ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Generation of Polymerosomes from Double-Emulsions

View Author Information
Department of Physics and Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, and Rhodia-CNRS, Laboratory of the Future LOF, 33600 Pessac, France
Cite this: Langmuir 2005, 21, 20, 9183–9186
Publication Date (Web):August 23, 2005
https://doi.org/10.1021/la050797d
Copyright © 2005 American Chemical Society

    Article Views

    3860

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (207 KB)

    Abstract

    Abstract Image

    Diblock copolymers are known to spontaneously organize into polymer vesicles. Typically, this is achieved through the techniques of film rehydration or electroformation. We present a new method for generating polymer vesicles from double emulsions. We generate precision water-in-oil-in-water double emulsions from the breakup of concentric fluid streams; the hydrophobic fluid is a volatile mixture of organic solvent that contains dissolved diblock copolymers. We collect the double emulsions and slowly evaporate the organic solvent, which ultimately directs the self-assembly of the dissolved diblock copolymers into vesicular structures. Independent control over all three fluid streams enables precision assembly of polymer vesicles and provides for highly efficient encapsulation of active ingredients within the polymerosomes. We also use double emulsions with several internal drops to form new polymerosome structures.

    §

     These authors contributed equally to this work.

    #

     Department of Physics and Division of Engineering and Applied Science, Harvard University.

     Current address: LPMDI − UMR 8108 CNRS, Université de Marne-la-Vallée, France.

     Rhodia-CNRS, Laboratory of the Future LOF.

    *

     To whom correspondence should be addressed. E-mail:  weitz@ deas.harvard.edu.

    Cited By

    This article is cited by 234 publications.

    1. Cheng Qi, Xudong Ma, Junfeng Zhong, Jiangyu Fang, Yuanding Huang, Xiaokang Deng, Tiantian Kong, Zhou Liu. Facile and Programmable Capillary-Induced Assembly of Prototissues via Hanging Drop Arrays. ACS Nano 2023, 17 (17) , 16787-16797. https://doi.org/10.1021/acsnano.3c03516
    2. William N. Sharratt, Victoria E. Lee, Rodney D. Priestley, João T. Cabral. Precision Polymer Particles by Flash Nanoprecipitation and Microfluidic Droplet Extraction. ACS Applied Polymer Materials 2021, 3 (10) , 4746-4768. https://doi.org/10.1021/acsapm.1c00546
    3. Andrea Montessori, Adriano Tiribocchi, Michał Bogdan, Fabio Bonaccorso, Marco Lauricella, Jan Guzowski, Sauro Succi. Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. Langmuir 2021, 37 (30) , 9026-9033. https://doi.org/10.1021/acs.langmuir.1c01026
    4. Koceïla Doufène, Corine Tourné-Péteilh, Pascal Etienne, Anne Aubert-Pouëssel. Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir 2019, 35 (39) , 12597-12612. https://doi.org/10.1021/acs.langmuir.9b02179
    5. Mudassar Mumtaz Virk, Benedikt Hofmann, Erik Reimhult. Formation and Characteristics of Lipid-Blended Block Copolymer Bilayers on a Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscopy. Langmuir 2019, 35 (3) , 739-749. https://doi.org/10.1021/acs.langmuir.8b03597
    6. Noga Yaakov, Karthik Ananth Mani, Reut Felfbaum, Magen Lahat, Noam Da Costa, Eduard Belausov, Dana Ment, Guy Mechrez. Single Cell Encapsulation via Pickering Emulsion for Biopesticide Applications. ACS Omega 2018, 3 (10) , 14294-14301. https://doi.org/10.1021/acsomega.8b02225
    7. Merve Gultekinoglu, Xinyue Jiang, Cem Bayram, Kezban Ulubayram, Mohan Edirisinghe. Honeycomb-like PLGA-b-PEG Structure Creation with T-Junction Microdroplets. Langmuir 2018, 34 (27) , 7989-7997. https://doi.org/10.1021/acs.langmuir.8b00886
    8. Mi Ri Kim and In Woo Cheong . Stimuli-triggered Formation of Polymersomes from W/O/W Multiple Double Emulsion Droplets Containing Poly(styrene)-block-poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl). Langmuir 2016, 32 (36) , 9223-9228. https://doi.org/10.1021/acs.langmuir.6b02178
    9. Danielle Konetski, Tao Gong, and Christopher N. Bowman . Photoinduced Vesicle Formation via the Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction. Langmuir 2016, 32 (32) , 8195-8201. https://doi.org/10.1021/acs.langmuir.6b02043
    10. Regina Bleul, Raphael Thiermann, and Michael Maskos . Techniques To Control Polymersome Size. Macromolecules 2015, 48 (20) , 7396-7409. https://doi.org/10.1021/acs.macromol.5b01500
    11. Jae Man Shin, Minsoo P. Kim, Hyunseung Yang, Kang Hee Ku, Se Gyu Jang, Kyung Ho Youm, Gi-Ra Yi, and Bumjoon J. Kim . Monodipserse Nanostructured Spheres of Block Copolymers and Nanoparticles via Cross-Flow Membrane Emulsification. Chemistry of Materials 2015, 27 (18) , 6314-6321. https://doi.org/10.1021/acs.chemmater.5b02020
    12. Ingmar Polenz, David A. Weitz, and Jean-Christophe Baret . Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft Membranes. Langmuir 2015, 31 (3) , 1127-1134. https://doi.org/10.1021/la5040189
    13. Ingmar Polenz, Sujit S. Datta, and David A. Weitz . Controlling the Morphology of Polyurea Microcapsules Using Microfluidics. Langmuir 2014, 30 (44) , 13405-13410. https://doi.org/10.1021/la503234z
    14. Garima Agrawal, Andreas Ülpenich, Xiaomin Zhu, Martin Möller, and Andrij Pich . Microgel-Based Adaptive Hybrid Capsules with Tunable Shell Permeability. Chemistry of Materials 2014, 26 (20) , 5882-5891. https://doi.org/10.1021/cm502358s
    15. Douglas L. Gettel, Jeremy Sanborn, Mira A. Patel, Hans-Peter de Hoog, Bo Liedberg, Madhavan Nallani, and Atul N. Parikh . Mixing, Diffusion, and Percolation in Binary Supported Membranes Containing Mixtures of Lipids and Amphiphilic Block Copolymers. Journal of the American Chemical Society 2014, 136 (29) , 10186-10189. https://doi.org/10.1021/ja5037308
    16. Anthony D. Duong, Gang Ruan, Kalpesh Mahajan, Jessica O. Winter, and Barbara E. Wyslouzil . Scalable, Semicontinuous Production of Micelles Encapsulating Nanoparticles via Electrospray. Langmuir 2014, 30 (14) , 3939-3948. https://doi.org/10.1021/la404679r
    17. Robert J. Hickey, Jason Koski, Xin Meng, Robert A. Riggleman, Peijun Zhang, and So-Jung Park . Size-Controlled Self-Assembly of Superparamagnetic Polymersomes. ACS Nano 2014, 8 (1) , 495-502. https://doi.org/10.1021/nn405012h
    18. D. Martin A. Buzza, Paul D. I. Fletcher, Theoni K. Georgiou, and Negar Ghasdian . Water-in-Water Emulsions Based on Incompatible Polymers and Stabilized by Triblock Copolymers–Templated Polymersomes. Langmuir 2013, 29 (48) , 14804-14814. https://doi.org/10.1021/la403356j
    19. Romain Salva, Jean-François Le Meins, Olivier Sandre, Annie Brûlet, Marc Schmutz, Patrick Guenoun, and Sébastien Lecommandoux . Polymersome Shape Transformation at the Nanoscale. ACS Nano 2013, 7 (10) , 9298-9311. https://doi.org/10.1021/nn4039589
    20. Anthony M. DiLauro, Alireza Abbaspourrad, David A. Weitz, and Scott T. Phillips . Stimuli-Responsive Core–Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane. Macromolecules 2013, 46 (9) , 3309-3313. https://doi.org/10.1021/ma400456p
    21. Chantal Paquet, Zygmunt J. Jakubek, and Benoit Simard . Superparamagnetic Microspheres with Controlled Macroporosity Generated in Microfluidic Devices. ACS Applied Materials & Interfaces 2012, 4 (9) , 4934-4941. https://doi.org/10.1021/am301304h
    22. Smita Kashyap and M. Jayakannan . Amphiphilic Diblocks Sorting into Multivesicular Bodies and Their Fluorophore Encapsulation Capabilities. The Journal of Physical Chemistry B 2012, 116 (32) , 9820-9831. https://doi.org/10.1021/jp304121d
    23. Kyung Heon Lee, Sang Bok Kim, Sang Youl Yoon, Kang Soo Lee, Jin Ho Jung, and Hyung Jin Sung . Behavior of Double Emulsions in a Cross-Type Optical Separation System. Langmuir 2012, 28 (19) , 7343-7349. https://doi.org/10.1021/la300693q
    24. Polly H. R. Keen, Nigel K. H. Slater, and Alexander F. Routh . Encapsulation of Yeast Cells in Colloidosomes. Langmuir 2012, 28 (2) , 1169-1174. https://doi.org/10.1021/la204183u
    25. Philipp W. Chen, Randall M. Erb, and André R. Studart . Designer Polymer-Based Microcapsules Made Using Microfluidics. Langmuir 2012, 28 (1) , 144-152. https://doi.org/10.1021/la203088u
    26. Shin-Hyun Kim, Ho Cheung Shum, Jin Woong Kim, Jun-Cheol Cho, and David A. Weitz . Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society 2011, 133 (38) , 15165-15171. https://doi.org/10.1021/ja205687k
    27. Aaron P. Esser-Kahn, Susan A. Odom, Nancy R. Sottos, Scott R. White, and Jeffrey S. Moore . Triggered Release from Polymer Capsules. Macromolecules 2011, 44 (14) , 5539-5553. https://doi.org/10.1021/ma201014n
    28. Adeline Perro, Célia Nicolet, Julie Angly, Sébastien Lecommandoux, Jean-François Le Meins, and Annie Colin . Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes. Langmuir 2011, 27 (14) , 9034-9042. https://doi.org/10.1021/la1037102
    29. Autumn Carlsen, Nicolas Glaser, Jean-François Le Meins, and Sébastien Lecommandoux . Block Copolymer Vesicle Permeability Measured by Osmotic Swelling and Shrinking. Langmuir 2011, 27 (8) , 4884-4890. https://doi.org/10.1021/la105045m
    30. Andreas Picker, Hermann Nuss, Patrick Guenoun, and Corinne Chevallard . Polymer Vesicles as Microreactors for Bioinspired Calcium Carbonate Precipitation. Langmuir 2011, 27 (7) , 3213-3218. https://doi.org/10.1021/la104865n
    31. Wubeante Yenet Ayen, Kalpna Garkhal, and Neeraj Kumar . Doxorubicin-Loaded (PEG)3-PLA Nanopolymersomes: Effect of Solvents and Process Parameters on Formulation Development and In Vitro Study. Molecular Pharmaceutics 2011, 8 (2) , 466-478. https://doi.org/10.1021/mp1003256
    32. Zhifeng Bai and Timothy P. Lodge. Polymersomes with Ionic Liquid Interiors Dispersed in Water. Journal of the American Chemical Society 2010, 132 (45) , 16265-16270. https://doi.org/10.1021/ja107751k
    33. Chunsun Zhang and Da Xing. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chemical Reviews 2010, 110 (8) , 4910-4947. https://doi.org/10.1021/cr900081z
    34. Tobias Foster, Kevin D. Dorfman and H. Ted Davis. Rapid Ejection of Giant Pluronic L121 Vesicles from Spreading Double Emulsion Droplets. Langmuir 2010, 26 (12) , 9666-9672. https://doi.org/10.1021/la1002429
    35. Julian Thiele, Dagmar Steinhauser, Thomas Pfohl and Stephan Förster . Preparation of Monodisperse Block Copolymer Vesicles via Flow Focusing in Microfluidics. Langmuir 2010, 26 (9) , 6860-6863. https://doi.org/10.1021/la904163v
    36. Ryan C. Hayward and Darrin J. Pochan . Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process. Macromolecules 2010, 43 (8) , 3577-3584. https://doi.org/10.1021/ma9026806
    37. Charles Sanson, Christophe Schatz, Jean-François Le Meins, Annie Brûlet, Alain Soum and Sébastien Lecommandoux . Biocompatible and Biodegradable Poly(trimethylene carbonate)-b-Poly(l-glutamic acid) Polymersomes: Size Control and Stability. Langmuir 2010, 26 (4) , 2751-2760. https://doi.org/10.1021/la902786t
    38. Fenghua Meng, Zhiyuan Zhong and Jan Feijen . Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 2009, 10 (2) , 197-209. https://doi.org/10.1021/bm801127d
    39. Daisuke Saeki, Shinji Sugiura, Toshiyuki Kanamori, Seigo Sato, Sukekuni Mukataka and Sosaku Ichikawa . Highly Productive Droplet Formation by Anisotropic Elongation of a Thread Flow in a Microchannel. Langmuir 2008, 24 (23) , 13809-13813. https://doi.org/10.1021/la802776z
    40. Ho Cheung Shum, Daeyeon Lee, Insun Yoon, Tom Kodger and David A. Weitz . Double Emulsion Templated Monodisperse Phospholipid Vesicles. Langmuir 2008, 24 (15) , 7651-7653. https://doi.org/10.1021/la801833a
    41. Ho Cheung Shum, Jin-Woong Kim and David A. Weitz . Microfluidic Fabrication of Monodisperse Biocompatible and Biodegradable Polymersomes with Controlled Permeability. Journal of the American Chemical Society 2008, 130 (29) , 9543-9549. https://doi.org/10.1021/ja802157y
    42. Shin-Hyun Kim, Seog-Jin Jeon and Seung-Man Yang. Optofluidic Encapsulation of Crystalline Colloidal Arrays into Spherical Membrane. Journal of the American Chemical Society 2008, 130 (18) , 6040-6046. https://doi.org/10.1021/ja800844w
    43. Shinji Sugiura,, Takashi Kuroiwa,, Tetsuro Kagota,, Mitsutoshi Nakajima,, Seigo Sato,, Sukekuni Mukataka,, Peter Walde, and, Sosaku Ichikawa. Novel Method for Obtaining Homogeneous Giant Vesicles from a Monodisperse Water-in-Oil Emulsion Prepared with a Microfluidic Device. Langmuir 2008, 24 (9) , 4581-4588. https://doi.org/10.1021/la703509r
    44. Ayako Yamada,, Toru Yamanaka,, Tsutomu Hamada,, Masahiko Hase,, Kenichi Yoshikawa, and, Damien Baigl. Spontaneous Transfer of Phospholipid-Coated Oil-in-Oil and Water-in-Oil Micro-Droplets through an Oil/Water Interface. Langmuir 2006, 22 (24) , 9824-9828. https://doi.org/10.1021/la062221+
    45. Ryan C. Hayward,, Andrew S. Utada,, Nily Dan, and, David A. Weitz. Dewetting Instability during the Formation of Polymersomes from Block-Copolymer-Stabilized Double Emulsions. Langmuir 2006, 22 (10) , 4457-4461. https://doi.org/10.1021/la060094b
    46. Laura Velasco-Garcia, Carla Casadevall. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-01069-z
    47. Jean-Paul Douliez, Anais Arlaut, Laure Beven, Anne-Laure Fameau, Arnaud Saint-Jalmes. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets. Soft Matter 2023, 19 (39) , 7562-7569. https://doi.org/10.1039/D3SM00970J
    48. POONAM JOSHI, NIDHI NAINWAL, SRISHTI MORRIS, VIKAS JAKHMOLA. A REVIEW ON RECENT ADVANCES ON STIMULI BASED SMART NANOMATERIALS FOR DRUG DELIVERY AND BIOMEDICAL APPLICATION. International Journal of Applied Pharmaceutics 2023, , 48-59. https://doi.org/10.22159/ijap.2023v15i5.48186
    49. Marina Koroleva. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Physical Chemistry Chemical Physics 2023, 25 (33) , 21836-21859. https://doi.org/10.1039/D3CP01984E
    50. Jean‐Paul Douliez. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. Small Methods 2023, https://doi.org/10.1002/smtd.202300530
    51. Cagri Turan, Ipek Terzioglu, Dilara Gundogdu, Irem Erel-Goktepe. Synthesis of poly(2-isopropyl-2-oxazoline)-b-poly(2-phenyl-2-oxazoline)-b-poly(2-isopropyl-2-oxazoline) and its self-assembly into polymersomes: Temperature-dependent aqueous solution behavior. Materials Today Communications 2023, 35 , 106094. https://doi.org/10.1016/j.mtcomm.2023.106094
    52. Jui‐Yi Chen, Sudhanshu Agrawal, Hsiu‐Ping Yi, Derek Vallejo, Anshu Agrawal, Abraham P. Lee. Cell‐Sized Lipid Vesicles as Artificial Antigen‐Presenting Cells for Antigen‐Specific T Cell Activation. Advanced Healthcare Materials 2023, 12 (12) https://doi.org/10.1002/adhm.202203163
    53. Yogita Lugani, Venkata Ramana Vemuluri, Balwinder Singh Sooch. Nanotechnology: Emerging Opportunities and Regulatory Aspects in Water Treatment. 2023, 173-209. https://doi.org/10.1007/978-3-031-24416-2_6
    54. M. Senthil Kumar, L.V. Vigneshwaran. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. 2023, 437-463. https://doi.org/10.1016/B978-0-323-91248-8.00018-0
    55. Zhiliang Gao, Xiaomiao Cui, Jiwei Cui. Multicompartment polymer capsules. Supramolecular Materials 2022, 1 , 100015. https://doi.org/10.1016/j.supmat.2022.100015
    56. Karim Osouli-Bostanabad, Sara Puliga, Dolores R. Serrano, Andrea Bucchi, Gavin Halbert, Aikaterini Lalatsa. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022, 14 (9) , 1940. https://doi.org/10.3390/pharmaceutics14091940
    57. Hui Chen, Min‐Hui Li. AIE Fluorescent Polymersomes. 2022, 311-339. https://doi.org/10.1002/9781119643098.ch32
    58. Junwei Wang, Simon Hahn, Esther Amstad, Nicolas Vogel. Tailored Double Emulsions Made Simple. Advanced Materials 2022, 34 (5) https://doi.org/10.1002/adma.202107338
    59. Martin Fauquignon, Elise Courtecuisse, Romane Josselin, Angela Mutschler, Annie Brûlet, Marc Schmutz, Jean-François Le Meins. Large hybrid Polymer/Lipid Unilamellar vesicle (LHUV) at the nanoscale: An insight into the lipid distribution in the membrane and permeability control. Journal of Colloid and Interface Science 2021, 604 , 575-583. https://doi.org/10.1016/j.jcis.2021.06.172
    60. Sehrish Iftikhar, Aurélie Vigne, Julia Elisa Sepulveda-Diaz. Droplet-based microfluidics platform for antifungal analysis against filamentous fungi. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-02350-8
    61. Bineet Sharma, Hossein Moghimianavval, Sung-Won Hwang, Allen P. Liu. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. Membranes 2021, 11 (12) , 912. https://doi.org/10.3390/membranes11120912
    62. Liliya Kotliarevski, Karthik Ananth Mani, Reut Amar Feldbaum, Noga Yaakov, Eduard Belausov, Einat Zelinger, Dana Ment, Guy Mechrez. Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.726874
    63. Esra Ilhan-Ayisigi, Burcu Yaldiz, Gizem Bor, Anan Yaghmur, Ozlem Yesil-Celiktas. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids and Surfaces B: Biointerfaces 2021, 201 , 111633. https://doi.org/10.1016/j.colsurfb.2021.111633
    64. Hanjin Seo, Hyomin Lee. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. Biomicrofluidics 2021, 15 (2) https://doi.org/10.1063/5.0048441
    65. Vandana Singh, Archana Tiwari. Wastewater remediation through microbe-based nanoparticles. 2021, 237-248. https://doi.org/10.1016/B978-0-12-822503-5.00024-2
    66. Shanlong Li, Chunyang Yu, Yongfeng Zhou. Computational design of Janus polymersomes with controllable fission from double emulsions. Physical Chemistry Chemical Physics 2020, 22 (43) , 24934-24942. https://doi.org/10.1039/D0CP04561F
    67. Abhishek Kumar Sharma, Parteek Prasher, Alaa A. Aljabali, Vijay Mishra, Himanshu Gandhi, Sunil Kumar, Srinivas Mutalik, Dinesh Kumar Chellappan, Murtaza M. Tambuwala, Kamal Dua, Deepak N. Kapoor. Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Delivery and Translational Research 2020, 10 (5) , 1171-1190. https://doi.org/10.1007/s13346-020-00789-2
    68. G. Pontrelli, E. J. Carr, A. Tiribocchi, S. Succi. Modeling drug delivery from multiple emulsions. Physical Review E 2020, 102 (2) https://doi.org/10.1103/PhysRevE.102.023114
    69. Yuan Tian, Xinyu Mao, Rui Sun, Ming Zhang, Qiang Xia. Enhanced oral bioavailability of oligomeric proanthocyanidins by a self‐double‐emulsifying drug delivery system. Food Science & Nutrition 2020, 8 (7) , 3814-3825. https://doi.org/10.1002/fsn3.1673
    70. Elena C. dos Santos, Alessandro Angelini, Dimitri Hürlimann, Wolfgang Meier, Cornelia G. Palivan. Giant Polymer Compartments for Confined Reactions. Chemistry 2020, 2 (2) , 470-489. https://doi.org/10.3390/chemistry2020028
    71. Simon Matoori, Jean-Christophe Leroux. Twenty-five years of polymersomes: lost in translation?. Materials Horizons 2020, 7 (5) , 1297-1309. https://doi.org/10.1039/C9MH01669D
    72. Dawei Pan, Qiang Chen, Shufan Chen, Bo Li. Experimental study on millimeter-scale W1/O/W2 compound droplets formation in a co-flowing device with two-step structure. Chemical Engineering Science 2020, 216 , 115493. https://doi.org/10.1016/j.ces.2020.115493
    73. Dawei Pan, Qiang Chen, Yinjuan Zhang, Bo Li. Investigation on millimeter-scale W1/O/W2 compound droplets generation in a co-flowing device with one-step structure. Journal of Industrial and Engineering Chemistry 2020, 84 , 366-374. https://doi.org/10.1016/j.jiec.2020.01.020
    74. Zehua Liu, Flavia Fontana, Andre Python, Jouni T. Hirvonen, Hélder A. Santos. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small 2020, 16 (9) https://doi.org/10.1002/smll.201904673
    75. Nina Filipczak, Jiayi Pan, Satya Siva Kishan Yalamarty, Vladimir P. Torchilin. Recent advancements in liposome technology. Advanced Drug Delivery Reviews 2020, 156 , 4-22. https://doi.org/10.1016/j.addr.2020.06.022
    76. Fitsum Feleke Sahle, Tao L. Lowe. Design strategies for programmable oligonucleotide nanotherapeutics. Drug Discovery Today 2020, 25 (1) , 73-88. https://doi.org/10.1016/j.drudis.2019.09.006
    77. Meifang Liu, Yueqing Zheng, Yiyang Liu, Zhanwen Zhang, Yuguang Wang, Jing Li, Qiang Chen, Jie Li, Yawen Huang, Qiang Yin. Effects of poly(vinyl alcohol) and poly(acrylic acid) on interfacial properties and stability of compound droplets. International Journal of Hydrogen Energy 2020, 45 (4) , 2925-2935. https://doi.org/10.1016/j.ijhydene.2019.11.129
    78. Yulan Chen, Zhenzhen Lu, Qingxia Liu. Janus membrane emulsification for facile preparation of hollow microspheres. Journal of Membrane Science 2019, 592 , 117384. https://doi.org/10.1016/j.memsci.2019.117384
    79. Babak Vajdi Hokmabad, Kyle A. Baldwin, Carsten Krüger, Christian Bahr, Corinna C. Maass. Topological Stabilization and Dynamics of Self-Propelling Nematic Shells. Physical Review Letters 2019, 123 (17) https://doi.org/10.1103/PhysRevLett.123.178003
    80. Sujit Kumar Ghosh, Alexander Böker. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. Macromolecular Chemistry and Physics 2019, 220 (17) https://doi.org/10.1002/macp.201900196
    81. Sagardip Majumder, Nadab Wubshet, Allen P Liu. Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells. Journal of Micromechanics and Microengineering 2019, 29 (8) , 083001. https://doi.org/10.1088/1361-6439/ab2377
    82. Xiaojun Wang, Jiayi Zhu, Ting Shao, Xuan Luo, Lin Zhang. Production of Highly Monodisperse Millimeter‐Sized Double‐Emulsion Droplets in a Coaxial Capillary Device. Chemical Engineering & Technology 2019, 42 (6) , 1330-1340. https://doi.org/10.1002/ceat.201800040
