ACS Publications. Most Trusted. Most Cited. Most Read
A General Method to Coat Colloidal Particles with Titania
My Activity
    Article

    A General Method to Coat Colloidal Particles with Titania
    Click to copy article linkArticle link copied!

    View Author Information
    Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
    *To whom correspondence should be addressed. A.F.D.: e-mail, [email protected]; telephone, +31 30 253 2315; fax, +31 30 253 2706. A.I.: e-mail, [email protected]; telephone, +31 30 253 2423; fax, +31 30 253 2706.
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2010, 26, 12, 9297–9303
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la100188w
    Published March 25, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of coating different particles with titania in the literature, each of these methods is applicable to only one type of material. The present method is especially useful for giving the opportunity to cover many types of colloidal particles with titania and forgoes the use of a coupling agent or a precoating step. We can produce particles with a smooth titania layer of tunable thickness. The monodispersity, which improves during particle growth, and the high refractive index of titania make these particles potential candidates for photonic crystal applications. We also describe various ways of fabricating hollow titania shells, which have been intensively studied in the literature for their applications in electronics, catalysis, separations, and diagnostics. Note that our method initially produces amorphous shells on the particles, but these can be easily turned into crystalline titania by a calcination step. We also find that the growth of titania is a surface-reaction-limited process.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    SLS of the crystalline titania shells and TEM image of PS@Titania particles without dissolution of the core in THF (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 61 publications.

    1. Xiangjun Di, Dejiang Wang, Xuchen Shan, Lei Ding, Zhaoxiang Zhong, Chaohao Chen, Dajing Wang, Zhiyong Song, Jianyun Wang, Qian Peter Su, Shuhua Yue, Min Zhang, Faliang Cheng, Fan Wang. Probing the Nanonewton Mitotic Cell Deformation Force by Ion-Resonance-Enhanced Photonics Force Microscopy. Nano Letters 2024, 24 (44) , 14004-14011. https://doi.org/10.1021/acs.nanolett.4c03610
    2. Ziyun Zhuang, Jiawei Wang, Jialei Huang, Ruijin Hong, Chunxian Tao, Qi Wang, Hui Lin, Zhaoxia Han, Dawei Zhang, Songlin Zhuang. Fabrication of High-Stability and -Sensitivity Perovskite Nanoparticles with a Core–Shell Structure for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2024, 128 (24) , 10120-10132. https://doi.org/10.1021/acs.jpcc.4c00841
    3. Zuyao Xiao, Shifang Duan, Pengzhao Xu, Jingqin Cui, Hepeng Zhang, Wei Wang. Synergistic Speed Enhancement of an Electric-Photochemical Hybrid Micromotor by Tilt Rectification. ACS Nano 2020, 14 (7) , 8658-8667. https://doi.org/10.1021/acsnano.0c03022
    4. Marlous Kamp, Bart de Nijs, Marjolein N. van der Linden, Isja de Feijter, Merel J. Lefferts, Antonio Aloi, Jack Griffiths, Jeremy J. Baumberg, Ilja K. Voets, Alfons van Blaaderen. Multivalent Patchy Colloids for Quantitative 3D Self-Assembly Studies. Langmuir 2020, 36 (9) , 2403-2418. https://doi.org/10.1021/acs.langmuir.9b03863
    5. Sara Fateixa, Helena I. S. Nogueira, Tito Trindade. Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. ACS Omega 2018, 3 (4) , 4331-4341. https://doi.org/10.1021/acsomega.7b01983
    6. Theodore Hueckel, Stefano Sacanna. Mix-and-Melt Colloidal Engineering. ACS Nano 2018, 12 (4) , 3533-3540. https://doi.org/10.1021/acsnano.8b00521
    7. Jacob W. Black, Maria Kamenetska, and Ziad Ganim . An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. Nano Letters 2017, 17 (11) , 6598-6605. https://doi.org/10.1021/acs.nanolett.7b02413
    8. Xiao Tang, Elvira Kröger, Andreas Nielsen, Christian Strelow, Alf Mews, and Tobias Kipp . Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods. Langmuir 2017, 33 (21) , 5253-5260. https://doi.org/10.1021/acs.langmuir.7b00615
    9. Nicolas Vogel, Markus Retsch, Charles-André Fustin, Aranzazu del Campo, and Ulrich Jonas . Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chemical Reviews 2015, 115 (13) , 6265-6311. https://doi.org/10.1021/cr400081d
    10. Michael Dahl, Yiding Liu, and Yadong Yin . Composite Titanium Dioxide Nanomaterials. Chemical Reviews 2014, 114 (19) , 9853-9889. https://doi.org/10.1021/cr400634p
    11. Francesca Pietra, Relinde J.A. van Dijk - Moes, Xiaoxing Ke, Sara Bals, Gustaaf Van Tendeloo, Celso de Mello Donega, and Daniel Vanmaekelbergh . Synthesis of Highly Luminescent Silica-Coated CdSe/CdS Nanorods. Chemistry of Materials 2013, 25 (17) , 3427-3434. https://doi.org/10.1021/cm401169t
    12. Yamei Li, Shidong Ji, Yanfeng Gao, Hongjie Luo, and Ping Jin . Modification of Mott Phase Transition Characteristics in VO2@TiO2 Core/Shell Nanostructures by Misfit-Strained Heteroepitaxy. ACS Applied Materials & Interfaces 2013, 5 (14) , 6603-6614. https://doi.org/10.1021/am401297g
    13. Yanna Tang, Weihua Di, Xuesong Zhai, Renyuan Yang, and Weiping Qin . NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles. ACS Catalysis 2013, 3 (3) , 405-412. https://doi.org/10.1021/cs300808r
    14. Chao Yang and Peng Liu . Chitosan/Functionalized Multiwalled Carbon Nanotubes Multilayer Hollow Microspheres Prepared via Layer-by-Layer Assembly Technique. Industrial & Engineering Chemistry Research 2012, 51 (41) , 13346-13353. https://doi.org/10.1021/ie301666z
    15. Ahmet Faik Demirörs, Anita Jannasch, Peter D. J. van Oostrum, Erik Schäffer, Arnout Imhof, and Alfons van Blaaderen . Seeded Growth of Titania Colloids with Refractive Index Tunability and Fluorophore-Free Luminescence. Langmuir 2011, 27 (5) , 1626-1634. https://doi.org/10.1021/la103717m
    16. Tiantian Liu, Aiguo Xie, Chao Xing, RuiZhe He, Wei Ni, Yinbo Peng, Peng Xu, Yong Fang. ESCRT III Regulates Lysosomal Perinuclear Clustering by Inhibiting Kinesin 1 Leading to Agnps Cytotoxicity in Human Cells. Advanced Materials Interfaces 2025, 17 https://doi.org/10.1002/admi.202400944
    17. Chuqiu Zhang, Haobo Chen, Yuanjing Zou, Meiyun Chen, Yuqian Lai, Chang Peng, Ling Ou, Bingmei Su, Yuemei Yuan, Qingchang Chen, Meicun Yao. Surfactant-directed assembly of MOF-heterostructures for spatiotemporal drugs delivery in Helicobacter pylori Multi-target therapy. Chemical Engineering Journal 2025, 504 , 158575. https://doi.org/10.1016/j.cej.2024.158575
    18. Bo-chen Huang, Li-yan Tsui, Settu Ramki, Hsiao-ping Hsu, Chung-wen Lan. Synthesizing Si/SiOC composites through different sol-gel reaction routes for lithium-ion battery anode materials. Heliyon 2024, 10 (13) , e33612. https://doi.org/10.1016/j.heliyon.2024.e33612
    19. Biao Kong, Hongbin Xu, Lei Xie, Shan Zhou. Nano Materials Self-assembly. 2024, 81-116. https://doi.org/10.1007/978-981-99-7498-6_4
    20. He Zhao, Krisztian Kordas, Satu Ojala. Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A 2023, 11 (42) , 22656-22687. https://doi.org/10.1039/D3TA04994A
    21. Roberto Zambon, Marina Franca, Veronica Zani, Roberto Pilot, Silvia Gross, Danilo Pedron, Raffaella Signorini. Ag/TiO2 Nanocomposites for Nanothermometry in the Biological Environment. 2023, 16. https://doi.org/10.3390/IECB2023-14585
    22. Daniel Alves Barcelos, Maria Clara Gonçalves. Daylight Photoactive TiO2 Sol-Gel Nanoparticles: Sustainable Environmental Contribution. Materials 2023, 16 (7) , 2731. https://doi.org/10.3390/ma16072731
    23. Golam Kibria, Md. Reazuddin Repon, Md. Faisal Hossain, Tarikul Islam, Mohammad Abdul Jalil, Mahmood D. Aljabri, Mohammed M. Rahman. UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials. Cellulose 2022, 29 (14) , 7555-7585. https://doi.org/10.1007/s10570-022-04710-7
    24. Shuangshuang Wang, Jiacheng Yao, Zhenwei Ou, Xujie Wang, Yinfeng Long, Jing Zhang, Zheyu Fang, Ti Wang, Tao Ding, Hongxing Xu. Plasmon-assisted nanophase engineering of titanium dioxide for improved performances in single-particle based sensing and photocatalysis. Nanoscale 2022, 14 (12) , 4705-4711. https://doi.org/10.1039/D1NR08247G
    25. Bo Peng, Yanyan Liu, Dirk G. A. L. Aarts, Roel P. A. Dullens. Stabilisation of hollow colloidal TiO 2 particles by partial coating with evenly distributed lobes. Soft Matter 2021, 17 (6) , 1480-1486. https://doi.org/10.1039/D0SM02100H
    26. Pengzhao Xu, Shifang Duan, Zuyao Xiao, Zhou Yang, Wei Wang. Light-powered active colloids from monodisperse and highly tunable microspheres with a thin TiO 2 shell. Soft Matter 2020, 16 (26) , 6082-6090. https://doi.org/10.1039/D0SM00719F
    27. Wei Li, Ahmed Elzatahry, Dhaifallah Aldhayan, Dongyuan Zhao. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chemical Society Reviews 2018, 47 (22) , 8203-8237. https://doi.org/10.1039/C8CS00443A
    28. Haitao Fu, Shiyu Sun, Xiaohong Yang, Wufa Li, Xizhong An, Hao Zhang, Yu Dong, Xuchuan Jiang, Aibing Yu. A facile coating method to construct uniform porous α-Fe2O3@TiO2 core-shell nanostructures with enhanced solar light photocatalytic activity. Powder Technology 2018, 328 , 389-396. https://doi.org/10.1016/j.powtec.2018.01.067
    29. Jianqi Ma, Xiaohua Guo, Hongguang Ge, Guanghui Tian, Qiang Zhang. Seed-mediated photodeposition route to Ag-decorated SiO2@TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity. Applied Surface Science 2018, 434 , 1007-1014. https://doi.org/10.1016/j.apsusc.2017.11.020
    30. Nelly Hérault, Katharina M. Fromm. Influence of the Sacrificial Polystyrene Removal Pathway on the TiO 2 Nanocapsule Structure. Helvetica Chimica Acta 2017, 100 (6) , e1700014. https://doi.org/10.1002/hlca.201700014
    31. Jude John, Binitha Gangaja, Shantikumar V. Nair, Dhamodaran Santhanagopalan. Conformal coating of TiO2 shell on silicon nanoparticles for improved electrochemical performance in Li-ion battery applications. Electrochimica Acta 2017, 235 , 191-199. https://doi.org/10.1016/j.electacta.2017.03.127
    32. Xueqin Liu, James Iocozzia, Yang Wang, Xun Cui, Yihuang Chen, Shiqiang Zhao, Zhen Li, Zhiqun Lin. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy & Environmental Science 2017, 10 (2) , 402-434. https://doi.org/10.1039/C6EE02265K
    33. K. Shiba, T. Takei, G. Yoshikawa, M. Ogawa. Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. Nanoscale 2017, 9 (43) , 16791-16799. https://doi.org/10.1039/C7NR06086F
    34. Bartosz Bartosewicz, Marta Michalska-Domańska, Malwina Liszewska, Dariusz Zasada, Bartłomiej J Jankiewicz. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness. Beilstein Journal of Nanotechnology 2017, 8 , 2083-2093. https://doi.org/10.3762/bjnano.8.208
    35. Si-Ying Wu, Shuenn-Kung Su, Chi-Jung Chang, Chi-Hsien Huang, Jem-Kun Chen. Sol-gel-synthesized titania-vanadia nanocrystal films for triple-functional window coatings. Ceramics International 2016, 42 (15) , 17610-17619. https://doi.org/10.1016/j.ceramint.2016.08.075
    36. Sonja I.R. Castillo, Nynke A. Krans, C.E. (Lisette) Pompe, J.H. (Arjan) den Otter, Dominique M.E. Thies-Weesie, Albert P. Philipse. Synthesis method for crystalline hollow titania micron-cubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 504 , 228-233. https://doi.org/10.1016/j.colsurfa.2016.05.079
    37. Javad Abkhoo, Naser Panjehkeh. Evaluation of Antifungal Activity of Silver Nanoparticles on Fusarium oxysporum. International Journal of Infection 2016, 4 (2) https://doi.org/10.17795/iji-41126
    38. Javad Abkhoo, Naser Panjehkeh. Evaluation of Antifungal Activity of Silver Nanoparticles on Fusarium oxysporum. International Journal of Infection 2016, 4 (2) https://doi.org/10.5812/iji.41126
    39. Weipeng Miao, Ning Yan, Yucheng Zhao, Mingyao Liu, Yapeng Li, Liping Wang, Qin Zou, Hu Tang, Lina Qiao, Mingzhi Wang. Synthesis and application of titania-coated ultrafine diamond abrasive particles. Ceramics International 2016, 42 (7) , 8884-8890. https://doi.org/10.1016/j.ceramint.2016.02.139
    40. Bu Yuan Guan, Le Yu, Ju Li, Xiong Wen (David) Lou. RETRACTED: A universal cooperative assembly-directed method for coating of mesoporous TiO 2 nanoshells with enhanced lithium storage properties. Science Advances 2016, 2 (3) https://doi.org/10.1126/sciadv.1501554
    41. E. Carbó-Argibay, S. Mourdikoudis, I. Pastoriza-Santos, J. Pérez-Juste. Nanocolloids of Noble Metals. 2016, 37-73. https://doi.org/10.1016/B978-0-12-801578-0.00002-3
    42. Pei-Yin Zhou, Chih-Chia Cheng, Chi-Hsien Huang, Jem-Kun Chen. Hexagonal pillar structure of heteroepitaxial titania–vanadia nanocrystal films for high performance in thermochromic and photocatalytic properties. Physical Chemistry Chemical Physics 2016, 18 (13) , 9088-9101. https://doi.org/10.1039/C5CP07944F
    43. Michael Dahl, Fernando Castaneda, Ji Bong Joo, Victor Reyes, James Goebl, Yadong Yin. Ethylene glycol-assisted coating of titania on nanoparticles. Dalton Transactions 2016, 45 (24) , 10076-10084. https://doi.org/10.1039/C5DT04361A
    44. J. Gagnon, M. J. D. Clift, D. Vanhecke, I. E. Widnersson, S.-L. Abram, A. Petri-Fink, R. A. Caruso, B. Rothen-Rutishauser, K. M. Fromm. Synthesis, characterization, antibacterial activity and cytotoxicity of hollow TiO 2 -coated CeO 2 nanocontainers encapsulating silver nanoparticles for controlled silver release. Journal of Materials Chemistry B 2016, 4 (6) , 1166-1174. https://doi.org/10.1039/C5TB01917F
    45. Prit Manish Lakhani, Sri Vishnu Kiran Rompicharla, Balaram Ghosh, Swati Biswas. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment. Nanotechnology 2015, 26 (43) , 432001. https://doi.org/10.1088/0957-4484/26/43/432001
    46. Jian-Qi Ma, Shao-Bo Guo, Xiao-Hua Guo, Hong-Guang Ge. Liquid-phase deposition of TiO2 nanoparticles on core–shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity. Journal of Nanoparticle Research 2015, 17 (7) https://doi.org/10.1007/s11051-015-3107-1
    47. Chun Wang, Junchen Chen, Xinran Zhou, Wei Li, Yong Liu, Qin Yue, Zhaoteng Xue, Yuhui Li, Ahmed A. Elzatahry, Yonghui Deng, Dongyuan Zhao. Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Research 2015, 8 (1) , 238-245. https://doi.org/10.1007/s12274-014-0647-0
    48. Shi-Di Lan, Chi-Jung Chang, Chih-Feng Huang, Jem-Kun Chen. Heteroepitaxial TiO 2 @W-doped VO 2 core/shell nanocrystal films: preparation, characterization, and application as bifunctional window coatings. RSC Advances 2015, 5 (90) , 73742-73751. https://doi.org/10.1039/C5RA11202H
    49. Kaimo Guo, Meiya Li, Xiaoli Fang, Lihua Bai, Mengdai Luoshan, Fuping Zhang, Xingzhong Zhao. Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk-shell-like TiO2 microspheres. Journal of Power Sources 2014, 264 , 35-41. https://doi.org/10.1016/j.jpowsour.2014.04.061
    50. Mikio Konno, Daisuke Nagao. Monodisperse Polymer Particles. 2014, 1-26. https://doi.org/10.1002/0471440264.pst617
    51. James Goebl, Ji Bong Joo, Michael Dahl, Yadong Yin. Synthesis of tailored Au@TiO2 core–shell nanoparticles for photocatalytic reforming of ethanol. Catalysis Today 2014, 225 , 90-95. https://doi.org/10.1016/j.cattod.2013.09.011
    52. R. Bengü Karabacak, Murat Erdem, Sedat Yurdakal, Yasemin Çimen, Hayrettin Türk. Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst. Materials Chemistry and Physics 2014, 144 (3) , 498-504. https://doi.org/10.1016/j.matchemphys.2014.01.026
    53. Weiwei Zhang, Yunqing Wang, Xiuyan Sun, Wenhai Wang, Lingxin Chen. Mesoporous titania based yolk–shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 2014, 6 (23) , 14514-14522. https://doi.org/10.1039/C4NR04864D
    54. Yamei Li, Shidong Ji, Yanfeng Gao, Hongjie Luo, Minoru Kanehira. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01370
    55. Wei Li, Qin Yue, Yonghui Deng, Dongyuan Zhao. Ordered Mesoporous Materials Based on Interfacial Assembly and Engineering. Advanced Materials 2013, 25 (37) , 5129-5152. https://doi.org/10.1002/adma.201302184
    56. Lei Wang, Jing Liu. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials. Frontiers in Energy 2013, 7 (3) , 317-332. https://doi.org/10.1007/s11708-013-0271-9
    57. Wei Li, Dongyuan Zhao. Extension of the Stöber Method to Construct Mesoporous SiO 2 and TiO 2 Shells for Uniform Multifunctional Core–Shell Structures. Advanced Materials 2013, 25 (1) , 142-149. https://doi.org/10.1002/adma.201203547
    58. Zhi Wei Seh, Shuhua Liu, Ming‐Yong Han. Titania‐Coated Metal Nanostructures. Chemistry – An Asian Journal 2012, 7 (10) , 2174-2184. https://doi.org/10.1002/asia.201200265
    59. Yunqing Wang, Lingxin Chen, Ping Liu. Biocompatible Triplex Ag@SiO 2 @mTiO 2 Core–Shell Nanoparticles for Simultaneous Fluorescence‐SERS Bimodal Imaging and Drug Delivery. Chemistry – A European Journal 2012, 18 (19) , 5935-5943. https://doi.org/10.1002/chem.201103571
    60. Zhi Wei Seh, Shuhua Liu, Shuang‐Yuan Zhang, M. S. Bharathi, H. Ramanarayan, Michelle Low, Kwok Wei Shah, Yong‐Wei Zhang, Ming‐Yong Han. Anisotropic Growth of Titania onto Various Gold Nanostructures: Synthesis, Theoretical Understanding, and Optimization for Catalysis. Angewandte Chemie 2011, 123 (43) , 10322-10325. https://doi.org/10.1002/ange.201104943
    61. Zhi Wei Seh, Shuhua Liu, Shuang‐Yuan Zhang, M. S. Bharathi, H. Ramanarayan, Michelle Low, Kwok Wei Shah, Yong‐Wei Zhang, Ming‐Yong Han. Anisotropic Growth of Titania onto Various Gold Nanostructures: Synthesis, Theoretical Understanding, and Optimization for Catalysis. Angewandte Chemie International Edition 2011, 50 (43) , 10140-10143. https://doi.org/10.1002/anie.201104943

    Langmuir

    Cite this: Langmuir 2010, 26, 12, 9297–9303
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la100188w
    Published March 25, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3867

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.