ACS Publications. Most Trusted. Most Cited. Most Read
Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells
My Activity
    Research Article

    Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada H3G 1Y6, Humboldt-Universität zu Berlin Institut für Physik, AG Photobiophysik, Newtonstrasse 15 D-12489 Berlin, Germany, and Department of Chemistry and Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, QC Canada H3C 3J7
    Other Access Options

    Langmuir

    Cite this: Langmuir 2007, 23, 4, 1974–1980
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la060093j
    Published January 12, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Several studies suggested that the cytotoxic effects of quantum dots (QDs) may be mediated by cadmium ions (Cd2+) released from the QDs cores. The objective of this work was to assess the intracellular Cd2+ concentration in human breast cancer MCF-7 cells treated with cadmium telluride (CdTe) and core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) nanoparticles capped with mercaptopropionic acid (MPA), cysteamine (Cys), or N-acetylcysteine (NAC) conjugated to cysteamine. The Cd2+ concentration determined by a Cd2+-specific cellular assay was below the assay detection limit (<5 nM) in cells treated with CdSe/ZnS QDs, while in cells incubated with CdTe QDs, it ranged from ∼30 to 150 nM, depending on the capping molecule. A cell viability assay revealed that CdSe/ZnS QDs were nontoxic, whereas the CdTe QDs were cytotoxic. However, for the various CdTe QD samples, there was no dose-dependent correlation between cell viability and intracellular [Cd2+], implying that their cytotoxicity cannot be attributed solely to the toxic effect of free Cd2+. Confocal laser scanning microscopy of CdTe QDs-treated cells imaged with organelle-specific dyes revealed significant lysosomal damage attributable to the presence of Cd2+ and of reactive oxygen species (ROS), which can be formed via Cd2+-specific cellular pathways and/or via CdTe-triggered photoxidative processes involving singlet oxygen or electron transfer from excited QDs to oxygen. In summary, CdTe QDs induce cell death via mechanisms involving both Cd2+ and ROS accompanied by lysosomal enlargement and intracellular redistribution.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     McGill University.

    §

     Université de Montréal.

     Humboldt-Universität zu Berlin Institut für Physik.

    *

     Corresponding author. Phone:  (514) 340-5179. Fax:  (514) 340-3245. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 514 publications.

    1. Tana L. O’Keefe, Christy L. Haynes. Review of Oxidative Dissolution and Sulfidation of Select Nanoparticles in the Environment: Impact on Applications. ACS Applied Nano Materials 2024, 7 (8) , 8392-8406. https://doi.org/10.1021/acsanm.3c06227
    2. Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123 (7) , 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
    3. Atsushi Takahara, (Senior Editor)Walter Richtering, (Senior Editor)Gilbert C. Walker (Editor-in-Chief). Preface to the Françoise M. Winnik Special Issue. Langmuir 2022, 38 (17) , 5031-5032. https://doi.org/10.1021/acs.langmuir.2c00885
    4. Xufei Feng, Wenjie Kang, Xuping Wu, Shouyu Wang, Fei Liu. Quantitative Detection and Real-Time Monitoring of Endogenous mRNA at the Single Live Cell Level Using a Ratiometric Molecular Beacon. ACS Applied Materials & Interfaces 2019, 11 (32) , 28752-28761. https://doi.org/10.1021/acsami.9b12394
    5. Ethel G. A. Owusu, Alexander J. MacRobert, Imad Naasani, Ivan P. Parkin, Elaine Allan, Elnaz Yaghini. Photoactivable Polymers Embedded with Cadmium-Free Quantum Dots and Crystal Violet: Efficient Bactericidal Activity against Clinical Strains of Antibiotic-Resistant Bacteria. ACS Applied Materials & Interfaces 2019, 11 (13) , 12367-12378. https://doi.org/10.1021/acsami.9b02109
    6. Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116 (18) , 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
    7. Alexandre Loukanov, Ryota Sekiya, Midori Yoshikawa, Naritaka Kobayashi, Yuji Moriyasu, and Seiichiro Nakabayashi . Photosensitizer-Conjugated Ultrasmall Carbon Nanodots as Multifunctional Fluorescent Probes for Bioimaging. The Journal of Physical Chemistry C 2016, 120 (29) , 15867-15874. https://doi.org/10.1021/acs.jpcc.5b11721
    8. Guanying Chen, Indrajit Roy, Chunhui Yang, and Paras N. Prasad . Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews 2016, 116 (5) , 2826-2885. https://doi.org/10.1021/acs.chemrev.5b00148
    9. Amal Kumar Mandal, Sivaramapanicker Sreejith, Tingchao He, Swarup Kumar Maji, Xiao-Jun Wang, Shi Li Ong, James Joseph, Handong Sun, and Yanli Zhao . Three-Photon-Excited Luminescence from Unsymmetrical Cyanostilbene Aggregates: Morphology Tuning and Targeted Bioimaging. ACS Nano 2015, 9 (5) , 4796-4805. https://doi.org/10.1021/nn507072r
    10. Stefaan J. Soenen, Wolfgang J. Parak, Joanna Rejman, and Bella Manshian . (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chemical Reviews 2015, 115 (5) , 2109-2135. https://doi.org/10.1021/cr400714j
    11. Chieh-Wei Chen, Dai-Ying Wu, Yung-Chieh Chan, Chun Che Lin, Po-Hsiang Chung, Michael Hsiao, and Ru-Shi Liu . Evaluations of the Chemical Stability and Cytotoxicity of CuInS2 and CuInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (5) , 2852-2860. https://doi.org/10.1021/jp510908f
    12. Tangi Aubert, Stefaan J. Soenen, Daniel Wassmuth, Marco Cirillo, Rik Van Deun, Kevin Braeckmans, and Zeger Hens . Bright and Stable CdSe/CdS@SiO2 Nanoparticles Suitable for Long-Term Cell Labeling. ACS Applied Materials & Interfaces 2014, 6 (14) , 11714-11723. https://doi.org/10.1021/am502367b
    13. Christopher E. Bradburne, James B. Delehanty, Kelly Boeneman Gemmill, Bing C. Mei, Hedi Mattoussi, Kimihiro Susumu, Juan B. Blanco-Canosa, Philip E. Dawson, and Igor L. Medintz . Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry 2013, 24 (9) , 1570-1583. https://doi.org/10.1021/bc4001917
    14. Jing Bai and Xiue Jiang . A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Analytical Chemistry 2013, 85 (17) , 8095-8101. https://doi.org/10.1021/ac400659u
    15. Yueh-Hsia Luo, Shi-Bei Wu, Yau-Huei Wei, Yu-Ching Chen, Ming-Hsien Tsai, Chia-Chi Ho, Shu-Yi Lin, Chung-Shi Yang, and Pinpin Lin . Cadmium-Based Quantum Dot Induced Autophagy Formation for Cell Survival via Oxidative Stress. Chemical Research in Toxicology 2013, 26 (5) , 662-673. https://doi.org/10.1021/tx300455k
    16. Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5 (8) , 2786-2799. https://doi.org/10.1021/am302030a
    17. Wenjing Cai, Liming Jiang, Dongmei Yi, Haizhu Sun, Haotong Wei, Hao Zhang, Hongchen Sun, and Bai Yang . High Quality CdHgTe Nanocrystals with Strong Near-Infrared Emission: Relationship between Composition and Cytotoxic Effects. Langmuir 2013, 29 (12) , 4119-4127. https://doi.org/10.1021/la3049696
    18. Françoise M. Winnik and Dusica Maysinger . Quantum Dot Cytotoxicity and Ways To Reduce It. Accounts of Chemical Research 2013, 46 (3) , 672-680. https://doi.org/10.1021/ar3000585
    19. Wesley E. Smith, Jessica Brownell, Collin C. White, Zahra Afsharinejad, Jesse Tsai, Xiaoge Hu, Stephen J. Polyak, Xiaohu Gao, Terrance J. Kavanagh, and David L. Eaton . In Vitro Toxicity Assessment of Amphiphillic Polymer-Coated CdSe/ZnS Quantum Dots in Two Human Liver Cell Models. ACS Nano 2012, 6 (11) , 9475-9484. https://doi.org/10.1021/nn302288r
    20. Amber Nagy, Andrea Steinbrück, Jun Gao, Norman Doggett, Jennifer A. Hollingsworth, and Rashi Iyer . Comprehensive Analysis of the Effects of CdSe Quantum Dot Size, Surface Charge, and Functionalization on Primary Human Lung Cells. ACS Nano 2012, 6 (6) , 4748-4762. https://doi.org/10.1021/nn204886b
    21. Dingbin Liu, Wenwen Chen, Jinhua Wei, Xuebing Li, Zhuo Wang, and Xingyu Jiang . A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Analytical Chemistry 2012, 84 (9) , 4185-4191. https://doi.org/10.1021/ac300545p
    22. Jingyu Liu, John Katahara, Guanglai Li, Seth Coe-Sullivan, and Robert H. Hurt . Degradation Products from Consumer Nanocomposites: A Case Study on Quantum Dot Lighting. Environmental Science & Technology 2012, 46 (6) , 3220-3227. https://doi.org/10.1021/es204430f
    23. Dong Zhu, Yun Chen, Liping Jiang, Jun Geng, Jianrong Zhang, and Jun-Jie Zhu . Manganese-Doped ZnSe Quantum Dots as a Probe for Time-Resolved Fluorescence Detection of 5-Fluorouracil. Analytical Chemistry 2011, 83 (23) , 9076-9081. https://doi.org/10.1021/ac202101u
    24. Chiung-Wen Kuo, Di-Yen Chueh, Narendra Singh, Fan-Ching Chien, and Peilin Chen . Targeted Nuclear Delivery using Peptide-Coated Quantum Dots. Bioconjugate Chemistry 2011, 22 (6) , 1073-1080. https://doi.org/10.1021/bc100527m
    25. Daniel P. Puzzo, Eric J. Henderson, Michael G. Helander, ZhiBin Wang, Geoffrey A. Ozin, and Zhenghong Lu . Visible Colloidal Nanocrystal Silicon Light-Emitting Diode. Nano Letters 2011, 11 (4) , 1585-1590. https://doi.org/10.1021/nl1044583
    26. Adam J. Shuhendler, Preethy Prasad, Ho-Ka Carol Chan, Claudia R. Gordijo, Behrouz Soroushian, Michael Kolios, Kui Yu, Peter J. O’Brien, Andrew Michael Rauth, and Xiao Yu Wu . Hybrid Quantum Dot−Fatty Ester Stealth Nanoparticles: Toward Clinically Relevant in Vivo Optical Imaging of Deep Tissue. ACS Nano 2011, 5 (3) , 1958-1966. https://doi.org/10.1021/nn103024b
    27. I-Lun Hsiao and Yuh-Jeen Huang . Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles. Chemical Research in Toxicology 2011, 24 (3) , 303-313. https://doi.org/10.1021/tx1001892
    28. Haizhu Sun, Haotong Wei, Hao Zhang, Yang Ning, Yue Tang, Fei Zhai, and Bai Yang . Self-Assembly of CdTe Nanoparticles into Dendrite Structure: A Microsensor to Hg2+. Langmuir 2011, 27 (3) , 1136-1142. https://doi.org/10.1021/la104325s
    29. Wen Zhang, Ying Yao, and Yongsheng Chen. Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA. The Journal of Physical Chemistry C 2011, 115 (3) , 599-606. https://doi.org/10.1021/jp107676h
    30. Lei Gao, Miya A. Peay, and Thomas G. Gray. Encapsulation of Phosphine-Terminated Rhenium(III) Chalcogenide Clusters in Silica Nanoparticles. Chemistry of Materials 2010, 22 (23) , 6240-6245. https://doi.org/10.1021/cm101609p
    31. Yongqiang Dong, Nana Zhou, Xiaomei Lin, Jianpeng, Lin, Yuwu Chi, and Guonan Chen. Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon. Chemistry of Materials 2010, 22 (21) , 5895-5899. https://doi.org/10.1021/cm1018844
    32. Thomas Pons, Emilie Pic, Nicolas Lequeux, Elsa Cassette, Lina Bezdetnaya, François Guillemin, Frédéric Marchal and Benoit Dubertret . Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010, 4 (5) , 2531-2538. https://doi.org/10.1021/nn901421v
    33. Shawn J. Tan, Nikhil R. Jana, Shujun Gao, Pranab K. Patra and Jackie Y. Ying. Surface-Ligand-Dependent Cellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots. Chemistry of Materials 2010, 22 (7) , 2239-2247. https://doi.org/10.1021/cm902989f
    34. Nan Ma, Grigory Tikhomirov and Shana O. Kelley . Nucleic Acid-Passivated Semiconductor Nanocrystals: Biomolecular Templating of Form and Function. Accounts of Chemical Research 2010, 43 (2) , 173-180. https://doi.org/10.1021/ar900046n
    35. Chunhui Wu, Lixin Shi, Qingning Li, Hui Jiang, Matthias Selke, Long Ba and Xuemei Wang . Probing the Dynamic Effect of Cys-CdTe Quantum Dots toward Cancer Cells in Vitro. Chemical Research in Toxicology 2010, 23 (1) , 82-88. https://doi.org/10.1021/tx900291c
    36. ChunLei Wang, Min Fang, JiShu Han, Hao Zhang, YiPing Cui and Bai Yang . Two Opposite Effects of Alcohols in the Precipitation of Aqueous Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (45) , 19445-19451. https://doi.org/10.1021/jp905407y
    37. Vladimir V. Breus, Colin D. Heyes, Kyrylo Tron and G. Ulrich Nienhaus . Zwitterionic Biocompatible Quantum Dots for Wide pH Stability and Weak Nonspecific Binding to Cells. ACS Nano 2009, 3 (9) , 2573-2580. https://doi.org/10.1021/nn900600w
    38. Armen Khatchadourian and Dusica Maysinger. Lipid Droplets: Their Role in Nanoparticle-Induced Oxidative Stress. Molecular Pharmaceutics 2009, 6 (4) , 1125-1137. https://doi.org/10.1021/mp900098p
    39. Armen Khatchadourian, Katerina Krumova, Sebastien Boridy, An Thien Ngo, Dusica Maysinger and Gonzalo Cosa . Molecular Imaging of Lipid Peroxyl Radicals in Living Cells with a BODIPY−α-Tocopherol Adduct. Biochemistry 2009, 48 (24) , 5658-5668. https://doi.org/10.1021/bi900402c
    40. Suk Ho Bhang, Nayoun Won, Tae-Jin Lee, Ho Jin, Jutaek Nam, Joonhyuck Park, Hyokyun Chung, Hyun-Seo Park, Yung-Eun Sung, Sei Kwang Hahn, Byung-Soo Kim and Sungjee Kim . Hyaluronic Acid−Quantum Dot Conjugates for In Vivo Lymphatic Vessel Imaging. ACS Nano 2009, 3 (6) , 1389-1398. https://doi.org/10.1021/nn900138d
    41. John H. Priester, Peter K. Stoimenov, Randall E. Mielke, Samuel M. Webb, Christopher Ehrhardt, Jin Ping Zhang, Galen D. Stucky and Patricia A. Holden . Effects of Soluble Cadmium Salts Versus CdSe Quantum Dots on the Growth of Planktonic Pseudomonas aeruginosa. Environmental Science & Technology 2009, 43 (7) , 2589-2594. https://doi.org/10.1021/es802806n
    42. Ken-Tye Yong, Hong Ding, Indrajit Roy, Wing-Cheung Law, Earl J. Bergey, Anirban Maitra and Paras N. Prasad . Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots. ACS Nano 2009, 3 (3) , 502-510. https://doi.org/10.1021/nn8008933
    43. Saim M. Emin, Norihito Sogoshi, Seiichiro Nakabayashi, Takashi Fujihara and Ceco D. Dushkin . Kinetics of Photochromic Induced Energy Transfer between Manganese-Doped Zinc-Selenide Quantum Dots and Spiropyrans. The Journal of Physical Chemistry C 2009, 113 (10) , 3998-4007. https://doi.org/10.1021/jp809797x
    44. Divina A. G. Navarro, David F. Watson, Diana S. Aga and Sarbajit Banerjee. Natural Organic Matter-Mediated Phase Transfer of Quantum Dots in the Aquatic Environment. Environmental Science & Technology 2009, 43 (3) , 677-682. https://doi.org/10.1021/es8017623
    45. Richard J. Kelly. Occupational medicine implications of engineered nanoscale particulate matter. Journal of Chemical Health & Safety 2009, 16 (1) , 24-39. https://doi.org/10.1016/j.jchas.2008.03.012
    46. Pinpin Lin, Jein-Wen Chen, Louis W. Chang, Jui-Pin Wu, Laurel Redding, Han Chang, Teng-Kuang Yeh, Chung Shi Yang, Ming-Hsien Tsai, Hsiu-Jen Wang, Yu-Chun Kuo and Raymond S. H. Yang . Computational and Ultrastructural Toxicology of a Nanoparticle, Quantum Dot 705, in Mice. Environmental Science & Technology 2008, 42 (16) , 6264-6270. https://doi.org/10.1021/es800254a
    47. AbdulAziz Anas, Hidetaka Akita, Hideyoshi Harashima, Tamitake Itoh, Mitsuru Ishikawa and Vasudevanpillai Biju. Photosensitized Breakage and Damage of DNA by CdSe−ZnS Quantum Dots. The Journal of Physical Chemistry B 2008, 112 (32) , 10005-10011. https://doi.org/10.1021/jp8018606
    48. Rumiana Bakalova, Zhivko Zhelev, Ichio Aoki, Kazuto Masamoto, Milka Mileva, Takayuki Obata, Makoto Higuchi, Veselina Gadjeva and Iwao Kanno . Multimodal Silica-Shelled Quantum Dots: Direct Intracellular Delivery, Photosensitization, Toxic, and Microcirculation Effects. Bioconjugate Chemistry 2008, 19 (6) , 1135-1142. https://doi.org/10.1021/bc700431c
    49. Jin Ho Bang, Won Hyuk Suh and Kenneth S. Suslick. Quantum Dots from Chemical Aerosol Flow Synthesis: Preparation, Characterization, and Cellular Imaging. Chemistry of Materials 2008, 20 (12) , 4033-4038. https://doi.org/10.1021/cm800453t
    50. Yang Zhang, Yongsheng Chen, Paul Westerhoff and John C. Crittenden. Stability and Removal of Water Soluble CdTe Quantum Dots in Water. Environmental Science & Technology 2008, 42 (1) , 321-325. https://doi.org/10.1021/es0714991
    51. Hisataka Kobayashi, Yoshinori Koyama, Tristan Barrett, Yukihiro Hama, Celeste A. S. Regino, In Soo Shin, Beom-Su Jang, Nhat Le, Chang H. Paik, Peter L. Choyke and Yasuteru Urano . Multimodal Nanoprobes for Radionuclide and Five-Color Near-Infrared Optical Lymphatic Imaging. ACS Nano 2007, 1 (4) , 258-264. https://doi.org/10.1021/nn700062z
    52. Igor Nabiev,, Siobhan Mitchell,, Anthony Davies,, Yvonne Williams,, Dermot Kelleher,, Richard Moore,, Yurii K. Gun'ko,, Stephen Byrne,, Yury P. Rakovich,, John F. Donegan,, Alyona Sukhanova,, Jennifer Conroy,, David Cottell,, Nikolai Gaponik,, Andrey Rogach, and, Yuri Volkov. Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters 2007, 7 (11) , 3452-3461. https://doi.org/10.1021/nl0719832
    53. Anjali Mehto, Prashant Shukla. Bioimaging potential: Comparative study of ZnO nanoparticles synthesized via green and chemical routes. Next Nanotechnology 2025, 7 , 100118. https://doi.org/10.1016/j.nxnano.2024.100118
    54. Daniella Sári, Aya Ferroudj, Dávid Semsey, Hassan El-Ramady, Eric C. Brevik, József Prokisch. Tellurium and Nano-Tellurium: Medicine or Poison?. Nanomaterials 2024, 14 (8) , 670. https://doi.org/10.3390/nano14080670
    55. Wojciech Białowąs, Rym Boudjemaa, Karine Steenkeste, Pauline Nyssen, Maryse Hoebeke, Janina Lulek, Marie Pierre Fontaine-Aupart, Raphaël Schneider. Reactive oxygen species production by photoexcited (CuInS2)x(ZnS)1-x quantum dots and their phototoxicity towards Staphylococcus aureus bacteria. Journal of Photochemistry and Photobiology A: Chemistry 2024, 446 , 115165. https://doi.org/10.1016/j.jphotochem.2023.115165
    56. Yibo An, Dazhuang Xu, Xiaofei Wen, Chuan Chen, Gang Liu, Zhixiang Lu. Internal Light Sources‐Mediated Photodynamic Therapy Nanoplatforms: Hope for the Resolution of the Traditional Penetration Problem. Advanced Healthcare Materials 2024, 13 (1) https://doi.org/10.1002/adhm.202301326
    57. Kishan Das, Eepsita Priyadarshini, Tulika Prasad, Kamla Rawat, Himadri B. Bohidar. CdSe@CdS core-shell quantum dots as antifungal agents: significance of particle size and shell thickness. Journal of Nanoparticle Research 2024, 26 (1) https://doi.org/10.1007/s11051-024-05931-6
    58. Bahman Alipour, Tohid Mortezazadeh, Waleed K. Abdulsahib, Asghar Arzhang, Reza Malekzadeh, Bagher Farhood. A systematic review of multimodal application of quantum dots in breast cancer diagnosis: Effective parameters, status and future perspectives. Journal of Drug Delivery Science and Technology 2023, 86 , 104682. https://doi.org/10.1016/j.jddst.2023.104682
    59. Dashrathbhai B. Kanzariya, Meetkumar Y. Chaudhary, Tapan K. Pal. Engineering of metal–organic frameworks (MOFs) for thermometry. Dalton Transactions 2023, 52 (22) , 7383-7404. https://doi.org/10.1039/D3DT01048A
    60. Yixin Li, Wei Xiong, Lei Li, Zhuoming Zhou, Chuang Yao, Zhongkai Huang, Maolin Bo. Topological Bonding and Electronic Properties of Cd 43 Te 28 Semiconductor Material with Microporous Structure. physica status solidi (b) 2023, 260 (6) https://doi.org/10.1002/pssb.202300044
    61. Kishan Das, Ramovatar Meena, Usha Singh Gaharwar, Eepsita Priyadarshini, Kamla Rawat, R. Paulraj, Yugal Kishore Mohanta, Muthupandian Saravanan, Himadri B. Bohidar, . Bioaccumulation of CdSe Quantum Dots Show Biochemical and Oxidative Damage in Wistar Rats. Oxidative Medicine and Cellular Longevity 2023, 2023 , 1-13. https://doi.org/10.1155/2023/7707452
    62. P. Priyadarshini, S. Das, S. Senapati, S.K. Samal, G.K. Pradhan, R. Naik. Preparation of nanosheets embedded ZnSe/Bi2Se3 core/shell quantum dots for the study of optical properties and antibacterial activity. Surfaces and Interfaces 2023, 37 , 102687. https://doi.org/10.1016/j.surfin.2023.102687
    63. Abhinoy Kishore, Indranil De, Prashant Sharma, Manish Singh Singh. Breaking the Barriers of Nanotoxicological Assessments: The Importance of Available Models and Future Perspectives. 2023, 163-184. https://doi.org/10.2174/9789815123555123010011
    64. S. Nithya, Rohan R. Krishnan, Nachiketha R. Rao, Kamakshi Naik, N. Praveen, V. L. Vasantha. Microwave-Assisted Extraction of Phytochemicals. 2023, 209-238. https://doi.org/10.1007/978-3-031-35205-8_8
    65. Akhil, Arathi, K. B. Megha, X. Joseph, V. P. Sangeetha, P. V. Mohanan. Quantum Dots for Imaging and Its Safety. 2023, 459-475. https://doi.org/10.1007/978-981-19-7834-0_18
    66. Jyotsana Mehta, Manjit Singh Jadon, Neeraj Dilbaghi, Sandeep Kumar. Fluorescent inorganic nanoparticles for bioimaging and therapeutic applications. 2023, 45-71. https://doi.org/10.1016/B978-0-12-821240-0.00008-1
    67. Chukwudi O. Onwosi, Victory Nnaemeka, Chioma L. Onyishi, Flora N. Ezugworie, Victor C. Igbokwe. Applications of nanomaterials in biofuel production. 2023, 83-118. https://doi.org/10.1016/B978-0-323-91782-7.00001-1
    68. Mahboubeh Adeli-Sardou, Mojtaba Shakibaie, Hamid Forootanfar, Fereshteh Jabari-Morouei, Soudabe Riahi-Madvar, Sima-Sadat Ghafari-Shahrbabaki, Mitra Mehrabani. Cytotoxicity and anti-biofilm activities of biogenic cadmium nanoparticles and cadmium nitrate: a preliminary study. World Journal of Microbiology and Biotechnology 2022, 38 (12) https://doi.org/10.1007/s11274-022-03418-x
    69. Moon Sung Kang, Mina Kwon, Hee Jeong Jang, Seung Jo Jeong, Dong-Wook Han, Ki Su Kim. Biosafety of inorganic nanomaterials for theranostic applications. Emergent Materials 2022, 5 (6) , 1995-2029. https://doi.org/10.1007/s42247-022-00426-3
    70. Ali A. Rabaan, Rehab Bukhamsin, Hajir AlSaihati, Saleh A. Alshamrani, Jehad AlSihati, Hani M. Al-Afghani, Roua A. Alsubki, Abdulmonem A. Abuzaid, Saleh Al-Abdulhadi, Yahya Aldawood, Abdulmonem A. Alsaleh, Yousef N. Alhashem, Jenan A. Almatouq, Talha Bin Emran, Shamsah H. Al-Ahmed, Firzan Nainu, Ranjan K. Mohapatra. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022, 27 (24) , 8659. https://doi.org/10.3390/molecules27248659
    71. Pratik Chakraborty, Sabya Sachi Das, Abhijit Dey, Apala Chakraborty, Chiranjib Bhattacharyya, Ramesh Kandimalla, Biswajit Mukherjee, Abilash Valsala Gopalakrishnan, Sandeep Kumar Singh, Shubham Kant, Parma Nand, Shreesh Ojha, Pravir Kumar, Niraj Kumar Jha, Saurabh Kumar Jha, Saikat Dewanjee. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. Journal of Controlled Release 2022, 350 , 698-715. https://doi.org/10.1016/j.jconrel.2022.08.047
    72. Qing Liu, Xiaomeng Ding, Yanting Pang, Yuna Cao, Jialin Lei, Jiawei Wu, Ting Zhang. New insights into the safety assessment of quantum dots: potential release pathways, environmental transformations, and health risks. Environmental Science: Nano 2022, 9 (9) , 3277-3311. https://doi.org/10.1039/D2EN00252C
    73. Melissa Anne Tutty, Gabriele Vella, Adriele Prina-Mello. Pre-clinical 2D and 3D toxicity response to a panel of nanomaterials; comparative assessment of NBM-induced liver toxicity. Drug Delivery and Translational Research 2022, 12 (9) , 2157-2177. https://doi.org/10.1007/s13346-022-01170-1
    74. Praveen K. Shahi, Shyam B. Rai. Upconversion Nanoparticles in Temperature Sensing and Optical Heating Applications. 2022, 417-447. https://doi.org/10.1002/9783527834884.ch15
    75. Namdev Dhas, Monarch Pastagia, Akanksha Sharma, Alisha Khera, Ritu Kudarha, Sanjay Kulkarni, Soji Soman, Srinivas Mutalik, Ravi Pratap Barnwal, Gurpal Singh, Mital Patel. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. Journal of Controlled Release 2022, 348 , 798-824. https://doi.org/10.1016/j.jconrel.2022.06.033
    76. Femi Olawale, Olakunle Oladimeji, Mario Ariatti, Moganavelli Singh, . Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. Journal of Nanotechnology 2022, 2022 , 1-18. https://doi.org/10.1155/2022/6176610
    77. Elettra Musolino, Christina Pagiatakis, Simone Serio, Marina Borgese, Federica Gamberoni, Rosalba Gornati, Giovanni Bernardini, Roberto Papait. The Yin and Yang of epigenetics in the field of nanoparticles. Nanoscale Advances 2022, 4 (4) , 979-994. https://doi.org/10.1039/D1NA00682G
    78. Santosh Podder. Fluorescent Quantum Dots, A Technological Marvel for Optical Bio-imaging: A Perspective on Associated In Vivo Toxicity. 2022, 143-163. https://doi.org/10.1007/978-981-19-3144-4_8
    79. Shahzad Maqsood Khan, Sidra Saleemi, Hafiz Abdul Mannan. Toxicology, Stability, and Recycling of Organic–Inorganic Nanohybrids. 2022, 485-497. https://doi.org/10.1007/978-981-19-4538-0_22
    80. Yanamadala Swarnaltha, Seema Siddharthan. Quantum dots: policy and ethics. 2022, 887-899. https://doi.org/10.1016/B978-0-323-85457-3.00031-1
    81. W L Ang, Q A Alqasem, A W Mohammad. Microwave-assisted synthesis of photoluminescent carbon dots from palm fronds biomass wastes. IOP Conference Series: Materials Science and Engineering 2021, 1195 (1) , 012008. https://doi.org/10.1088/1757-899X/1195/1/012008
    82. Hengjie Yu, Zhilin Zhao, Fang Cheng. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere 2021, 276 , 130164. https://doi.org/10.1016/j.chemosphere.2021.130164
    83. Yalian Weng, Shiyao Chen, Yongai Zhang, Lei Sun, Yan Wu, Qun Yan, Tailiang Guo, Xiongtu Zhou, Chaoxing Wu. Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route. Optics & Laser Technology 2021, 140 , 107026. https://doi.org/10.1016/j.optlastec.2021.107026
    84. Yun Man, Wen-Sheng Zou, Wei-Li Kong, Weihua Li, Weiwei Dong, Donglin Zhao, Qishu Qu, Yaqin Wang. Brightly blue triazine-doped carbon dots for selective determination of Cu(II) in environment and imaging in cell. Journal of Photochemistry and Photobiology A: Chemistry 2021, 416 , 113321. https://doi.org/10.1016/j.jphotochem.2021.113321
    85. Flore Vanden Bussche, Anna M. Kaczmarek, Veronique Van Speybroeck, Pascal Van Der Voort, Christian V. Stevens. Overview of N‐Rich Antennae Investigated in Lanthanide‐Based Temperature Sensing. Chemistry – A European Journal 2021, 27 (25) , 7214-7230. https://doi.org/10.1002/chem.202100007
    86. Vardan Galstyan. “Quantum dots: Perspectives in next-generation chemical gas sensors” ‒ A review. Analytica Chimica Acta 2021, 1152 , 238192. https://doi.org/10.1016/j.aca.2020.12.067
    87. V. G. Reshma, P. V. Mohanan. Assessment of Immunotoxicity and Oxidative Stress Induced by Zinc Selenium/Zinc Sulphide Quantum Dots. Frontiers in Nanotechnology 2021, 2 https://doi.org/10.3389/fnano.2020.597382
    88. A. Seenivasan, M. Muthuraj, T. Panda. Toxicological Study of Nanoparticles: An Attempt to Relate Physicochemical Characters with Toxicity. 2021, 325-342. https://doi.org/10.1007/978-981-15-5511-4_23
    89. Esranur Budak, Duğçar Erdoğan, Caner Ünlü. Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynthesis Research 2021, 147 (1) , 1-10. https://doi.org/10.1007/s11120-020-00786-z
    90. Kavita Rana, Yeshvandra Verma, S. V. S. Rana. Possible Mechanisms of Liver Injury Induced by Cadmium Sulfide Nanoparticles in Rat. Biological Trace Element Research 2021, 199 (1) , 216-226. https://doi.org/10.1007/s12011-020-02128-5
    91. Fardin Sadeghfar, Sonia Bahrani, Mehrorang Ghaedi. The kinetic models in electron transfer processes in colloidal semiconductor photocatalysis. 2021, 375-441. https://doi.org/10.1016/B978-0-12-818806-4.00004-8
    92. Tyler J. Maxwell, Parthiban Rajasekaran, Mikaeel Young, Morgan Schaff, Ryan Heetai, Swadeshmukul Santra. Non-phytotoxic zinc based nanoparticle adjuvant for improving rainfastness and sustained release of streptomycin. Environmental Nanotechnology, Monitoring & Management 2020, 14 , 100355. https://doi.org/10.1016/j.enmm.2020.100355
    93. V.G. Reshma, K.S. Rajeev, K. Manoj, P.V. Mohanan. Water dispersible ZnSe/ZnS quantum dots: Assessment of cellular integration, toxicity and bio-distribution. Journal of Photochemistry and Photobiology B: Biology 2020, 212 , 112019. https://doi.org/10.1016/j.jphotobiol.2020.112019
    94. Na Liu, Meng Tang. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. Journal of Hazardous Materials 2020, 399 , 122606. https://doi.org/10.1016/j.jhazmat.2020.122606
    95. Ashwani Kumar Singh, Amar Nath Yadav, Saurabh Srivastav, Rishi Kumar Jaiswal, Amit Srivastava, Amal Chandra Mondal, Kedar Singh. CdSe- Reduced graphene oxide nanocomposite toxicity alleviation via V 2 O 5 shell formation over CdSe core: in vivo and in vitro studies. Nanotechnology 2020, 31 (41) , 415101. https://doi.org/10.1088/1361-6528/ab8b0f
    96. Chia-Hua Lin, Yi-Chun Chen, Pin-I. Huang. Preparation of Multifunctional Dopamine-Coated Zerovalent Iron/Reduced Graphene Oxide for Targeted Phototheragnosis in Breast Cancer. Nanomaterials 2020, 10 (10) , 1957. https://doi.org/10.3390/nano10101957
    97. Laura Cid-Barrio, Diego Bouzas-Ramos, Alfonso Salinas-Castillo, Yasumitsu Ogra, Jorge Ruiz Encinar, José M. Costa-Fernández. Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells. Journal of Analytical Atomic Spectrometry 2020, 35 (9) , 1979-1988. https://doi.org/10.1039/D0JA00162G
    98. Aishwarya Shivashankarappa, Konasur Rajesh Sanjay. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Brazilian Journal of Microbiology 2020, 51 (3) , 939-948. https://doi.org/10.1007/s42770-020-00238-9
    99. Esranur Budak, Sümeyye Aykut, Mehmet Emin Paşaoğlu, Caner Ünlü. Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments. Materials Today Communications 2020, 24 , 100975. https://doi.org/10.1016/j.mtcomm.2020.100975
    100. Abdulrahman A. Balhaddad, Isadora M. Garcia, Maria Salem Ibrahim, Juliana P.M.L. Rolim, Edison A.B. Gomes, Frederico C. Martinho, Fabricio M. Collares, Hockin Xu, Mary Anne S. Melo. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. Photobiomodulation, Photomedicine, and Laser Surgery 2020, 38 (8) , 481-496. https://doi.org/10.1089/photob.2020.4815
    Load more citations

    Langmuir

    Cite this: Langmuir 2007, 23, 4, 1974–1980
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la060093j
    Published January 12, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    4535

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.