Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live CellsClick to copy article linkArticle link copied!
Abstract
Several studies suggested that the cytotoxic effects of quantum dots (QDs) may be mediated by cadmium ions (Cd2+) released from the QDs cores. The objective of this work was to assess the intracellular Cd2+ concentration in human breast cancer MCF-7 cells treated with cadmium telluride (CdTe) and core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) nanoparticles capped with mercaptopropionic acid (MPA), cysteamine (Cys), or N-acetylcysteine (NAC) conjugated to cysteamine. The Cd2+ concentration determined by a Cd2+-specific cellular assay was below the assay detection limit (<5 nM) in cells treated with CdSe/ZnS QDs, while in cells incubated with CdTe QDs, it ranged from ∼30 to 150 nM, depending on the capping molecule. A cell viability assay revealed that CdSe/ZnS QDs were nontoxic, whereas the CdTe QDs were cytotoxic. However, for the various CdTe QD samples, there was no dose-dependent correlation between cell viability and intracellular [Cd2+], implying that their cytotoxicity cannot be attributed solely to the toxic effect of free Cd2+. Confocal laser scanning microscopy of CdTe QDs-treated cells imaged with organelle-specific dyes revealed significant lysosomal damage attributable to the presence of Cd2+ and of reactive oxygen species (ROS), which can be formed via Cd2+-specific cellular pathways and/or via CdTe-triggered photoxidative processes involving singlet oxygen or electron transfer from excited QDs to oxygen. In summary, CdTe QDs induce cell death via mechanisms involving both Cd2+ and ROS accompanied by lysosomal enlargement and intracellular redistribution.
†
McGill University.
§
Université de Montréal.
‡
Humboldt-Universität zu Berlin Institut für Physik.
*
Corresponding author. Phone: (514) 340-5179. Fax: (514) 340-3245. E-mail: [email protected].
Cited By
This article is cited by 514 publications.
- Tana L. O’Keefe, Christy L. Haynes. Review of Oxidative Dissolution and Sulfidation of Select Nanoparticles in the Environment: Impact on Applications. ACS Applied Nano Materials 2024, 7
(8)
, 8392-8406. https://doi.org/10.1021/acsanm.3c06227
- Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123
(7)
, 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
- Atsushi Takahara, (Senior Editor)Walter Richtering, (Senior Editor)Gilbert C. Walker (Editor-in-Chief). Preface to the Françoise M. Winnik Special Issue. Langmuir 2022, 38
(17)
, 5031-5032. https://doi.org/10.1021/acs.langmuir.2c00885
- Xufei Feng, Wenjie Kang, Xuping Wu, Shouyu Wang, Fei Liu. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS Applied Materials & Interfaces 2019, 11
(32)
, 28752-28761. https://doi.org/10.1021/acsami.9b12394
- Ethel G. A. Owusu, Alexander J. MacRobert, Imad Naasani, Ivan P. Parkin, Elaine Allan, Elnaz Yaghini. Photoactivable Polymers Embedded with Cadmium-Free Quantum Dots and Crystal Violet: Efficient Bactericidal Activity against Clinical Strains of Antibiotic-Resistant Bacteria. ACS Applied Materials & Interfaces 2019, 11
(13)
, 12367-12378. https://doi.org/10.1021/acsami.9b02109
- Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116
(18)
, 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
- Alexandre Loukanov, Ryota Sekiya, Midori Yoshikawa, Naritaka Kobayashi, Yuji Moriyasu, and Seiichiro Nakabayashi . Photosensitizer-Conjugated Ultrasmall Carbon Nanodots as Multifunctional Fluorescent Probes for Bioimaging. The Journal of Physical Chemistry C 2016, 120
(29)
, 15867-15874. https://doi.org/10.1021/acs.jpcc.5b11721
- Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad . Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews 2016, 116
(5)
, 2826-2885. https://doi.org/10.1021/acs.chemrev.5b00148
- Amal Kumar Mandal, Sivaramapanicker Sreejith, Tingchao He, Swarup Kumar Maji, Xiao-Jun Wang, Shi Li Ong, James Joseph, Handong Sun, and Yanli Zhao . Three-Photon-Excited Luminescence from Unsymmetrical Cyanostilbene Aggregates: Morphology Tuning and Targeted Bioimaging. ACS Nano 2015, 9
(5)
, 4796-4805. https://doi.org/10.1021/nn507072r
- Stefaan J. Soenen, Wolfgang J. Parak, Joanna Rejman, and Bella Manshian . (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chemical Reviews 2015, 115
(5)
, 2109-2135. https://doi.org/10.1021/cr400714j
- Chieh-Wei Chen, Dai-Ying Wu, Yung-Chieh Chan, Chun Che Lin, Po-Hsiang Chung, Michael Hsiao, and Ru-Shi Liu . Evaluations of the Chemical Stability and Cytotoxicity of CuInS2 and CuInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119
(5)
, 2852-2860. https://doi.org/10.1021/jp510908f
- Tangi Aubert, Stefaan J. Soenen, Daniel Wassmuth, Marco Cirillo, Rik Van Deun, Kevin Braeckmans, and Zeger Hens . Bright and Stable CdSe/CdS@SiO2 Nanoparticles Suitable for Long-Term Cell Labeling. ACS Applied Materials & Interfaces 2014, 6
(14)
, 11714-11723. https://doi.org/10.1021/am502367b
- Christopher E. Bradburne, James B. Delehanty, Kelly Boeneman Gemmill, Bing C. Mei, Hedi Mattoussi, Kimihiro Susumu, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry 2013, 24
(9)
, 1570-1583. https://doi.org/10.1021/bc4001917
- Jing Bai and Xiue Jiang . A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Analytical Chemistry 2013, 85
(17)
, 8095-8101. https://doi.org/10.1021/ac400659u
- Yueh-Hsia Luo, Shi-Bei Wu, Yau-Huei Wei, Yu-Ching Chen, Ming-Hsien Tsai, Chia-Chi Ho, Shu-Yi Lin, Chung-Shi Yang, and Pinpin Lin . Cadmium-Based Quantum Dot Induced Autophagy Formation for Cell Survival via Oxidative Stress. Chemical Research in Toxicology 2013, 26
(5)
, 662-673. https://doi.org/10.1021/tx300455k
- Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5
(8)
, 2786-2799. https://doi.org/10.1021/am302030a
- Wenjing Cai, Liming Jiang, Dongmei Yi, Haizhu Sun, Haotong Wei, Hao Zhang, Hongchen Sun, and Bai Yang . High Quality CdHgTe Nanocrystals with Strong Near-Infrared Emission: Relationship between Composition and Cytotoxic Effects. Langmuir 2013, 29
(12)
, 4119-4127. https://doi.org/10.1021/la3049696
- Françoise M. Winnik and Dusica Maysinger . Quantum Dot Cytotoxicity and Ways To Reduce It. Accounts of Chemical Research 2013, 46
(3)
, 672-680. https://doi.org/10.1021/ar3000585
- Wesley E. Smith, Jessica Brownell, Collin C. White, Zahra Afsharinejad, Jesse Tsai, Xiaoge Hu, Stephen J. Polyak, Xiaohu Gao, Terrance J. Kavanagh, and David L. Eaton . In Vitro Toxicity Assessment of Amphiphillic Polymer-Coated CdSe/ZnS Quantum Dots in Two Human Liver Cell Models. ACS Nano 2012, 6
(11)
, 9475-9484. https://doi.org/10.1021/nn302288r
- Amber Nagy, Andrea Steinbrück, Jun Gao, Norman Doggett, Jennifer A. Hollingsworth, and Rashi Iyer . Comprehensive Analysis of the Effects of CdSe Quantum Dot Size, Surface Charge, and Functionalization on Primary Human Lung Cells. ACS Nano 2012, 6
(6)
, 4748-4762. https://doi.org/10.1021/nn204886b
- Dingbin Liu, Wenwen Chen, Jinhua Wei, Xuebing Li, Zhuo Wang, and Xingyu Jiang . A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Analytical Chemistry 2012, 84
(9)
, 4185-4191. https://doi.org/10.1021/ac300545p
- Jingyu Liu, John Katahara, Guanglai Li, Seth Coe-Sullivan, and Robert H. Hurt . Degradation Products from Consumer Nanocomposites: A Case Study on Quantum Dot Lighting. Environmental Science & Technology 2012, 46
(6)
, 3220-3227. https://doi.org/10.1021/es204430f
- Dong Zhu, Yun Chen, Liping Jiang, Jun Geng, Jianrong Zhang, and Jun-Jie Zhu . Manganese-Doped ZnSe Quantum Dots as a Probe for Time-Resolved Fluorescence Detection of 5-Fluorouracil. Analytical Chemistry 2011, 83
(23)
, 9076-9081. https://doi.org/10.1021/ac202101u
- Chiung-Wen Kuo, Di-Yen Chueh, Narendra Singh, Fan-Ching Chien, and Peilin Chen . Targeted Nuclear Delivery using Peptide-Coated Quantum Dots. Bioconjugate Chemistry 2011, 22
(6)
, 1073-1080. https://doi.org/10.1021/bc100527m
- Daniel P. Puzzo, Eric J. Henderson, Michael G. Helander, ZhiBin Wang, Geoffrey A. Ozin, and Zhenghong Lu . Visible Colloidal Nanocrystal Silicon Light-Emitting Diode. Nano Letters 2011, 11
(4)
, 1585-1590. https://doi.org/10.1021/nl1044583
- Adam J. Shuhendler, Preethy Prasad, Ho-Ka Carol Chan, Claudia R. Gordijo, Behrouz Soroushian, Michael Kolios, Kui Yu, Peter J. O’Brien, Andrew Michael Rauth, and Xiao Yu Wu . Hybrid Quantum Dot−Fatty Ester Stealth Nanoparticles: Toward Clinically Relevant in Vivo Optical Imaging of Deep Tissue. ACS Nano 2011, 5
(3)
, 1958-1966. https://doi.org/10.1021/nn103024b
- I-Lun Hsiao and Yuh-Jeen Huang . Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles. Chemical Research in Toxicology 2011, 24
(3)
, 303-313. https://doi.org/10.1021/tx1001892
- Haizhu Sun, Haotong Wei, Hao Zhang, Yang Ning, Yue Tang, Fei Zhai, and Bai Yang . Self-Assembly of CdTe Nanoparticles into Dendrite Structure: A Microsensor to Hg2+. Langmuir 2011, 27
(3)
, 1136-1142. https://doi.org/10.1021/la104325s
- Wen Zhang, Ying Yao, and Yongsheng Chen. Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA. The Journal of Physical Chemistry C 2011, 115
(3)
, 599-606. https://doi.org/10.1021/jp107676h
- Lei Gao, Miya A. Peay, and Thomas G. Gray. Encapsulation of Phosphine-Terminated Rhenium(III) Chalcogenide Clusters in Silica Nanoparticles. Chemistry of Materials 2010, 22
(23)
, 6240-6245. https://doi.org/10.1021/cm101609p
- Yongqiang Dong, Nana Zhou, Xiaomei Lin, Jianpeng, Lin, Yuwu Chi, and Guonan Chen. Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon. Chemistry of Materials 2010, 22
(21)
, 5895-5899. https://doi.org/10.1021/cm1018844
- Thomas Pons, Emilie Pic, Nicolas Lequeux, Elsa Cassette, Lina Bezdetnaya, François Guillemin, Frédéric Marchal and Benoit Dubertret . Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010, 4
(5)
, 2531-2538. https://doi.org/10.1021/nn901421v
- Shawn J. Tan, Nikhil R. Jana, Shujun Gao, Pranab K. Patra and Jackie Y. Ying. Surface-Ligand-Dependent Cellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots. Chemistry of Materials 2010, 22
(7)
, 2239-2247. https://doi.org/10.1021/cm902989f
- Nan Ma, Grigory Tikhomirov and Shana O. Kelley . Nucleic Acid-Passivated Semiconductor Nanocrystals: Biomolecular Templating of Form and Function. Accounts of Chemical Research 2010, 43
(2)
, 173-180. https://doi.org/10.1021/ar900046n
- Chunhui Wu, Lixin Shi, Qingning Li, Hui Jiang, Matthias Selke, Long Ba and Xuemei Wang . Probing the Dynamic Effect of Cys-CdTe Quantum Dots toward Cancer Cells in Vitro. Chemical Research in Toxicology 2010, 23
(1)
, 82-88. https://doi.org/10.1021/tx900291c
- ChunLei Wang, Min Fang, JiShu Han, Hao Zhang, YiPing Cui and Bai Yang . Two Opposite Effects of Alcohols in the Precipitation of Aqueous Nanocrystals. The Journal of Physical Chemistry C 2009, 113
(45)
, 19445-19451. https://doi.org/10.1021/jp905407y
- Vladimir V. Breus, Colin D. Heyes, Kyrylo Tron and G. Ulrich Nienhaus . Zwitterionic Biocompatible Quantum Dots for Wide pH Stability and Weak Nonspecific Binding to Cells. ACS Nano 2009, 3
(9)
, 2573-2580. https://doi.org/10.1021/nn900600w
- Armen Khatchadourian and Dusica Maysinger. Lipid Droplets: Their Role in Nanoparticle-Induced Oxidative Stress. Molecular Pharmaceutics 2009, 6
(4)
, 1125-1137. https://doi.org/10.1021/mp900098p
- Armen Khatchadourian, Katerina Krumova, Sebastien Boridy, An Thien Ngo, Dusica Maysinger and Gonzalo Cosa . Molecular Imaging of Lipid Peroxyl Radicals in Living Cells with a BODIPY−α-Tocopherol Adduct. Biochemistry 2009, 48
(24)
, 5658-5668. https://doi.org/10.1021/bi900402c
- Suk Ho Bhang, Nayoun Won, Tae-Jin Lee, Ho Jin, Jutaek Nam, Joonhyuck Park, Hyokyun Chung, Hyun-Seo Park, Yung-Eun Sung, Sei Kwang Hahn, Byung-Soo Kim and Sungjee Kim . Hyaluronic Acid−Quantum Dot Conjugates for In Vivo Lymphatic Vessel Imaging. ACS Nano 2009, 3
(6)
, 1389-1398. https://doi.org/10.1021/nn900138d
- John H. Priester, Peter K. Stoimenov, Randall E. Mielke, Samuel M. Webb, Christopher Ehrhardt, Jin Ping Zhang, Galen D. Stucky and Patricia A. Holden . Effects of Soluble Cadmium Salts Versus CdSe Quantum Dots on the Growth of Planktonic Pseudomonas aeruginosa. Environmental Science & Technology 2009, 43
(7)
, 2589-2594. https://doi.org/10.1021/es802806n
- Ken-Tye Yong, Hong Ding, Indrajit Roy, Wing-Cheung Law, Earl J. Bergey, Anirban Maitra and Paras N. Prasad . Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots. ACS Nano 2009, 3
(3)
, 502-510. https://doi.org/10.1021/nn8008933
- Saim M. Emin, Norihito Sogoshi, Seiichiro Nakabayashi, Takashi Fujihara and Ceco D. Dushkin . Kinetics of Photochromic Induced Energy Transfer between Manganese-Doped Zinc-Selenide Quantum Dots and Spiropyrans. The Journal of Physical Chemistry C 2009, 113
(10)
, 3998-4007. https://doi.org/10.1021/jp809797x
- Divina A. G. Navarro, David F. Watson, Diana S. Aga and Sarbajit Banerjee. Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment. Environmental Science & Technology 2009, 43
(3)
, 677-682. https://doi.org/10.1021/es8017623
- Richard J. Kelly. Occupational medicine implications of engineered nanoscale particulate matter. Journal of Chemical Health & Safety 2009, 16
(1)
, 24-39. https://doi.org/10.1016/j.jchas.2008.03.012
- Pinpin Lin, Jein-Wen Chen, Louis W. Chang, Jui-Pin Wu, Laurel Redding, Han Chang, Teng-Kuang Yeh, Chung Shi Yang, Ming-Hsien Tsai, Hsiu-Jen Wang, Yu-Chun Kuo and Raymond S. H. Yang . Computational and Ultrastructural Toxicology of a Nanoparticle, Quantum Dot 705, in Mice. Environmental Science & Technology 2008, 42
(16)
, 6264-6270. https://doi.org/10.1021/es800254a
- AbdulAziz Anas, Hidetaka Akita, Hideyoshi Harashima, Tamitake Itoh, Mitsuru Ishikawa and Vasudevanpillai Biju. Photosensitized Breakage and Damage of DNA by CdSe−ZnS Quantum Dots. The Journal of Physical Chemistry B 2008, 112
(32)
, 10005-10011. https://doi.org/10.1021/jp8018606
- Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Kazuto Masamoto, Milka Mileva, Takayuki Obata, Makoto Higuchi, Veselina Gadjeva and Iwao Kanno . Multimodal Silica-Shelled Quantum Dots: Direct Intracellular Delivery, Photosensitization, Toxic, and Microcirculation Effects. Bioconjugate Chemistry 2008, 19
(6)
, 1135-1142. https://doi.org/10.1021/bc700431c
- Jin Ho Bang, Won Hyuk Suh and Kenneth S. Suslick. Quantum Dots from Chemical Aerosol Flow Synthesis: Preparation, Characterization, and Cellular Imaging. Chemistry of Materials 2008, 20
(12)
, 4033-4038. https://doi.org/10.1021/cm800453t
- Yang Zhang, Yongsheng Chen, Paul Westerhoff and John C. Crittenden. Stability and Removal of Water Soluble CdTe Quantum Dots in Water. Environmental Science & Technology 2008, 42
(1)
, 321-325. https://doi.org/10.1021/es0714991
- Hisataka Kobayashi, Yoshinori Koyama, Tristan Barrett, Yukihiro Hama, Celeste A. S. Regino, In Soo Shin, Beom-Su Jang, Nhat Le, Chang H. Paik, Peter L. Choyke and Yasuteru Urano . Multimodal Nanoprobes for Radionuclide and Five-Color Near-Infrared Optical Lymphatic Imaging. ACS Nano 2007, 1
(4)
, 258-264. https://doi.org/10.1021/nn700062z
- Igor Nabiev,, Siobhan Mitchell,, Anthony Davies,, Yvonne Williams,, Dermot Kelleher,, Richard Moore,, Yurii K. Gun'ko,, Stephen Byrne,, Yury P. Rakovich,, John F. Donegan,, Alyona Sukhanova,, Jennifer Conroy,, David Cottell,, Nikolai Gaponik,, Andrey Rogach, and, Yuri Volkov. Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters 2007, 7
(11)
, 3452-3461. https://doi.org/10.1021/nl0719832
- Anjali Mehto, Prashant Shukla. Bioimaging potential: Comparative study of ZnO nanoparticles synthesized via green and chemical routes. Next Nanotechnology 2025, 7 , 100118. https://doi.org/10.1016/j.nxnano.2024.100118
- Daniella Sári, Aya Ferroudj, Dávid Semsey, Hassan El-Ramady, Eric C. Brevik, József Prokisch. Tellurium and Nano-Tellurium: Medicine or Poison?. Nanomaterials 2024, 14
(8)
, 670. https://doi.org/10.3390/nano14080670
- Wojciech Białowąs, Rym Boudjemaa, Karine Steenkeste, Pauline Nyssen, Maryse Hoebeke, Janina Lulek, Marie Pierre Fontaine-Aupart, Raphaël Schneider. Reactive oxygen species production by photoexcited (CuInS2)x(ZnS)1-x quantum dots and their phototoxicity towards Staphylococcus aureus bacteria. Journal of Photochemistry and Photobiology A: Chemistry 2024, 446 , 115165. https://doi.org/10.1016/j.jphotochem.2023.115165
- Yibo An, Dazhuang Xu, Xiaofei Wen, Chuan Chen, Gang Liu, Zhixiang Lu. Internal Light Sources‐Mediated Photodynamic Therapy Nanoplatforms: Hope for the Resolution of the Traditional Penetration Problem. Advanced Healthcare Materials 2024, 13
(1)
https://doi.org/10.1002/adhm.202301326
- Kishan Das, Eepsita Priyadarshini, Tulika Prasad, Kamla Rawat, Himadri B. Bohidar. CdSe@CdS core-shell quantum dots as antifungal agents: significance of particle size and shell thickness. Journal of Nanoparticle Research 2024, 26
(1)
https://doi.org/10.1007/s11051-024-05931-6
- Bahman Alipour, Tohid Mortezazadeh, Waleed K. Abdulsahib, Asghar Arzhang, Reza Malekzadeh, Bagher Farhood. A systematic review of multimodal application of quantum dots in breast cancer diagnosis: Effective parameters, status and future perspectives. Journal of Drug Delivery Science and Technology 2023, 86 , 104682. https://doi.org/10.1016/j.jddst.2023.104682
- Dashrathbhai B. Kanzariya, Meetkumar Y. Chaudhary, Tapan K. Pal. Engineering of metal–organic frameworks (MOFs) for thermometry. Dalton Transactions 2023, 52
(22)
, 7383-7404. https://doi.org/10.1039/D3DT01048A
- Yixin Li, Wei Xiong, Lei Li, Zhuoming Zhou, Chuang Yao, Zhongkai Huang, Maolin Bo. Topological Bonding and Electronic Properties of Cd
43
Te
28
Semiconductor Material with Microporous Structure. physica status solidi (b) 2023, 260
(6)
https://doi.org/10.1002/pssb.202300044
- Kishan Das, Ramovatar Meena, Usha Singh Gaharwar, Eepsita Priyadarshini, Kamla Rawat, R. Paulraj, Yugal Kishore Mohanta, Muthupandian Saravanan, Himadri B. Bohidar, . Bioaccumulation of CdSe Quantum Dots Show Biochemical and Oxidative Damage in Wistar Rats. Oxidative Medicine and Cellular Longevity 2023, 2023 , 1-13. https://doi.org/10.1155/2023/7707452
- P. Priyadarshini, S. Das, S. Senapati, S.K. Samal, G.K. Pradhan, R. Naik. Preparation of nanosheets embedded ZnSe/Bi2Se3 core/shell quantum dots for the study of optical properties and antibacterial activity. Surfaces and Interfaces 2023, 37 , 102687. https://doi.org/10.1016/j.surfin.2023.102687
- Abhinoy Kishore, Indranil De, Prashant Sharma, Manish Singh Singh. Breaking the Barriers of Nanotoxicological Assessments: The Importance of Available Models and Future Perspectives. 2023, 163-184. https://doi.org/10.2174/9789815123555123010011
- S. Nithya, Rohan R. Krishnan, Nachiketha R. Rao, Kamakshi Naik, N. Praveen, V. L. Vasantha. Microwave-Assisted Extraction of Phytochemicals. 2023, 209-238. https://doi.org/10.1007/978-3-031-35205-8_8
- Akhil, Arathi, K. B. Megha, X. Joseph, V. P. Sangeetha, P. V. Mohanan. Quantum Dots for Imaging and Its Safety. 2023, 459-475. https://doi.org/10.1007/978-981-19-7834-0_18
- Jyotsana Mehta, Manjit Singh Jadon, Neeraj Dilbaghi, Sandeep Kumar. Fluorescent inorganic nanoparticles for bioimaging and therapeutic applications. 2023, 45-71. https://doi.org/10.1016/B978-0-12-821240-0.00008-1
- Chukwudi O. Onwosi, Victory Nnaemeka, Chioma L. Onyishi, Flora N. Ezugworie, Victor C. Igbokwe. Applications of nanomaterials in biofuel production. 2023, 83-118. https://doi.org/10.1016/B978-0-323-91782-7.00001-1
- Mahboubeh Adeli-Sardou, Mojtaba Shakibaie, Hamid Forootanfar, Fereshteh Jabari-Morouei, Soudabe Riahi-Madvar, Sima-Sadat Ghafari-Shahrbabaki, Mitra Mehrabani. Cytotoxicity and anti-biofilm activities of biogenic cadmium nanoparticles and cadmium nitrate: a preliminary study. World Journal of Microbiology and Biotechnology 2022, 38
(12)
https://doi.org/10.1007/s11274-022-03418-x
- Moon Sung Kang, Mina Kwon, Hee Jeong Jang, Seung Jo Jeong, Dong-Wook Han, Ki Su Kim. Biosafety of inorganic nanomaterials for theranostic applications. Emergent Materials 2022, 5
(6)
, 1995-2029. https://doi.org/10.1007/s42247-022-00426-3
- Ali A. Rabaan, Rehab Bukhamsin, Hajir AlSaihati, Saleh A. Alshamrani, Jehad AlSihati, Hani M. Al-Afghani, Roua A. Alsubki, Abdulmonem A. Abuzaid, Saleh Al-Abdulhadi, Yahya Aldawood, Abdulmonem A. Alsaleh, Yousef N. Alhashem, Jenan A. Almatouq, Talha Bin Emran, Shamsah H. Al-Ahmed, Firzan Nainu, Ranjan K. Mohapatra. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022, 27
(24)
, 8659. https://doi.org/10.3390/molecules27248659
- Pratik Chakraborty, Sabya Sachi Das, Abhijit Dey, Apala Chakraborty, Chiranjib Bhattacharyya, Ramesh Kandimalla, Biswajit Mukherjee, Abilash Valsala Gopalakrishnan, Sandeep Kumar Singh, Shubham Kant, Parma Nand, Shreesh Ojha, Pravir Kumar, Niraj Kumar Jha, Saurabh Kumar Jha, Saikat Dewanjee. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. Journal of Controlled Release 2022, 350 , 698-715. https://doi.org/10.1016/j.jconrel.2022.08.047
- Qing Liu, Xiaomeng Ding, Yanting Pang, Yuna Cao, Jialin Lei, Jiawei Wu, Ting Zhang. New insights into the safety assessment of quantum dots: potential release pathways, environmental transformations, and health risks. Environmental Science: Nano 2022, 9
(9)
, 3277-3311. https://doi.org/10.1039/D2EN00252C
- Melissa Anne Tutty, Gabriele Vella, Adriele Prina-Mello. Pre-clinical 2D and 3D toxicity response to a panel of nanomaterials; comparative assessment of NBM-induced liver toxicity. Drug Delivery and Translational Research 2022, 12
(9)
, 2157-2177. https://doi.org/10.1007/s13346-022-01170-1
- Praveen K. Shahi, Shyam B. Rai. Upconversion Nanoparticles in Temperature Sensing and Optical Heating Applications. 2022, 417-447. https://doi.org/10.1002/9783527834884.ch15
- Namdev Dhas, Monarch Pastagia, Akanksha Sharma, Alisha Khera, Ritu Kudarha, Sanjay Kulkarni, Soji Soman, Srinivas Mutalik, Ravi Pratap Barnwal, Gurpal Singh, Mital Patel. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. Journal of Controlled Release 2022, 348 , 798-824. https://doi.org/10.1016/j.jconrel.2022.06.033
- Femi Olawale, Olakunle Oladimeji, Mario Ariatti, Moganavelli Singh, . Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. Journal of Nanotechnology 2022, 2022 , 1-18. https://doi.org/10.1155/2022/6176610
- Elettra Musolino, Christina Pagiatakis, Simone Serio, Marina Borgese, Federica Gamberoni, Rosalba Gornati, Giovanni Bernardini, Roberto Papait. The Yin and Yang of epigenetics in the field of nanoparticles. Nanoscale Advances 2022, 4
(4)
, 979-994. https://doi.org/10.1039/D1NA00682G
- Santosh Podder. Fluorescent Quantum Dots, A Technological Marvel for Optical Bio-imaging: A Perspective on Associated In Vivo Toxicity. 2022, 143-163. https://doi.org/10.1007/978-981-19-3144-4_8
- Shahzad Maqsood Khan, Sidra Saleemi, Hafiz Abdul Mannan. Toxicology, Stability, and Recycling of Organic–Inorganic Nanohybrids. 2022, 485-497. https://doi.org/10.1007/978-981-19-4538-0_22
- Yanamadala Swarnaltha, Seema Siddharthan. Quantum dots: policy and ethics. 2022, 887-899. https://doi.org/10.1016/B978-0-323-85457-3.00031-1
- W L Ang, Q A Alqasem, A W Mohammad. Microwave-assisted synthesis of photoluminescent carbon dots from palm fronds biomass wastes. IOP Conference Series: Materials Science and Engineering 2021, 1195
(1)
, 012008. https://doi.org/10.1088/1757-899X/1195/1/012008
- Hengjie Yu, Zhilin Zhao, Fang Cheng. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere 2021, 276 , 130164. https://doi.org/10.1016/j.chemosphere.2021.130164
- Yalian Weng, Shiyao Chen, Yongai Zhang, Lei Sun, Yan Wu, Qun Yan, Tailiang Guo, Xiongtu Zhou, Chaoxing Wu. Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route. Optics & Laser Technology 2021, 140 , 107026. https://doi.org/10.1016/j.optlastec.2021.107026
- Yun Man, Wen-Sheng Zou, Wei-Li Kong, Weihua Li, Weiwei Dong, Donglin Zhao, Qishu Qu, Yaqin Wang. Brightly blue triazine-doped carbon dots for selective determination of Cu(II) in environment and imaging in cell. Journal of Photochemistry and Photobiology A: Chemistry 2021, 416 , 113321. https://doi.org/10.1016/j.jphotochem.2021.113321
- Flore Vanden Bussche, Anna M. Kaczmarek, Veronique Van Speybroeck, Pascal Van Der Voort, Christian V. Stevens. Overview of N‐Rich Antennae Investigated in Lanthanide‐Based Temperature Sensing. Chemistry – A European Journal 2021, 27
(25)
, 7214-7230. https://doi.org/10.1002/chem.202100007
- Vardan Galstyan. “Quantum dots: Perspectives in next-generation chemical gas sensors” ‒ A review. Analytica Chimica Acta 2021, 1152 , 238192. https://doi.org/10.1016/j.aca.2020.12.067
- V. G. Reshma, P. V. Mohanan. Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots. Frontiers in Nanotechnology 2021, 2 https://doi.org/10.3389/fnano.2020.597382
- A. Seenivasan, M. Muthuraj, T. Panda. Toxicological Study of Nanoparticles: An Attempt to Relate Physicochemical Characters with Toxicity. 2021, 325-342. https://doi.org/10.1007/978-981-15-5511-4_23
- Esranur Budak, Duğçar Erdoğan, Caner Ünlü. Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynthesis Research 2021, 147
(1)
, 1-10. https://doi.org/10.1007/s11120-020-00786-z
- Kavita Rana, Yeshvandra Verma, S. V. S. Rana. Possible Mechanisms of Liver Injury Induced by Cadmium Sulfide Nanoparticles in Rat. Biological Trace Element Research 2021, 199
(1)
, 216-226. https://doi.org/10.1007/s12011-020-02128-5
- Fardin Sadeghfar, Sonia Bahrani, Mehrorang Ghaedi. The kinetic models in electron transfer processes in colloidal semiconductor photocatalysis. 2021, 375-441. https://doi.org/10.1016/B978-0-12-818806-4.00004-8
- Tyler J. Maxwell, Parthiban Rajasekaran, Mikaeel Young, Morgan Schaff, Ryan Heetai, Swadeshmukul Santra. Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin. Environmental Nanotechnology, Monitoring & Management 2020, 14 , 100355. https://doi.org/10.1016/j.enmm.2020.100355
- V.G. Reshma, K.S. Rajeev, K. Manoj, P.V. Mohanan. Water dispersible ZnSe/ZnS quantum dots: Assessment of cellular integration, toxicity and bio-distribution. Journal of Photochemistry and Photobiology B: Biology 2020, 212 , 112019. https://doi.org/10.1016/j.jphotobiol.2020.112019
- Na Liu, Meng Tang. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. Journal of Hazardous Materials 2020, 399 , 122606. https://doi.org/10.1016/j.jhazmat.2020.122606
- Ashwani Kumar Singh, Amar Nath Yadav, Saurabh Srivastav, Rishi Kumar Jaiswal, Amit Srivastava, Amal Chandra Mondal, Kedar Singh. CdSe- Reduced graphene oxide nanocomposite toxicity alleviation via V
2
O
5
shell formation over CdSe core:
in vivo
and
in vitro
studies. Nanotechnology 2020, 31
(41)
, 415101. https://doi.org/10.1088/1361-6528/ab8b0f
- Chia-Hua Lin, Yi-Chun Chen, Pin-I. Huang. Preparation of Multifunctional Dopamine-Coated Zerovalent Iron/Reduced Graphene Oxide for Targeted Phototheragnosis in Breast Cancer. Nanomaterials 2020, 10
(10)
, 1957. https://doi.org/10.3390/nano10101957
- Laura Cid-Barrio, Diego Bouzas-Ramos, Alfonso Salinas-Castillo, Yasumitsu Ogra, Jorge Ruiz Encinar, José M. Costa-Fernández. Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells. Journal of Analytical Atomic Spectrometry 2020, 35
(9)
, 1979-1988. https://doi.org/10.1039/D0JA00162G
- Aishwarya Shivashankarappa, Konasur Rajesh Sanjay. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Brazilian Journal of Microbiology 2020, 51
(3)
, 939-948. https://doi.org/10.1007/s42770-020-00238-9
- Esranur Budak, Sümeyye Aykut, Mehmet Emin Paşaoğlu, Caner Ünlü. Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments. Materials Today Communications 2020, 24 , 100975. https://doi.org/10.1016/j.mtcomm.2020.100975
- Abdulrahman A. Balhaddad, Isadora M. Garcia, Maria Salem Ibrahim, Juliana P.M.L. Rolim, Edison A.B. Gomes, Frederico C. Martinho, Fabricio M. Collares, Hockin Xu, Mary Anne S. Melo. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. Photobiomodulation, Photomedicine, and Laser Surgery 2020, 38
(8)
, 481-496. https://doi.org/10.1089/photob.2020.4815
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.