry B 2006, 110 (43) , 21430-21437. https://doi.org/10.1021/jp063852f
    93. Vladimiros Nikolakis. Understanding the effect of specific surface area and surface reactions on silicalite-1 nucleation and growth. Microporous and Mesoporous Materials 2006, 93 (1-3) , 101-110. https://doi.org/10.1016/j.micromeso.2006.02.012
    94. Jan D. Epping, Bradley F. Chmelka. Nucleation and growth of zeolites and inorganic mesoporous solids: Molecular insights from magnetic resonance spectroscopy. Current Opinion in Colloid & Interface Science 2006, 11 (2-3) , 81-117. https://doi.org/10.1016/j.cocis.2005.12.002
    95. Jeffrey D. Rimer, Joseph M. Fedeyko, Dionisios G. Vlachos, Raul F. Lobo. Silica Self-Assembly and Synthesis of Microporous and Mesoporous Silicates. Chemistry - A European Journal 2006, 12 (11) , 2926-2934. https://doi.org/10.1002/chem.200500684
    96. Joseph M. Fedeyko, Dionisios G. Vlachos, Raul F. Lobo. Understanding the differences between microporous and mesoporous synthesis through the phase behavior of silica. Microporous and Mesoporous Materials 2006, 90 (1-3) , 102-111. https://doi.org/10.1016/j.micromeso.2005.10.048
    97. Christopher T. G. Knight, Jingpeng Wang, Stephen D. Kinrade. Do zeolite precursor species really exist in aqueous synthesis media?. Physical Chemistry Chemical Physics 2006, 8 (26) , 3099. https://doi.org/10.1039/b606419a
    98. Chil-Hung Cheng, Daniel F. Shantz. Small-angle scattering studies of silicalite-1 growth from clear solutions. Current Opinion in Colloid & Interface Science 2005, 10 (5-6) , 188-194. https://doi.org/10.1016/j.cocis.2005.08.004
    99. Vladimiros Nikolakis. Understanding interactions in zeolite colloidal suspensions: A review. Current Opinion in Colloid & Interface Science 2005, 10 (5-6) , 203-210. https://doi.org/10.1016/j.cocis.2005.09.006
    100. Timothy O. Drews, Markos A. Katsoulakis, Michael Tsapatsis. A Mathematical Model for Crystal Growth by Aggregation of Precursor Metastable Nanoparticles. The Journal of Physical Chemistry B 2005, 109 (50) , 23879-23887. https://doi.org/10.1021/jp0537299
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect