ACS Publications. Most Trusted. Most Cited. Most Read
Electrochemistry Using Self-Assembled DNA Monolayers on Highly Oriented Pyrolytic Graphite
My Activity
    Research Article

    Electrochemistry Using Self-Assembled DNA Monolayers on Highly Oriented Pyrolytic Graphite
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
    Other Access Options

    Langmuir

    Cite this: Langmuir 2006, 22, 18, 7917–7922
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la0611054
    Published July 26, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Duplex DNA functionalized with pyrene has been utilized to fabricate DNA-modified electrodes on highly oriented pyrolytic graphite (HOPG). Films have been characterized using AFM and radioactive labeling as well as electrochemically. The data obtained are consistent with a close-packed structure in the film with helices oriented in a nearly upright orientation, as seen earlier with the fabrication of thiol-tethered duplexes on gold. Also as on gold, we observe the reduction of DNA-bound intercalators in a DNA-mediated reaction. The reduction of the intercalator is attenuated in the presence of the single-base mismatches, CA and GT, independent of the sequence composition of the oligonucleotide. This sensitivity to single-base mismatches is enhanced when methylene blue reduction is coupled in an electrocatalytic cycle with ferricyanide. The extended potential range afforded by the HOPG surface has allowed us also to investigate the electrochemistry of previously inaccessible metallointercalators, Ru(bpy)2dppz2+ and Os(phen)2dppz2+, at the DNA-modified HOPG surface. These results support the application of DNA-modified HOPG as a convenient and reproducible surface for electrochemical DNA sensors using DNA-mediated charge transport.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail: [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Adela Nano, Ariel L. Furst, Michael G. Hill, Jacqueline K. Barton. DNA Electrochemistry: Charge-Transport Pathways through DNA Films on Gold. Journal of the American Chemical Society 2021, 143 (30) , 11631-11640. https://doi.org/10.1021/jacs.1c04713
    2. Edmund C. M. Tse, Theodore J. Zwang, Sebastian Bedoya, Jacqueline K. Barton. Effective Distance for DNA-Mediated Charge Transport between Repair Proteins. ACS Central Science 2019, 5 (1) , 65-72. https://doi.org/10.1021/acscentsci.8b00566
    3. Fabian Kollmann, Saminathan Ramakrishnan, Boxuan Shen, Guido Grundmeier, Mauri A. Kostiainen, Veikko Linko, Adrian Keller. Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug. ACS Omega 2018, 3 (8) , 9441-9448. https://doi.org/10.1021/acsomega.8b00934
    4. Theodore J. Zwang, Edmund C. M. Tse, Jacqueline K. Barton. Sensing DNA through DNA Charge Transport. ACS Chemical Biology 2018, 13 (7) , 1799-1809. https://doi.org/10.1021/acschembio.8b00347
    5. Xue V. Zhen, Emily G. Swanson, Justin T. Nelson, Yao Zhang, Qun Su, Steven J. Koester, Philippe Bühlmann. Noncovalent Monolayer Modification of Graphene Using Pyrene and Cyclodextrin Receptors for Chemical Sensing. ACS Applied Nano Materials 2018, 1 (6) , 2718-2726. https://doi.org/10.1021/acsanm.8b00420
    6. Shou-Cheng Wu, Chung-Yen Lu, Yi-Lin Chen, Feng-Chun Lo, Ting-Yin Wang, Yu-Jen Chen, Shyng-Shiou Yuan, Wen-Feng Liaw, and Yun-Ming Wang . Water-Soluble Dinitrosyl Iron Complex (DNIC): a Nitric Oxide Vehicle Triggering Cancer Cell Death via Apoptosis. Inorganic Chemistry 2016, 55 (18) , 9383-9392. https://doi.org/10.1021/acs.inorgchem.6b01562
    7. Jiun Ru Wong, Kee Jin Lee, Jian-Jun Shu, and Fangwei Shao . Magnetic Fields Facilitate DNA-Mediated Charge Transport. Biochemistry 2015, 54 (21) , 3392-3399. https://doi.org/10.1021/acs.biochem.5b00295
    8. Emil Paleček, Jan Tkáč, Martin Bartošík, Tomáš Bertók, Veronika Ostatná, and Jan Paleček . Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chemical Reviews 2015, 115 (5) , 2045-2108. https://doi.org/10.1021/cr500279h
    9. Mahmoud Labib, Nasrin Khan, and Maxim V. Berezovski . Protein Electrocatalysis for Direct Sensing of Circulating MicroRNAs. Analytical Chemistry 2015, 87 (2) , 1395-1403. https://doi.org/10.1021/ac504331c
    10. Chris H. Wohlgamuth, Marc A. McWilliams, Amir Mazaheripour, Anthony M. Burke, Kuo-Yao Lin, Linh Doan, Jason D. Slinker, and Alon A. Gorodetsky . Electrochemistry of DNA Monolayers Modified With a Perylenediimide Base Surrogate. The Journal of Physical Chemistry C 2014, 118 (50) , 29084-29090. https://doi.org/10.1021/jp5041508
    11. David D. Ordinario, Anthony M. Burke, Long Phan, Jonah-Micah Jocson, Hanfei Wang, Mary N. Dickson, and Alon A. Gorodetsky . Sequence Specific Detection of Restriction Enzymes at DNA-Modified Carbon Nanotube Field Effect Transistors. Analytical Chemistry 2014, 86 (17) , 8628-8633. https://doi.org/10.1021/ac501441d
    12. Chris H. Wohlgamuth, Marc A. McWilliams, and Jason D. Slinker . Temperature Dependence of Electrochemical DNA Charge Transport: Influence of a Mismatch. Analytical Chemistry 2013, 85 (3) , 1462-1467. https://doi.org/10.1021/ac302508f
    13. Anisha N. Patel, Manon Guille Collignon, Michael A. O’Connell, Wendy O. Y. Hung, Kim McKelvey, Julie V. Macpherson, and Patrick R. Unwin . A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite. Journal of the American Chemical Society 2012, 134 (49) , 20117-20130. https://doi.org/10.1021/ja308615h
    14. Princia Salvatore, Kasper K. Karlsen, Allan G. Hansen, Jingdong Zhang, Richard J. Nichols, and Jens Ulstrup . Polycation Induced Potential Dependent Structural Transitions of Oligonucleotide Monolayers on Au(111)-Surfaces. Journal of the American Chemical Society 2012, 134 (46) , 19092-19098. https://doi.org/10.1021/ja306877s
    15. Na Lu, Hao Pei, Zhilei Ge, Chad R. Simmons, Hao Yan, and Chunhai Fan . Charge Transport within a Three-Dimensional DNA Nanostructure Framework. Journal of the American Chemical Society 2012, 134 (32) , 13148-13151. https://doi.org/10.1021/ja302447r
    16. Jason D. Slinker, Natalie B. Muren, Alon A. Gorodetsky and Jacqueline K. Barton. Multiplexed DNA-Modified Electrodes. Journal of the American Chemical Society 2010, 132 (8) , 2769-2774. https://doi.org/10.1021/ja909915m
    17. Alon A. Gorodetsky, Marisa C. Buzzeo and Jacqueline K. Barton. DNA-Mediated Electrochemistry. Bioconjugate Chemistry 2008, 19 (12) , 2285-2296. https://doi.org/10.1021/bc8003149
    18. Alon A. Gorodetsky, William J. Hammond, Michael G. Hill, Krzysztof Slowinski and Jacqueline K. Barton. Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue. Langmuir 2008, 24 (24) , 14282-14288. https://doi.org/10.1021/la8029243
    19. Richard L. McCreery, . Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews 2008, 108 (7) , 2646-2687. https://doi.org/10.1021/cr068076m
    20. Fabien Boussicault, and Marc Robert, . Electron Transfer in DNA and in DNA-Related Biological Processes. Electrochemical Insights. Chemical Reviews 2008, 108 (7) , 2622-2645. https://doi.org/10.1021/cr0680787
    21. Alon A. Gorodetsky,, Ali Ebrahim, and, Jacqueline K. Barton. Electrical Detection of TATA Binding Protein at DNA-Modified Microelectrodes. Journal of the American Chemical Society 2008, 130 (10) , 2924-2925. https://doi.org/10.1021/ja7106756
    22. Elba Gomar-Nadal,, Laurent Mugica,, José Vidal-Gancedo,, Juan Casado,, Juan T. López Navarrete,, Jaume Veciana,, Concepció Rovira, and, David B. Amabilino. Synthesis and Doping of a Multifunctional Tetrathiafulvalene- Substituted Poly(isocyanide). Macromolecules 2007, 40 (21) , 7521-7531. https://doi.org/10.1021/ma0710986
    23. Yao Liu,, Richard Hammitt,, Daniel A. Lutterman,, Randolph P. Thummel, and, Claudia Turro. Marked Differences in Light-Switch Behavior of Ru(II) Complexes Possessing a Tridentate DNA Intercalating Ligand. Inorganic Chemistry 2007, 46 (15) , 6011-6021. https://doi.org/10.1021/ic700484j
    24. Alon A. Gorodetsky and, Jacqueline K. Barton. DNA-Mediated Electrochemistry of Disulfides on Graphite. Journal of the American Chemical Society 2007, 129 (19) , 6074-6075. https://doi.org/10.1021/ja071006s
    25. Alon A. Gorodetsky,, Amie K. Boal, and, Jacqueline K. Barton. Direct Electrochemistry of Endonuclease III in the Presence and Absence of DNA. Journal of the American Chemical Society 2006, 128 (37) , 12082-12083. https://doi.org/10.1021/ja064784d
    26. Sabine Müller, Jennifer Frommer. Charge Transfer in Natural and Artificial Nucleic Acids. 2023, 1-20. https://doi.org/10.1007/978-981-16-1313-5_24-1
    27. Sabine Müller, Jennifer Frommer. Charge Transfer in Natural and Artificial Nucleic Acids. 2023, 727-746. https://doi.org/10.1007/978-981-19-9776-1_24
    28. Yesurajan Allwin Richard, Dharuman Venkataraman. Electrochemical Ultrasensitive Label Free Escherichia Coli DNA Detection at Gold Decorated Tungsten Oxide Nanoparticles Modified Electrode Surface. Journal of The Electrochemical Society 2021, 168 (10) , 106514. https://doi.org/10.1149/1945-7111/ac315a
    29. Kun'ichi Miyazawa, Takuro Nagai, Koji Kimoto, Masaru Yoshitake, Yumi Tanaka. Cross‐sectional structural characterization of the surface of exfoliated HOPG using HRTEM‐EELS. Surface and Interface Analysis 2021, 53 (1) , 84-89. https://doi.org/10.1002/sia.6875
    30. Xin Hai, Yuanfang Li, Chengzhan Zhu, Weiling Song, Jingyu Cao, Sai Bi. DNA-based label-free electrochemical biosensors: From principles to applications. TrAC Trends in Analytical Chemistry 2020, 133 , 116098. https://doi.org/10.1016/j.trac.2020.116098
    31. Maedeh Mozneb, Elnaz Mirtaheri, Arianna Ortega Sanabria, Chen-Zhong Li. Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosensors and Bioelectronics 2020, 167 , 112441. https://doi.org/10.1016/j.bios.2020.112441
    32. Bushra Rafique, Mudassir Iqbal, Tahir Mehmood, Muhammad Ashraf Shaheen. Electrochemical DNA biosensors: a review. Sensor Review 2019, 39 (1) , 34-50. https://doi.org/10.1108/SR-08-2017-0156
    33. Jacqueline K. Barton, Phillip L. Bartels, Yingxin Deng, Elizabeth O'Brien. Electrical Probes of DNA-Binding Proteins. 2017, 355-414. https://doi.org/10.1016/bs.mie.2017.03.024
    34. Natashya Falcone, Zhe She, Chai Chen, Bin Dong, Daniel Yi, Heinz-Bernhard Kraatz. Demonstration of a tailorable and PCR-free detection of Enterococcus DNA isolated from soil samples. Analytical Methods 2017, 9 (10) , 1643-1649. https://doi.org/10.1039/C6AY03309A
    35. Minjun Yang, Christopher Batchelor‐McAuley, Luís Moreira Gonçalves, Carlos F. R. A. C. Lima, Vlastimil Vyskočil, Kristina Tschulik, Richard G. Compton. Ferrocene Aryl Derivatives for the Redox Tagging of Graphene Nanoplatelets. Electroanalysis 2016, 28 (1) , 197-202. https://doi.org/10.1002/elan.201500590
    36. Anna R. Arnold, Michael A. Grodick, Jacqueline K. Barton. DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology 2016, 23 (1) , 183-197. https://doi.org/10.1016/j.chembiol.2015.11.010
    37. Wei Zhang, Shuyun Zhu, Rafael Luque, Shuang Han, Lianzhe Hu, Guobao Xu. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews 2016, 45 (3) , 715-752. https://doi.org/10.1039/C5CS00297D
    38. Jill O. Fuss, Chi-Lin Tsai, Justin P. Ishida, John A. Tainer. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (6) , 1253-1271. https://doi.org/10.1016/j.bbamcr.2015.01.018
    39. . 1‐Pyrenebutanoic acid succinimidyl ester. 2015, 336-339. https://doi.org/10.1002/9781119007104.ch124
    40. Guohui Zhang, Anatolii S. Cuharuc, Aleix G. Güell, Patrick R. Unwin. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Physical Chemistry Chemical Physics 2015, 17 (17) , 11827-11838. https://doi.org/10.1039/C5CP00383K
    41. Guillaume de Robillard, Oumayma Makni, Hélène Cattey, Jacques Andrieu, Charles H. Devillers. Towards sustainable synthesis of pyren-1-yl azoliums via electrochemical oxidative C–N coupling. Green Chemistry 2015, 17 (9) , 4669-4679. https://doi.org/10.1039/C5GC01142F
    42. L. S. A. Mahe, S. J. Green, C. P. Winlove, A. T. A. Jenkins. Pyrene-wired antibodies on highly oriented pyrolytic graphite as a label-free impedance biosensor for the sepsis biomarker procalcitonin. Journal of Solid State Electrochemistry 2014, 18 (12) , 3245-3249. https://doi.org/10.1007/s10008-014-2588-7
    43. Wei Zhu, Ai-Min Guo, Qing-Feng Sun. Electronic transport through tetrahedron-structured DNA-like system. Frontiers of Physics 2014, 9 (6) , 774-779. https://doi.org/10.1007/s11467-013-0353-5
    44. Agnès Anne, Mohamed Ali Bahri, Arnaud Chovin, Christophe Demaille, Cécilia Taofifenua. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy. Physical Chemistry Chemical Physics 2014, 16 (10) , 4642. https://doi.org/10.1039/c3cp54720e
    45. Agnieszka Gniazdowska, Adriana Palinska-Saadi, Ewelina Krawczyk, Hanna Elzanowska, Magdalena Maj-Zurawska. Supercoiled and linear plasmid DNAs interactions with methylene blue. Bioelectrochemistry 2013, 92 , 32-41. https://doi.org/10.1016/j.bioelechem.2013.02.001
    46. Allan G. Hansen, Princia Salvatore, Kasper K. Karlsen, Richard J. Nichols, Jesper Wengel, Jens Ulstrup. Electrochemistry and in situscanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces. Phys. Chem. Chem. Phys. 2013, 15 (3) , 776-786. https://doi.org/10.1039/C2CP42351K
    47. Lubica Kalachova, Radek Pohl, Lucie Bednárová, Jindřich Fanfrlík, Michal Hocek. Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations. Org. Biomol. Chem. 2013, 11 (1) , 78-89. https://doi.org/10.1039/C2OB26881G
    48. Naigui Shang, Ajay Kumar, Nijuan Sun, Surbhi Sharma, Pagona Papakonstantinou, Meixian Li, Ross A. Blackley, Wuzong Zhou, Lisa S. Karlsson, S. Ravi P. Silva. Vertical graphene nanoflakes for the immobilization, electrocatalytic oxidation and quantitative detection of DNA. Electrochemistry Communications 2012, 25 , 140-143. https://doi.org/10.1016/j.elecom.2012.09.036
    49. Veronika Ostatná, Hana Černocká, Emil Paleček. Simple protein structure-sensitive chronopotentiometric analysis with dithiothreitol-modified Hg electrodes. Bioelectrochemistry 2012, 87 , 84-88. https://doi.org/10.1016/j.bioelechem.2012.01.004
    50. Richard L. McCreery, Adam Johan Bergren. Surface Functionalization in the Nanoscale Domain. 2012, 163-190. https://doi.org/10.1007/978-3-7091-0424-8_7
    51. Lubica Kalachova, Radek Pohl, Michal Hocek. Synthesis of nucleoside mono- and triphosphates bearing oligopyridine ligands, their incorporation into DNA and complexation with transition metals. Org. Biomol. Chem. 2012, 10 (1) , 49-55. https://doi.org/10.1039/C1OB06359F
    52. Natalie B. Muren, Eric D. Olmon, Jacqueline K. Barton. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport. Physical Chemistry Chemical Physics 2012, 14 (40) , 13754. https://doi.org/10.1039/c2cp41602f
    53. V. Dharuman, K. Vijayaraj, S. Radhakrishnan, T. Dinakaran, J. Shankara Narayanan, M. Bhuvana, J. Wilson. Sensitive label-free electrochemical DNA hybridization detection in the presence of 11-mercaptoundecanoic acid on the thiolated single strand DNA and mercaptohexanol binary mixed monolayer surface. Electrochimica Acta 2011, 56 (24) , 8147-8155. https://doi.org/10.1016/j.electacta.2011.05.115
    54. Saliha Akca, Ashkan Foroughi, Daniel Frochtzwajg, Henk W. Ch. Postma, . Competing Interactions in DNA Assembly on Graphene. PLoS ONE 2011, 6 (4) , e18442. https://doi.org/10.1371/journal.pone.0018442
    55. Minh-Chau Pham, Benoît Piro. Electrochemical Biosensors Based on Conducting Polymers. 2010, 85-99. https://doi.org/10.1201/b10277-5
    56. M. L. Pedano, G. A. Rivas. Adsorption and Electrooxidation of DNA at Glassy Carbon Paste Electrodes. Analytical Letters 2010, 43 (10-11) , 1703-1712. https://doi.org/10.1080/00032711003653866
    57. A. Palinska, A. Grodzka, H. Elzanowska, B. Kepska, E. Zwierkowska, S. Achmatowicz, M. Maj‐Zurawska. Methylene Blue Interactions with Chromosomal and Plasmid DNA on Screen‐Printed Carbon Electrodes. Electroanalysis 2010, 22 (12) , 1306-1313. https://doi.org/10.1002/elan.200900278
    58. V. Dharuman, B.-Y. Chang, S.-M. Park, J.H. Hahn. Ternary mixed monolayers for simultaneous DNA orientation control and surface passivation for label free DNA hybridization electrochemical sensing. Biosensors and Bioelectronics 2010, 25 (9) , 2129-2134. https://doi.org/10.1016/j.bios.2010.02.019
    59. Xiaoteng Luo, Jingjing Xu, John Barford, I-Ming Hsing. Magnetic particle based electrochemical sensing platform for PCR amplicon detection. Electrochemistry Communications 2010, 12 (4) , 531-534. https://doi.org/10.1016/j.elecom.2010.01.036
    60. Milan Vrábel, Petra Horáková, Hana Pivoňková, Lubica Kalachova, Hana Černocká, Hana Cahová, Radek Pohl, Peter Šebest, Luděk Havran, Michal Hocek, Miroslav Fojta. Base‐Modified DNA Labeled by [Ru(bpy) 3 ] 2+ and [Os(bpy) 3 ] 2+ Complexes: Construction by Polymerase Incorporation of Modified Nucleoside Triphosphates, Electrochemical and Luminescent Properties, and Applications. Chemistry – A European Journal 2009, 15 (5) , 1144-1154. https://doi.org/10.1002/chem.200801538
    61. Na Zhou, Tao Yang, Chen Jiang, Meng Du, Kui Jiao. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Aunano–CNT/PANnano films. Talanta 2009, 77 (3) , 1021-1026. https://doi.org/10.1016/j.talanta.2008.07.058
    62. Dalibor Huska, Jaromir Hubalek, Vojtech Adam, Rene Kizek. Miniaturized electrochemical detector as a tool for detection of DNA amplified by PCR. ELECTROPHORESIS 2008, 29 (24) , 4964-4971. https://doi.org/10.1002/elps.200800445
    63. Benjamin Elias, Joseph C. Genereux, Jacqueline K. Barton. Ping‐Pong Electron Transfer through DNA. Angewandte Chemie 2008, 120 (47) , 9207-9210. https://doi.org/10.1002/ange.200803556
    64. Benjamin Elias, Joseph C. Genereux, Jacqueline K. Barton. Ping‐Pong Electron Transfer through DNA. Angewandte Chemie International Edition 2008, 47 (47) , 9067-9070. https://doi.org/10.1002/anie.200803556
    65. Alon A. Gorodetsky, Lars E. P. Dietrich, Paul E. Lee, Bruce Demple, Dianne K. Newman, Jacqueline K. Barton. DNA binding shifts the redox potential of the transcription factor SoxR. Proceedings of the National Academy of Sciences 2008, 105 (10) , 3684-3689. https://doi.org/10.1073/pnas.0800093105
    66. Fausto Lucarelli, Sara Tombelli, Maria Minunni, Giovanna Marrazza, Marco Mascini. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta 2008, 609 (2) , 139-159. https://doi.org/10.1016/j.aca.2007.12.035
    67. Milan Vrábel, Radek Pohl, Ivan Votruba, Mohsen Sajadi, Sergey A. Kovalenko, Nikolaus P. Ernsting, Michal Hocek. Synthesis and photophysical properties of 7-deaza-2′-deoxyadenosines bearing bipyridine ligands and their Ru(ii)-complexes in position 7. Organic & Biomolecular Chemistry 2008, 6 (16) , 2852. https://doi.org/10.1039/b805632c
    68. Emil Paleček, Veronika Ostatná. Electroactivity of Nonconjugated Proteins and Peptides. Towards Electroanalysis of All Proteins. Electroanalysis 2007, 19 (23) , 2383-2403. https://doi.org/10.1002/elan.200704033
    69. Amie K. Boal, Eylon Yavin, Jacqueline K. Barton. DNA repair glycosylases with a [4Fe–4S] cluster: A redox cofactor for DNA-mediated charge transport?. Journal of Inorganic Biochemistry 2007, 101 (11-12) , 1913-1921. https://doi.org/10.1016/j.jinorgbio.2007.05.001
    70. Lars H. Lie, Michael V. Mirkin, Sanna Hakkarainen, Andrew Houlton, Benjamin R. Horrocks. Electrochemical detection of lateral charge transport in metal complex-DNA monolayers synthesized on Si(111) electrodes. Journal of Electroanalytical Chemistry 2007, 603 (1) , 67-80. https://doi.org/10.1016/j.jelechem.2007.01.020
    71. Katherine J. Odenthal, J. Justin Gooding. An introduction to electrochemical DNA biosensors. The Analyst 2007, 132 (7) , 603. https://doi.org/10.1039/b701816a

    Langmuir

    Cite this: Langmuir 2006, 22, 18, 7917–7922
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la0611054
    Published July 26, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1500

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.