    83. Supramaniam, Ces, Salehi-Reyhani. Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. Micromachines 2019, 10 (5) , 299. https://doi.org/10.3390/mi10050299
    84. Shukai Ding, Christophe A. Serra, Thierry F. Vandamme, Wei Yu, Nicolas Anton. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. Journal of Controlled Release 2019, 295 , 31-49. https://doi.org/10.1016/j.jconrel.2018.12.037
    85. Fatih Inci. Lipid Bilayers and Liposomes on Microfluidics Realm: Techniques and Applications. 2019, 213-223. https://doi.org/10.1007/978-3-030-11596-8_9
    86. Mona Alibolandi, Mahsa Shahriari, Mohammad Ramezani. Smart Polymersomes as Intelligent Nanomedicines in Cancer Treatment. 2019, 343-371. https://doi.org/10.1016/B978-0-12-816963-6.00016-9
    87. Saebom Ko, Chun Huh. Use of nanoparticles for oil production applications. Journal of Petroleum Science and Engineering 2019, 172 , 97-114. https://doi.org/10.1016/j.petrol.2018.09.051
    88. Meifang Liu, Yawen Huang, Sufen Chen, Dawei Pan, Miao Chen, Qiaomei Chu, Yiyang Liu, Qiang Yin, Zhanwen Zhang. Progress and challenges in the fabrication of DPS shells for ICF. Matter and Radiation at Extremes 2019, 4 (1) https://doi.org/10.1063/1.5081945
    89. Guoshu Wang, Kathrin Castiglione. Light-Driven Biocatalysis in Liposomes and Polymersomes: Where Are We Now?. Catalysts 2019, 9 (1) , 12. https://doi.org/10.3390/catal9010012
    90. Kyoung-Ku Kang, Byungjin Lee, Chang-Soo Lee. Microfluidic approaches for the design of functional materials. Microelectronic Engineering 2018, 199 , 1-15. https://doi.org/10.1016/j.mee.2018.07.007
    91. Xiaojun Wang, Jiayi Zhu, Ting Shao, Shufan Chen, Xuan Luo, Lin Zhang. Microfluidic‐assisted controllable formation of millimeter‐scale poly(divinylbenzene) foam shells. Polymer Engineering & Science 2018, 58 (7) , 1184-1192. https://doi.org/10.1002/pen.24680
    92. Fitsum Feleke Sahle, Muhammad Gulfam, Tao L. Lowe. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discovery Today 2018, 23 (5) , 992-1006. https://doi.org/10.1016/j.drudis.2018.04.003
    93. Jongmin Kim, Chang‐Soo Lee. Microfluidic Approaches for Designing Multifunctional Polymeric Microparticles from Simple Emulsions to Complex Particles. 2018, 375-404. https://doi.org/10.1002/9783527800643.ch12
    94. Nily Dan. Vesicle-based drug carriers. 2018, 1-55. https://doi.org/10.1016/B978-0-12-813627-0.00001-6
    95. Bryant Thompson, Nareh Movsesian, Christine Cheng, Prathamesh Karandikar, Malancha Gupta, Noah Malmstadt. Modular microfluidics for double emulsion formation. 2018, 161-176. https://doi.org/10.1016/bs.mcb.2018.09.008
    96. Zhizhao Che, Yit Fatt Yap, Tianyou Wang. Flow structure of compound droplets moving in microchannels. Physics of Fluids 2018, 30 (1) https://doi.org/10.1063/1.5008908
    97. Yuting Huang, Shin-Hyun Kim, Laura R. Arriaga. Emulsion templated vesicles with symmetric or asymmetric membranes. Advances in Colloid and Interface Science 2017, 247 , 413-425. https://doi.org/10.1016/j.cis.2017.07.013
    98. . Shear‐Induced Generation of Controllable Multiple Emulsions in Microfluidic Devices. 2017, 11-34. https://doi.org/10.1002/9783527803637.ch2
    99. Francisco Fernandez‐Trillo, Liam M. Grover, Alex Stephenson‐Brown, Paul Harrison, Paula M. Mendes. Vesikel in der Natur und im Labor: die Aufklärung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angewandte Chemie 2017, 129 (12) , 3188-3208. https://doi.org/10.1002/ange.201607825
    100. Francisco Fernandez‐Trillo, Liam M. Grover, Alex Stephenson‐Brown, Paul Harrison, Paula M. Mendes. Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angewandte Chemie International Edition 2017, 56 (12) , 3142-3160. https://doi.org/10.1002/anie.201607825
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect