ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Spreading of 16-Mercaptohexadecanoic Acid in Microcontact Printing

View Author Information
MESA+ Institute for Nanotechnology and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Cite this: Langmuir 2004, 20, 20, 8646–8651
Publication Date (Web):August 21, 2004
https://doi.org/10.1021/la0487040
Copyright © 2004 American Chemical Society

    Article Views

    414

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (225 KB)

    Abstract

    Abstract Image

    Spreading in microcontact printing refers to the process or processes by which the ink molecules end up in the parts of the substrate that are adjacent to the contacted areas but which are not contacted themselves. This has been investigated for different inking concentrations of 16-mercaptohexadecanoic acid (MHDA). Spreading of MHDA takes place with retention of a well-defined demarcation. Feature sizes can be controlled by varying the contact times. Spreading, however, only takes place beyond a certain threshold concentration. For low ink concentrations the edges of stamp features dominate the ink transfer. For these low concentrations the extent of this edge dominance depends strongly on ink concentration rather than on contact time. These observations indicate a dominant role of the stamp surface in the processes of pattern formation and spreading.

     MESA+ Institute for Nanotechnology and Faculty of Science and Technology, University of Twente.

     Molecular and Biomolecular Engineering, Philips Research.

    *

     To whom correspondence should be addressed:  j.huskens@ utwente.nl and [email protected].

    §

     Supramolecular Chemistry and Technology, University of Twente.

     Solid State Physics, University of Twente.

    Cited By

    This article is cited by 21 publications.

    1. Szu-Hao Cho, Piljae Joo, Chi Zhang, Elizabeth A. Lewis, Bryan D. Vogt, Nicole S. Zacharia. Patterned Hydrophilic Patches on Slippery Surfaces with Anticounterfeit Applications. ACS Applied Polymer Materials 2022, 4 (1) , 100-110. https://doi.org/10.1021/acsapm.1c00653
    2. Chang-Beom Kim, Honggu Chun, JaeHun Chung, Kwang Ho Lee, Jeong Hoon Lee, Ki-Bong Song, and Sang-Hoon Lee . In Situ Curing of Sliding SU-8 Droplet over a Microcontact Printed Pattern for Tunable Fabrication of a Polydimethylsiloxane Nanoslit. Analytical Chemistry 2011, 83 (18) , 7221-7226. https://doi.org/10.1021/ac200859b
    3. Alexander A. Shestopalov, Carleen J. Morris, Briana N. Vogen, Amanda Hoertz, Robert L. Clark, and Eric J. Toone . Soft-Lithographic Approach to Functionalization and Nanopatterning Oxide-Free Silicon. Langmuir 2011, 27 (10) , 6478-6485. https://doi.org/10.1021/la200373g
    4. Dan Lis, André Peremans, Yannick Sartenaer, Yves Caudano, Alaa Addin Mani, Laurent Dreesen, Paul A. Thiry, Julien Guthmuller, Benoît Champagne and Francesca Cecchet . Self-Assembled Film Organization in Fast Microcontact Printing Investigated by Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry C 2009, 113 (22) , 9857-9864. https://doi.org/10.1021/jp900217d
    5. Chih-Hao Hsu,, Ming-Chih Yeh,, Kung-Lung Lo, and, Li-Jen Chen. Application of Microcontact Printing to Electroless Plating for the Fabrication of Microscale Silver Patterns on Glass. Langmuir 2007, 23 (24) , 12111-12118. https://doi.org/10.1021/la7023988
    6. Jennie L. Cawley, Megan E. Blauch, Shannon M. Collins, Justin B Nice, Qing Xie, Luke R. Jordan, Angela C. Brown, Nathan J. Wittenberg. Nanoarrays of Individual Liposomes and Bacterial Outer Membrane Vesicles by Liftoff Nanocontact Printing. Small 2021, 17 (50) https://doi.org/10.1002/smll.202103338
    7. Tyson C. Davis, Jeremiah O. Bechtold, Tyler R. Hayes, Terry A. Villarreal, Shelley A. Claridge. Hierarchically patterned striped phases of polymerized lipids: toward controlled carbohydrate presentation at interfaces. Faraday Discussions 2019, 219 , 229-243. https://doi.org/10.1039/C9FD00022D
    8. T. Singh, M. Geissler. Sub-Micrometer Patterning Using Soft Lithography. 2017https://doi.org/10.1016/B978-0-12-803581-8.09237-7
    9. Chang-Beom Kim, Honggu Chun, JaeHun Chung, Ki-Bong Song, Sang-Hoon Lee. Non-collapsible PDMS nanochannel fabrication with tunable width and height using single master mold. 2011, 1723-1727. https://doi.org/10.1109/NANO.2011.6144473
    10. Yunyan Xie, Xingyu Jiang. Microcontact Printing. 2011, 239-248. https://doi.org/10.1007/978-1-59745-551-0_14
    11. M. Geissler. Sub-Micrometer Patterning Using Soft Lithography. 2011, 63-81. https://doi.org/10.1016/B978-0-12-374396-1.00122-7
    12. Y Zhang, H Fan, W Huang, Y Chen. Droplets Atop a Wrinkled Substrate. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2010, 224 (11) , 2459-2467. https://doi.org/10.1243/09544062JMES2069
    13. Jurjen ter Maat, Menglong Yang, Luc Scheres, Stefan Kuypers, Han Zuilhof. Light-enhanced microcontact printing of 1-alkynes onto hydrogen-terminated silicon. Chemical Communications 2010, 46 (42) , 8005. https://doi.org/10.1039/c0cc03343j
    14. Shih-Chun Huang, Ting-Chieh Tsao, Li-Jen Chen. Selective Electroless Copper Plating on Poly(ethylene terephthalate) Surfaces by Microcontact Printing. Journal of The Electrochemical Society 2010, 157 (4) , D222. https://doi.org/10.1149/1.3306136
    15. András Perl, David N. Reinhoudt, Jurriaan Huskens. Microcontact Printing: Limitations and Achievements. Advanced Materials 2009, 21 (22) , 2257-2268. https://doi.org/10.1002/adma.200801864
    16. Matthew S. Johannes, Daniel G. Cole, Robert L. Clark. Atomic force microscope based nanofabrication of master pattern molds for use in soft lithography. Applied Physics Letters 2007, 91 (12) https://doi.org/10.1063/1.2787965
    17. S Diegoli, C A E Hamlett, S J Leigh, P M Mendes, J A Preece. Engineering nanostructures at surfaces using nanolithography. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2007, 221 (4) , 589-629. https://doi.org/10.1243/09544100JAERO212
    18. Sami Alom Ruiz, Christopher S. Chen. Microcontact printing: A tool to pattern. Soft Matter 2007, 3 (2) , 168-177. https://doi.org/10.1039/B613349E
    19. Dirk Burdinski, Milan Saalmink, Jeroen P. W. G. van den Berg, Cees van der Marel. Universal Ink for Microcontact Printing. Angewandte Chemie International Edition 2006, 45 (26) , 4355-4358. https://doi.org/10.1002/anie.200600310
    20. Dirk Burdinski, Milan Saalmink, Jeroen P. W. G. van den Berg, Cees van der Marel. Universelle Tinte für den Mikrokontaktdruck. Angewandte Chemie 2006, 118 (26) , 4461-4465. https://doi.org/10.1002/ange.200600310
    21. Agnes A. Mewe, E. Stefan Kooij, Bene Poelsema. Seeded-Growth Approach to Selective Metallization of Microcontact-Printed Patterns. Langmuir 2006, 22 (13) , 5584-5587. https://doi.org/10.1021/la052968k

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect