ACS Publications. Most Trusted. Most Cited. Most Read
Probing the Molecular Mechanisms of Quartz-Binding Peptides
My Activity
    Article

    Probing the Molecular Mechanisms of Quartz-Binding Peptides
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Materials Science and Engineering, University of Washington, Seattle, Washington
    Department of Microbiology, University of Washington, Seattle, Washington
    § Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
    Laboratory for Chemical Physics, New York University, New York, New York, 10010
    Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K.
    # Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul, 80626, Turkey
    *To whom correspondence should be addressed. E-mail: [email protected]. Tel.: +1 206 543 0724. Fax: +1 206 543 6381. Address: Materials Science and Engineering, University of Washington, 327 Roberts Hall, Box 352120, Seattle, WA, 98195.
    ∇Denotes joint first authors.
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2010, 26, 13, 11003–11009
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la100049s
    Published May 25, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Understanding the mechanisms of biomineralization and the realization of biology-inspired inorganic materials formation largely depends on our ability to manipulate peptide/solid interfacial interactions. Material interfaces and biointerfaces are critical sites for bioinorganic synthesis, surface diffusion, and molecular recognition. Recently adapted biocombinatorial techniques permit the isolation of peptides recognizing inorganic solids that are used as molecular building blocks, for example, as synthesizers, linkers, and assemblers. Despite their ubiquitous utility in nanotechnology, biotechnology, and medicine, the fundamental mechanisms of molecular recognition of engineered peptides binding to inorganic surfaces remain largely unknown. To explore propensity rules connecting sequence, structure, and function that play key roles in peptide/solid interactions, we combine two different approaches: a statistical analysis that searches for highly enriched motifs among de novo designed peptides, and, atomistic simulations of three experimentally validated peptides. The two strong and one weak quartz-binding peptides were chosen for the simulations at the quartz (100) surface under aqueous conditions. Solution-based peptide structures were analyzed by circular dichroism measurements. Small and hydrophobic residues, such as Pro, play a key role at the interface by making close contact with the solid and hindering formation of intrapeptide hydrogen bonds. The high binding affinity of a peptide may be driven by a combination of favorable enthalpic and entropic effects, that is, a strong binder may possess a large number of possible binding configurations, many of which having relatively high binding energies. The results signify the role of the local molecular environment among the critical residues that participate in solid binding. The work herein describes molecular conformations inherent in material-specific peptides and provides fundamental insight into the atomistic understanding of peptide/solid interfaces.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Methodological details on the REMD and peptide−surface simulations and cluster and flexibility analyses; figures showing SPR and Q-dot immobilization assays and peptide/surface interaction energies; tables containing contact residues and their time averaged distances to the surface. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Ana L. Morales-García, Rachel Walton, Jamie T. Blakeman, Steven A. Banwart, John H. Harding, Mark Geoghegan, Colin L. Freeman, Stephen A. Rolfe. The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca2+ and Na+. Langmuir 2021, 37 (32) , 9838-9850. https://doi.org/10.1021/acs.langmuir.1c01410
    2. Marion J. Limo, Anna Sola-Rabada, Estefania Boix, Veeranjaneyulu Thota, Zayd C. Westcott, Valeria Puddu, Carole C. Perry. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews 2018, 118 (22) , 11118-11193. https://doi.org/10.1021/acs.chemrev.7b00660
    3. Victor V. Volkov, David J. Belton, Carole C. Perry. Do Material Discontinuities in Silica Affect Vibration Modes?. The Journal of Physical Chemistry A 2018, 122 (22) , 4997-5003. https://doi.org/10.1021/acs.jpca.8b01688
    4. Tiffany R. Walsh and Marc R. Knecht . Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews 2017, 117 (20) , 12641-12704. https://doi.org/10.1021/acs.chemrev.7b00139
    5. Masahito Mochizuki, Masahiro Oguchi, Seong-Oh Kim, Joshua A. Jackman, Tetsu Ogawa, Ganchimeg Lkhamsuren, Nam-Joon Cho, and Tomohiro Hayashi . Quantitative Evaluation of Peptide–Material Interactions by a Force Mapping Method: Guidelines for Surface Modification. Langmuir 2015, 31 (29) , 8006-8012. https://doi.org/10.1021/acs.langmuir.5b01691
    6. Alexey V. Odinokov and Alexander A. Bagaturyants . Specific Interactions of Neutral Side Chains of an Adsorbed Protein with the Surface of α-Quartz and Silica Gel. The Journal of Physical Chemistry B 2015, 119 (28) , 8679-8684. https://doi.org/10.1021/acs.jpcb.5b04064
    7. Anas M. Sultan, Zak E. Hughes, and Tiffany R. Walsh . Binding Affinities of Amino Acid Analogues at the Charged Aqueous Titania Interface: Implications for Titania-Binding Peptides. Langmuir 2014, 30 (44) , 13321-13329. https://doi.org/10.1021/la503312d
    8. Fateme S. Emami, Valeria Puddu, Rajiv J. Berry, Vikas Varshney, Siddharth V. Patwardhan, Carole C. Perry, and Hendrik Heinz . Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chemistry of Materials 2014, 26 (19) , 5725-5734. https://doi.org/10.1021/cm5026987
    9. Fateme S. Emami, Valeria Puddu, Rajiv J. Berry, Vikas Varshney, Siddharth V. Patwardhan, Carole C. Perry, and Hendrik Heinz . Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials 2014, 26 (8) , 2647-2658. https://doi.org/10.1021/cm500365c
    10. Matthew J. Penna, Milan Mijajlovic, and Mark J. Biggs . Molecular-Level Understanding of Protein Adsorption at the Interface between Water and a Strongly Interacting Uncharged Solid Surface. Journal of the American Chemical Society 2014, 136 (14) , 5323-5331. https://doi.org/10.1021/ja411796e
    11. Zhenghua Tang , J. Pablo Palafox-Hernandez , Wing-Cheung Law , Zak E. Hughes , Mark T. Swihart , Paras N. Prasad , Marc R. Knecht , and Tiffany R. Walsh . Biomolecular Recognition Principles for Bionanocombinatorics: An Integrated Approach To Elucidate Enthalpic and Entropic Factors. ACS Nano 2013, 7 (11) , 9632-9646. https://doi.org/10.1021/nn404427y
    12. Stefano Corni, Marketa Hnilova, Candan Tamerler, and Mehmet Sarikaya . Conformational Behavior of Genetically-Engineered Dodecapeptides as a Determinant of Binding Affinity for Gold.. The Journal of Physical Chemistry C 2013, 117 (33) , 16990-17003. https://doi.org/10.1021/jp404057h
    13. Albert Rimola, Dominique Costa, Mariona Sodupe, Jean-François Lambert, and Piero Ugliengo . Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chemical Reviews 2013, 113 (6) , 4216-4313. https://doi.org/10.1021/cr3003054
    14. Hendrik Heinz, Tzu-Jen Lin, Ratan Kishore Mishra, and Fateme S. Emami . Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29 (6) , 1754-1765. https://doi.org/10.1021/la3038846
    15. Siddharth V. Patwardhan, Fateme S. Emami, Rajiv J. Berry, Sharon E. Jones, Rajesh. R. Naik, Olivier Deschaume, Hendrik Heinz, and Carole C. Perry . Chemistry of Aqueous Silica Nanoparticle Surfaces and the Mechanism of Selective Peptide Adsorption. Journal of the American Chemical Society 2012, 134 (14) , 6244-6256. https://doi.org/10.1021/ja211307u
    16. Louise B. Wright and Tiffany R. Walsh . Facet Selectivity of Binding on Quartz Surfaces: Free Energy Calculations of Amino-Acid Analogue Adsorption. The Journal of Physical Chemistry C 2012, 116 (4) , 2933-2945. https://doi.org/10.1021/jp209554g
    17. Susanna Monti and Tiffany R. Walsh . Molecular Dynamics Simulations of the Adsorption and Dynamical Behavior of Single DNA Components on TiO2. The Journal of Physical Chemistry C 2011, 115 (49) , 24238-24246. https://doi.org/10.1021/jp207950p
    18. Sarah B. Schrier, Marianna K. Sayeg, and Jeffrey J. Gray . Prediction of Calcite Morphology from Computational and Experimental Studies of Mutations of a De Novo-Designed Peptide. Langmuir 2011, 27 (18) , 11520-11527. https://doi.org/10.1021/la201904k
    19. Rosa Di Felice and Stefano Corni . Simulation of Peptide–Surface Recognition. The Journal of Physical Chemistry Letters 2011, 2 (13) , 1510-1519. https://doi.org/10.1021/jz200297k
    20. Ana Vila Verde, Peter J. Beltramo, and Janna K. Maranas . Adsorption of Homopolypeptides on Gold Investigated Using Atomistic Molecular Dynamics. Langmuir 2011, 27 (10) , 5918-5926. https://doi.org/10.1021/la104814z
    21. Urartu Ozgur Safak Seker, Gulis Zengin, Candan Tamerler, Mehmet Sarikaya, and Hilmi Volkan Demir . Assembly Kinetics of Nanocrystals via Peptide Hybridization. Langmuir 2011, 27 (8) , 4867-4872. https://doi.org/10.1021/la104942t
    22. S. Monti and T. R. Walsh . Free Energy Calculations of the Adsorption of Amino Acid Analogues at the Aqueous Titania Interface. The Journal of Physical Chemistry C 2010, 114 (50) , 22197-22206. https://doi.org/10.1021/jp107859q
    23. Rebecca Notman, E. Emre Oren, Candan Tamerler, Mehmet Sarikaya, Ram Samudrala, and Tiffany R. Walsh . Solution Study of Engineered Quartz Binding Peptides Using Replica Exchange Molecular Dynamics. Biomacromolecules 2010, 11 (12) , 3266-3274. https://doi.org/10.1021/bm100646z
    24. Joanne Lê-Chesnais, Marie Steffenhagen, Christophe Méthivier, Dominique Costa, Daniela Rodriguez, Jean-François Lambert, Emmanuel Maisonhaute, Jessem Landoulsi. Binding mechanism of oligopeptides on solid surface: assessing the significance of single-molecule approach. Nanoscale 2025, 17 (6) , 3460-3477. https://doi.org/10.1039/D4NR04474F
    25. Ben McLean, Irene Yarovsky. Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. Small 2024, 20 (51) https://doi.org/10.1002/smll.202405299
    26. Elke Völkle (nee Evgrafov), Fabian Schulz, Julia Maxi Kanold, Monika Michaelis, Kerstin Wissel, Franz Brümmer, Anna S. Schenk, Sabine Ludwigs, Joachim Bill, Dirk Rothenstein. Functional mimicry of sea urchin biomineralization proteins with CaCO 3 -binding peptides selected by phage display. Journal of Materials Chemistry B 2023, 11 (42) , 10174-10188. https://doi.org/10.1039/D3TB01584J
    27. C. Méthivier, P. Cornette, D. Costa, J. Landoulsi. Electrospray ion beam deposition of small peptides on solid surfaces: A molecular level description of the glutathione/copper interface. Applied Surface Science 2023, 612 , 155895. https://doi.org/10.1016/j.apsusc.2022.155895
    28. Shiqing Ma, Xuewen Li, Han Hu, Xinying Ma, Zhezhe Zhao, Shu Deng, Jie Wang, Leyu Zhang, Chenxuan Wu, Zihao Liu, Yonglan Wang. Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants. Biomaterials Science 2022, 10 (17) , 4773-4784. https://doi.org/10.1039/D2BM00725H
    29. Mikhail Suyetin, Saientan Bag, Priya Anand, Monika Borkowska-Panek, Florian Gußmann, Martin Brieg, Karin Fink, Wolfgang Wenzel. Modelling peptide adsorption energies on gold surfaces with an effective implicit solvent and surface model. Journal of Colloid and Interface Science 2022, 605 , 493-499. https://doi.org/10.1016/j.jcis.2021.07.090
    30. Gonzalo R. Quezada, Roberto E. Rozas, Pedro G. Toledo. Polyacrylamide adsorption on (1 0 1) quartz surfaces in saltwater for a range of pH values by molecular dynamics simulations. Minerals Engineering 2021, 162 , 106741. https://doi.org/10.1016/j.mineng.2020.106741
    31. Gonzalo R. Quezada, Matías Jeldres, Norman Toro, Pedro Robles, Pedro G. Toledo, Ricardo I. Jeldres. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 608 , 125576. https://doi.org/10.1016/j.colsurfa.2020.125576
    32. Dolores Melgar, Marco Lauricella, Gareth S. O’Brien, Niall J. English. Amplitude effects on seismic velocities: How low can we go?. The Journal of Chemical Physics 2019, 150 (8) https://doi.org/10.1063/1.5079972
    33. Daniel Oliver, Monika Michaelis, Hendrik Heinz, Victor V. Volkov, Carole C. Perry. From phage display to structure: an interplay of enthalpy and entropy in the binding of the LDHSLHS polypeptide to silica. Physical Chemistry Chemical Physics 2019, 21 (8) , 4663-4672. https://doi.org/10.1039/C8CP07011C
    34. Christian Zerfaß, Garry W. Buchko, Wendy J. Shaw, Stephan Hobe, Harald Paulsen. Secondary structure and dynamics study of the intrinsically disordered silica‐mineralizing peptide P 5 S 3 during silicic acid condensation and silica decondensation. Proteins: Structure, Function, and Bioinformatics 2017, 85 (11) , 2111-2126. https://doi.org/10.1002/prot.25366
    35. Hendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K. Mishra, Delphine Marchon, Robert J. Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, Ronald F. Ziolo. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports 2017, 72 (1) , 1-58. https://doi.org/10.1016/j.surfrep.2017.02.001
    36. Argyro Spinthaki, Christian Zerfaß, Harald Paulsen, Stephan Hobe, Konstantinos D. Demadis. Pleiotropic Role of Recombinant Silaffin‐Like Cationic Polypeptide P5S3: Peptide‐Induced Silicic Acid Stabilization, Silica Formation and Inhibition of Silica Dissolution. ChemistrySelect 2017, 2 (1) , 6-17. https://doi.org/10.1002/slct.201601086
    37. Sathish Kumar Ramakrishnan, Jie Zhu, Csilla Gergely. Organic–inorganic interface simulation for new material discoveries. WIREs Computational Molecular Science 2017, 7 (1) https://doi.org/10.1002/wcms.1277
    38. R.A. Latour. 3.14 Molecular Simulation Methods to Investigate Protein Adsorption Behavior at the Atomic Level ☆. 2017, 268-294. https://doi.org/10.1016/B978-0-12-803581-8.09794-0
    39. Mohamed A.A. Abdelhamid, Takeshi Ikeda, Kei Motomura, Tatsuya Tanaka, Takenori Ishida, Ryuichi Hirota, Akio Kuroda. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag. Journal of Bioscience and Bioengineering 2016, 122 (5) , 633-638. https://doi.org/10.1016/j.jbiosc.2016.04.011
    40. Tigran M. Abramyan, James A. Snyder, Aby A. Thyparambil, Steven J. Stuart, Robert A. Latour. Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important. Journal of Computational Chemistry 2016, 37 (21) , 1973-1982. https://doi.org/10.1002/jcc.24416
    41. Andrew Care, Peter L. Bergquist, Anwar Sunna. Solid-Binding Peptides: Immobilisation Strategies for Extremophile Biocatalysis in Biotechnology. 2016, 637-674. https://doi.org/10.1007/978-3-319-13521-2_23
    42. Chiara Cosenza, Vincenzo Lettera, Filippo Causa, Pasqualina Liana Scognamiglio, Edmondo Battista, Paolo Antonio Netti. Cell mechanosensory recognizes ligand compliance at biomaterial interface. Biomaterials 2016, 76 , 282-291. https://doi.org/10.1016/j.biomaterials.2015.10.068
    43. Musa Ozboyaci, Daria B. Kokh, Stefano Corni, Rebecca C. Wade. Modeling and simulation of protein–surface interactions: achievements and challenges. Quarterly Reviews of Biophysics 2016, 49 https://doi.org/10.1017/S0033583515000256
    44. Hendrik Heinz, Hadi Ramezani-Dakhel. Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews 2016, 45 (2) , 412-448. https://doi.org/10.1039/C5CS00890E
    45. Roy Cohen, James P. Lata, Yurim Lee, Jean C. Cruz Hernández, Nozomi Nishimura, Chris B. Schaffer, Chinatsu Mukai, Jacquelyn L. Nelson, Sharon A. Brangman, Yash Agrawal, Alexander J. Travis, . Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection. PLOS ONE 2015, 10 (11) , e0142326. https://doi.org/10.1371/journal.pone.0142326
    46. Kamron Ley, Andrew Christofferson, Matthew Penna, Dave Winkler, Shane Maclaughlin, Irene Yarovsky. Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin. Frontiers in Molecular Biosciences 2015, 2 https://doi.org/10.3389/fmolb.2015.00064
    47. Stefano Corni. Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility. JOM 2015, 67 (4) , 781-787. https://doi.org/10.1007/s11837-015-1334-7
    48. Ao Zhou, Lik-ho Tam, Zechuan Yu, Denvid Lau. Effect of moisture on the mechanical properties of CFRP–wood composite: An experimental and atomistic investigation. Composites Part B: Engineering 2015, 71 , 63-73. https://doi.org/10.1016/j.compositesb.2014.10.051
    49. Eva Weber, Boaz Pokroy. Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. CrystEngComm 2015, 17 (31) , 5873-5883. https://doi.org/10.1039/C5CE00389J
    50. Gil O. Rutter, Aaron H. Brown, David Quigley, Tiffany R. Walsh, Michael P. Allen. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Physical Chemistry Chemical Physics 2015, 17 (47) , 31741-31749. https://doi.org/10.1039/C5CP05652G
    51. Robert Horst Meißner, Gang Wei, Lucio Colombi Ciacchi. Estimation of the free energy of adsorption of a polypeptide on amorphous SiO 2 from molecular dynamics simulations and force spectroscopy experiments. Soft Matter 2015, 11 (31) , 6254-6265. https://doi.org/10.1039/C5SM01444A
    52. Hendrik Heinz. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution—accurate computational models and experiment. Journal of Physics: Condensed Matter 2014, 26 (24) , 244105. https://doi.org/10.1088/0953-8984/26/24/244105
    53. Julia Del Re, Amy Szuchmacher Blum. Dual-affinity peptides to generate dense surface coverages of nanoparticles. Applied Surface Science 2014, 296 , 24-30. https://doi.org/10.1016/j.apsusc.2014.01.007
    54. Tiffany R. Walsh. Fundamentals of Peptide-Materials Interfaces. 2014, 17-36. https://doi.org/10.1007/978-1-4614-9446-1_2
    55. Peter A. Mirau. Interfacial Structure Determination. 2014, 95-125. https://doi.org/10.1007/978-1-4614-9446-1_4
    56. Hendrik Heinz. Understanding Molecular Recognition on Metallic and Oxidic Nanostructures from a Perspective of Computer Simulation and Theory. 2014, 141-171. https://doi.org/10.1007/978-1-4614-9446-1_6
    57. Banu Taktak Karaca, Marketa Hnilova, Candan Tamerler. Addressable Biological Functionalization of Inorganics: Materials-Selective Fusion Proteins in Bio-nanotechnology. 2014, 221-255. https://doi.org/10.1007/978-1-4614-9446-1_8
    58. Sascha Steckbeck, Julian Schneider, Linda Wittig, Klaus Rischka, Ingo Grunwald, Lucio Colombi Ciacchi. Identification of materials' binding peptide sequences guided by a MALDI-ToF MS depletion assay. Anal. Methods 2014, 6 (5) , 1501-1509. https://doi.org/10.1039/C3AY42042F
    59. Jia He, Ming Wu, Xizeng Feng, Xueguang Shao, Wensheng Cai. Immobilization of papain on nanoporous silica. RSC Adv. 2014, 4 (26) , 13304-13312. https://doi.org/10.1039/C3RA47346E
    60. Louise B. Wright, Colin L. Freeman, Tiffany R. Walsh. Benzene adsorption at the aqueous (0 1 1) α-quartz interface: is surface flexibility important?. Molecular Simulation 2013, 39 (13) , 1093-1102. https://doi.org/10.1080/08927022.2013.796589
    61. Bartosz Gabryelczyk, Géza R. Szilvay, Mikko Salomäki, Päivi Laaksonen, Markus B. Linder. Selection and characterization of peptides binding to diamond-like carbon. Colloids and Surfaces B: Biointerfaces 2013, 110 , 66-73. https://doi.org/10.1016/j.colsurfb.2013.04.002
    62. David Poger, Alan E. Mark. Study of Proteins and Peptides at Interfaces by Molecular Dynamics Simulation Techniques. 2013, 291-313. https://doi.org/10.1002/9781118523063.ch14
    63. Andreas Hartwig, Robert Meissner, Christian Merten, Peter Schiffels, Patricia Wand, Ingo Grunwald. Mutual Influence Between Adhesion and Molecular Conformation: Molecular Geometry is a Key Issue in Interphase Formation. The Journal of Adhesion 2013, 89 (2) , 77-95. https://doi.org/10.1080/00218464.2013.731363
    64. F. Causa, R. Della Moglie, E. Iaccino, S. Mimmi, D. Marasco, P.L. Scognamiglio, E. Battista, C. Palmieri, C. Cosenza, L. Sanguigno, I. Quinto, G. Scala, P.A. Netti. Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces. Journal of Colloid and Interface Science 2013, 389 (1) , 220-229. https://doi.org/10.1016/j.jcis.2012.08.046
    65. Louise B. Wright, Tiffany R. Walsh. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide. Physical Chemistry Chemical Physics 2013, 15 (13) , 4715. https://doi.org/10.1039/c3cp42921k
    66. Louise B. Wright, Tiffany R. Walsh. First-principles molecular dynamics simulations of ${\rm NH}_4^+$ NH 4+ and CH3COO− adsorption at the aqueous quartz interface. The Journal of Chemical Physics 2012, 137 (22) https://doi.org/10.1063/1.4769727
    67. Senem Donatan, Mehmet Sarikaya, Candan Tamerler, Mustafa Urgen. Effect of solid surface charge on the binding behaviour of a metal-binding peptide. Journal of The Royal Society Interface 2012, 9 (75) , 2688-2695. https://doi.org/10.1098/rsif.2012.0060
    68. Sibel Cetinel, Sevil Dincer, Anil Cebeci, Ersin Emre Oren, John D. Whitaker, Daniel T. Schwartz, Nevin Gul Karaguler, Mehmet Sarikaya, Candan Tamerler. Peptides to bridge biological-platinum materials interface. Bioinspired, Biomimetic and Nanobiomaterials 2012, 1 (3) , 143-153. https://doi.org/10.1680/bbn.12.00008
    69. Marketa Hnilova, Christopher R. So, E. Emre Oren, Brandon R. Wilson, Turgay Kacar, Candan Tamerler, Mehmet Sarikaya. Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces. Soft Matter 2012, 8 (16) , 4327. https://doi.org/10.1039/c2sm06426j
    70. Takeshi Ikeda, Akio Kuroda. Why does the silica-binding protein “Si-tag” bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids and Surfaces B: Biointerfaces 2011, 86 (2) , 359-363. https://doi.org/10.1016/j.colsurfb.2011.04.020
    71. Martin Hoefling, Susanna Monti, Stefano Corni, Kay Eberhard Gottschalk, . Interaction of β-Sheet Folds with a Gold Surface. PLoS ONE 2011, 6 (6) , e20925. https://doi.org/10.1371/journal.pone.0020925

    Langmuir

    Cite this: Langmuir 2010, 26, 13, 11003–11009
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la100049s
    Published May 25, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1455

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.