ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch Article

Microcantilever Sensing and Actuation with End-Grafted Stimulus-Responsive Elastin-Like Polypeptides

View Author Information
Department of Mechanical Engineering and Materials Science and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, and Center for Biologically Inspired Materials and Materials Systems, Durham, North Carolina 27708
Cite this: Langmuir 2007, 23, 1, 339–344
Publication Date (Web):November 10, 2006
https://doi.org/10.1021/la0616698
Copyright © 2007 American Chemical Society

    Article Views

    893

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Stimulus-responsive elastin-like polypeptides (ELPs) grafted onto surfaces are of significant technical interest because they can be exploited for force generation, in sensing applications, or as molecular switches with tunable properties. Changes in the conformational state of grafted ELPs, induced by a phase transition or changes in osmotic pressure, lead to significant changes in the surface stress in the ELP graft layer and translate into detectable changes in microcantilever deflection. In this study, we investigate the conformational mechanics of ELPs in response to changes in solution pH and ionic strength using atomic force microscopy (AFM) microcantilever deflection and quartz crystal microbalance (QCM) measurements. We show that the use of genetically encoded, surface-grafted ELPs is exciting for cantilever actuation and sensing because commonly available microfabricated cantilever springs offer a simple and nonintrusive way to detect changes in solvent type, temperature, and pH, promising great potential for sensing applications in microfluidic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Part of the Stimuli-Responsive Materials:  Polymers, Colloids, and Multicomponent Systems special issue.

     Department of Mechanical Engineering and Materials Science, 144 Hudson Hall, Duke University.

     Center for Biologically Inspired Materials and Materials Systems.

     These authors contributed equally to this work.

    §

     Department of Biomedical Engineering, Duke University.

    *

     Corresponding author. E-mail:  [email protected]. Phone:  (919) 660-5360. Fax:  (919) 660-5409.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Sample preparation for colloidal probe measurements. Preparation of colloidal probes. Force plotted as a function of separation at several pH values for ELlP12-14 and ELP13-128. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 49 publications.

    1. Shannon P. Wetzler, Kali A. Miller, Lydia Kisley, Alexandra L. D. Stanton, Paul V. Braun, Ryan C. Bailey. Real-Time Measurement of Polymer Brush Dynamics Using Silicon Photonic Microring Resonators: Analyte Partitioning and Interior Brush Kinetics. Langmuir 2020, 36 (35) , 10351-10360. https://doi.org/10.1021/acs.langmuir.0c01336
    2. Parvin Karimineghlani, Anbazhagan Palanisamy, Svetlana A. Sukhishvili. Self-Healing Phase Change Salogels with Tunable Gelation Temperature. ACS Applied Materials & Interfaces 2018, 10 (17) , 14786-14795. https://doi.org/10.1021/acsami.8b03080
    3. Linying Li, Nan K. Li, Qing Tu, Owen Im, Chia-Kuei Mo, Wei Han, William H. Fuss, Nick J. Carroll, Ashutosh Chilkoti, Yaroslava G. Yingling, Stefan Zauscher, and Gabriel P. López . Functional Modification of Silica through Enhanced Adsorption of Elastin-Like Polypeptide Block Copolymers. Biomacromolecules 2018, 19 (2) , 298-306. https://doi.org/10.1021/acs.biomac.7b01307
    4. Ali Ghoorchian, Kaitlin Vandemark, Krista Freeman, Sumit Kambow, Nolan B. Holland, and Kiril A. Streletzky . Size and Shape Characterization of Thermoreversible Micelles of Three-Armed Star Elastin-Like Polypeptides. The Journal of Physical Chemistry B 2013, 117 (29) , 8865-8874. https://doi.org/10.1021/jp312591j
    5. Eric A. Josephs and Tao Ye . A Single-Molecule View of Conformational Switching of DNA Tethered to a Gold Electrode. Journal of the American Chemical Society 2012, 134 (24) , 10021-10030. https://doi.org/10.1021/ja3010946
    6. Ali Ghoorchian and Nolan B. Holland . Molecular Architecture Influences the Thermally Induced Aggregation Behavior of Elastin-like Polypeptides. Biomacromolecules 2011, 12 (11) , 4022-4029. https://doi.org/10.1021/bm201031m
    7. Tim S. Kelby and Wilhelm T. S. Huck . Controlled Bending of Microscale Au−Polyelectrolyte Brush Bilayers. Macromolecules 2010, 43 (12) , 5382-5386. https://doi.org/10.1021/ma100624h
    8. Ali Ghoorchian, James T. Cole and Nolan B. Holland. Thermoreversible Micelle Formation Using a Three-Armed Star Elastin-like Polypeptide. Macromolecules 2010, 43 (9) , 4340-4345. https://doi.org/10.1021/ma100285v
    9. Hai-Feng Ji and Benjamin D. Armon. Approaches to Increasing Surface Stress for Improving Signal-to-Noise Ratio of Microcantilever Sensors. Analytical Chemistry 2010, 82 (5) , 1634-1642. https://doi.org/10.1021/ac901955d
    10. Lana L. Norman and Antonella Badia. Redox Actuation of a Microcantilever Driven by a Self-Assembled Ferrocenylundecanethiolate Monolayer: An Investigation of the Origin of the Micromechanical Motion and Surface Stress. Journal of the American Chemical Society 2009, 131 (6) , 2328-2337. https://doi.org/10.1021/ja808400s
    11. Huang-Chiao Huang, Piyush Koria, Sarah M. Parker, Luke Selby, Zaki Megeed and Kaushal Rege . Optically Responsive Gold Nanorod−Polypeptide Assemblies. Langmuir 2008, 24 (24) , 14139-14144. https://doi.org/10.1021/la802842k
    12. Xiaowen Dai, Feng Zhou, Neelam Khan, Wilhelm T. S. Huck and Clemens F. Kaminski. Direct Visualization of Reversible Switching of Micropatterned Polyelectrolyte Brushes on Gold Surfaces Using Laser Scanning Confocal Microscopy. Langmuir 2008, 24 (22) , 13182-13185. https://doi.org/10.1021/la802066a
    13. Yeongjin Noh, Eunjoo Son, Chaenyung Cha. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1284226
    14. Katharina Nieswandt, Prokopios Georgopanos, Martin Held, Evgeni Sperling, Volker Abetz. RAFT Emulsion Polymerization of Styrene Using a Poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) mCTA: Synthesis and Thermosensitivity. Polymers 2022, 14 (1) , 62. https://doi.org/10.3390/polym14010062
    15. Maria Teresa Orozco-Hidalgo, Marimikel Charrier, Nicholas Tjahjono, Robert F. Tesoriero, Dong Li, Sara Molinari, Kathleen R. Ryan, Paul D. Ashby, Behzad Rad, Caroline M. Ajo-Franklin, , Manuel Salmeron-Sanchez. Engineering High-Yield Biopolymer Secretion Creates an Extracellular Protein Matrix for Living Materials. mSystems 2021, 6 (2) https://doi.org/10.1128/mSystems.00903-20
    16. Mahabubur Rahman, Huijuan Zhao. Temperature sensing performance and calibration of bi-material layer structure: role of material property variation. Forces in Mechanics 2020, 1 , 100001. https://doi.org/10.1016/j.finmec.2020.100001
    17. Marissa A. Morales, Wynter A. Paiva, Laura Marvin, Eva Rose M. Balog, Jeffrey Mark Halpern. Electrochemical characterization of the stimuli-response of surface-immobilized elastin-like polymers. Soft Matter 2019, 15 (47) , 9640-9646. https://doi.org/10.1039/C9SM01681C
    18. Maria Elvira Carbone, Rosanna Ciriello, Pasquale Moscarelli, Federica Boraldi, Giuliana Bianco, Antonio Guerrieri, Brigida Bochicchio, Antonietta Pepe, Daniela Quaglino, Anna Maria Salvi. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Analytical and Bioanalytical Chemistry 2018, 410 (20) , 4925-4941. https://doi.org/10.1007/s00216-018-1142-3
    19. Taoping Wang, Mingtong Li, Hui Zhang, Yunyu Sun, Bin Dong. A multi-responsive bidirectional bending actuator based on polypyrrole and agar nanocomposites. Journal of Materials Chemistry C 2018, 6 (24) , 6416-6422. https://doi.org/10.1039/C8TC00747K
    20. Rong-Peng Peng, Ling-Bao Xing, Xiao-Jun Wang, Cheng-Juan Wu, Bin Chen, Hai-Feng Ji, Li-Zhu Wu, Chen-Ho Tung. A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods 2017, 9 (22) , 3356-3360. https://doi.org/10.1039/C7AY00490G
    21. Cheng-Wei Huang, Pei-Wei Wu, Wei-Hung Su, Chao-Yuan Zhu, Shiao-Wei Kuo. Stimuli-responsive supramolecular materials: photo-tunable properties and molecular recognition behavior. Polymer Chemistry 2016, 7 (4) , 795-806. https://doi.org/10.1039/C5PY01852H
    22. Suguru Taniguchi, Noriko Watanabe, Takeru Nose, Iori Maeda. Development of short and highly potent self‐assembling elastin‐derived pentapeptide repeats containing aromatic amino acid residues. Journal of Peptide Science 2016, 22 (1) , 36-42. https://doi.org/10.1002/psc.2837
    23. Qing Chen, Dan-Dan Zhang, Meng-Meng Wang, Xu-Wei Chen, Jian-Hua Wang. A novel organic–inorganic hybrid polyoxometalate for the selective adsorption/isolation of β-lactoglobulin. Journal of Materials Chemistry B 2015, 3 (34) , 6964-6970. https://doi.org/10.1039/C5TB01298H
    24. Ren Geryak, Vladimir V. Tsukruk. Reconfigurable and actuating structures from soft materials. Soft Matter 2014, 10 (9) , 1246-1263. https://doi.org/10.1039/C3SM51768C
    25. Giulio Oliviero, Marcella Chiari, Ersilia De Lorenzi, Raffaella Colombo, Marina Cretich, Francesco Damin, Stefania Federici, Laura E. Depero, Paolo Bergese. Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sensors and Actuators B: Chemical 2013, 176 , 1026-1031. https://doi.org/10.1016/j.snb.2012.09.032
    26. A. Najafi Sohi, P. Nieva, A. Khajepour. A new bimaterial microcantilever with tunable thermomechanical response. Microelectronic Engineering 2012, 96 , 18-23. https://doi.org/10.1016/j.mee.2012.03.002
    27. Vinalia Tjong, Jianming Zhang, Ashutosh Chilkoti, Stefan Zauscher. Stimulus‐Responsive Polymers as Intelligent Coatings for Biosensors: Architectures, Response Mechanisms, and Applications. 2012, 1-30. https://doi.org/10.1002/9781118181249.ch1
    28. Shunjin Peng, Bharat Bhushan. Smart polymer brushes and their emerging applications. RSC Advances 2012, 2 (23) , 8557. https://doi.org/10.1039/c2ra20451g
    29. Lana Norman, Garima Thakur, Thomas Thundat. Microcantilever Sensors: Electrochemical Aspects and Biomedical Applications. 2012, 127-171. https://doi.org/10.1007/978-1-4614-3125-1_4
    30. . Microcantilever‐Based Sensors. 2011, 597-621. https://doi.org/10.1002/9783527639953.ch20
    31. Helena de Puig, Stefania Federici, Salmaan H. Baxamusa, Paolo Bergese, Kimberly Hamad‐Schifferli. Quantifying the Nanomachinery of the Nanoparticle–Biomolecule Interface. Small 2011, 7 (17) , 2477-2484. https://doi.org/10.1002/smll.201100530
    32. Bernd Becker, Matthew A. Cooper. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. Journal of Molecular Recognition 2011, 24 (5) , 754-787. https://doi.org/10.1002/jmr.1117
    33. Roshan Vasani, Martin Cole, Amanda V. Ellis, Nicolas H. Voelcker. Stimulus‐Responsive Polymers at Nanointerfaces. 2011https://doi.org/10.1002/9783527610419.ntls0247
    34. Yifan Liu, Wenxing Wang, Wenmiao Shu. Nanomechanical Cantilever Sensors. 2010, 69-96. https://doi.org/10.1201/b10450-4
    35. Kai Zhang, Li-Bo Zhao, Shi-Shang Guo, Bao-Xian Shi, Tin-Lun Lam, Yun-Chung Leung, Yong Chen, Xing-Zhong Zhao, Helen L.W. Chan, Yu Wang. A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosensors and Bioelectronics 2010, 26 (2) , 935-939. https://doi.org/10.1016/j.bios.2010.06.039
    36. My Y. Truong, Naba K. Dutta, Namita R. Choudhury, Misook Kim, Christopher M. Elvin, Anita J. Hill, Benjamin Thierry, Krasimir Vasilev. A pH-responsive interface derived from resilin-mimetic protein Rec1-resilin. Biomaterials 2010, 31 (15) , 4434-4446. https://doi.org/10.1016/j.biomaterials.2010.02.019
    37. B. Bar On, E. Altus. Stochastic surface effects in nanobeam sensors. Probabilistic Engineering Mechanics 2010, 25 (2) , 228-234. https://doi.org/10.1016/j.probengmech.2009.12.001
    38. Martien A. Cohen Stuart, Wilhelm T. S. Huck, Jan Genzer, Marcus Müller, Christopher Ober, Manfred Stamm, Gleb B. Sukhorukov, Igal Szleifer, Vladimir V. Tsukruk, Marek Urban, Françoise Winnik, Stefan Zauscher, Igor Luzinov, Sergiy Minko. Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010, 9 (2) , 101-113. https://doi.org/10.1038/nmat2614
    39. Leonid Ionov. Actively-moving materials based on stimuli-responsive polymers. Journal of Materials Chemistry 2010, 20 (17) , 3382. https://doi.org/10.1039/b922718k
    40. Tao Chen, Debby P. Chang, Ting Liu, Ramya Desikan, Ram Datar, Thomas Thundat, Rüdiger Berger, Stefan Zauscher. Glucose-responsive polymer brushes for microcantilever sensing. Journal of Materials Chemistry 2010, 20 (17) , 3391. https://doi.org/10.1039/b925583d
    41. Stefania Federici, Giulio Oliviero, Kimberly Hamad-Schifferli, Paolo Bergese. Protein thin film machines. Nanoscale 2010, 2 (12) , 2570. https://doi.org/10.1039/c0nr00616e
    42. Jason D. Ehrick, Matthew R. Luckett, Santoshkumar Khatwani, Yinan Wei, Sapna K. Deo, Leonidas G. Bachas, Sylvia Daunert. Glucose Responsive Hydrogel Networks Based on Protein Recognition. Macromolecular Bioscience 2009, 9 (9) , 864-868. https://doi.org/10.1002/mabi.200800337
    43. Martin A. Cole, Nicolas H. Voelcker, Helmut Thissen, Hans J. Griesser. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 2009, 30 (9) , 1827-1850. https://doi.org/10.1016/j.biomaterials.2008.12.026
    44. Wilhelm T.S. Huck. Responsive polymers for nanoscale actuation. Materials Today 2008, 11 (7-8) , 24-32. https://doi.org/10.1016/S1369-7021(08)70146-9
    45. Jean E. Comrie, Wilhelm T. S. Huck. Exploring Actuation and Mechanotransduction Properties of Polymer Brushes. Macromolecular Rapid Communications 2008, 29 (7) , 539-546. https://doi.org/10.1002/marc.200700682
    46. S. Singamaneni, M. C. LeMieux, H. P. Lang, C. Gerber, Y. Lam, S. Zauscher, P. G. Datskos, N. V. Lavrik, H. Jiang, R. R. Naik, T. J. Bunning, V. V. Tsukruk. Bimaterial Microcantilevers as a Hybrid Sensing Platform. Advanced Materials 2008, 20 (4) , 653-680. https://doi.org/10.1002/adma.200701667
    47. Amol V. Janorkar, Padmavathy Rajagopalan, Martin L. Yarmush, Zaki Megeed. The use of elastin-like polypeptide–polyelectrolyte complexes to control hepatocyte morphology and function in vitro. Biomaterials 2008, 29 (6) , 625-632. https://doi.org/10.1016/j.biomaterials.2007.10.022
    48. Hai-Feng Ji, Hongyan Gao, Koutilya R. Buchapudi, Xin Yang, Xiaohe Xu, Marvin K. Schulte. Microcantilever biosensors based on conformational change of proteins. The Analyst 2008, 133 (4) , 434. https://doi.org/10.1039/b713330h
    49. Rosangelly Flores-Perez, Amit K. Gupta, Rashid Bashir, Albena Ivanisevic. Cantilever-Based Sensor for the Detection of Different Chromophore Isomers. Analytical Chemistry 2007, 79 (12) , 4702-4708. https://doi.org/10.1021/ac0703000

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect