ACS Publications. Most Trusted. Most Cited. Most Read
Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies
My Activity
    Article

    Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies
    Click to copy article linkArticle link copied!

    View Author Information
    Centre for Drug Research and Division of Biopharmacy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
    § Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
    Department of Physics and Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
    #Department of Applied Physics and Department of Chemistry, Aalto University, Espoo, Finland
    Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
    Other Access OptionsSupporting Information (5)

    Langmuir

    Cite this: Langmuir 2011, 27, 12, 7788–7798
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la200003n
    Published May 23, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have combined Langmuir monolayer film experiments and all-atom molecular dynamics (MD) simulation of a bilayer to study the surface structure of a PEGylated liposome and its interaction with the ionic environment present under physiological conditions. Lipids that form both gel and liquid-crystalline membranes have been used in our study. By varying the salt concentration in the Langmuir film experiment and including salt at the physiological level in the simulation, we have studied the effect of salt ions present in the blood plasma on the structure of the poly(ethylene glycol) (PEG) layer. We have also studied the interaction between the PEG layer and the lipid bilayer in both the liquid-crystalline and gel states. The MD simulation shows two clear results: (a) The Na+ ions form close interactions with the PEG oxygens, with the PEG chains forming loops around them and (b) PEG penetrates the lipid core of the membrane for the case of a liquid-crystalline membrane but is excluded from the tighter structure of the gel membrane. The Langmuir monolayer results indicate that the salt concentration affects the PEGylated lipid system, and these results can be interpreted in a fashion that is in agreement with the results of our MD simulation. We conclude that the currently accepted picture of the PEG surface layer acting as a generic neutral hydrophilic polymer entirely outside the membrane, with its effect explained through steric interactions, is not sufficient. The phenomena we have observed may affect both the interaction between the liposome and bloodstream proteins and the liquid-crystalline–gel transition and is thus relevant to nanotechnological drug delivery device design.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The validation of our all-atom model for the PEG polymer. Verification that our system is not affected by finite size effects. Effect of PEGylation on the water ordering in the vicinity of the membrane. Animation of DSPC and DLPC. A detailed discussion of the pure lipid system results and the effect of the salt concentration. Simulations of PEG in water solution. Graph of the deuterium order parameter. Pressure–area isotherms for the pure systems. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 99 publications.

    1. Markéta Paloncýová, Mariana Valério, Ricardo Nascimento Dos Santos, Petra Kührová, Martin Šrejber, Petra Čechová, Dimitar A. Dobchev, Akshay Balsubramani, Pavel Banáš, Vikram Agarwal, Paulo C. T. Souza, Michal Otyepka. Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery. Molecular Pharmaceutics 2025, 22 (3) , 1110-1141. https://doi.org/10.1021/acs.molpharmaceut.4c00744
    2. Shengran Li, Chenyang Zou, Jingyan An, Meiying Lv, Xifei Yu. Detachable Cyclic Poly(ethylene glycol)-Embedded Choline Phosphate Liposome Used for Long-Acting and Accurate Cancer Chemo-Immunotherapy with High Security. ACS Applied Materials & Interfaces 2025, 17 (1) , 763-775. https://doi.org/10.1021/acsami.4c20191
    3. Thuanny Borba Rios, Samilla Beatriz Rezende, Mariana Rocha Maximiano, Marlon Henrique Cardoso, Martin Malmsten, Cesar de la Fuente-Nunez, Octávio Luiz Franco. Computational Approaches for Antimicrobial Peptide Delivery. Bioconjugate Chemistry 2024, 35 (12) , 1873-1882. https://doi.org/10.1021/acs.bioconjchem.4c00406
    4. Pascal Tomasella, Giovanni Lucifora, Roberta Ruffino, Irene Pandino, Giuseppe Trusso Sfrazzetto, Nunzio Tuccitto, Giovanni Li-Destri. Role of Density and Conformational Composition in the Surface-to-Bulk Molecular Dosing of Photosensitive Surfactant Monolayers. Langmuir 2024, 40 (33) , 17517-17525. https://doi.org/10.1021/acs.langmuir.4c01699
    5. Josef Kehrein, Christoph Sotriffer. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomaterials Science & Engineering 2024, 10 (1) , 51-74. https://doi.org/10.1021/acsbiomaterials.3c00636
    6. Markéta Paloncýová, Petra Čechová, Martin Šrejber, Petra Kührová, Michal Otyepka. Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with mRNA Fragments. The Journal of Physical Chemistry Letters 2021, 12 (45) , 11199-11205. https://doi.org/10.1021/acs.jpclett.1c03109
    7. Prantar Dutta, Debabrata Pramanik, Jayant K. Singh. Phase Behavior of Pure PSPC and PEGylated Multicomponent Lipid and Their Interaction with Paclitaxel: An All-Atom MD Study. Langmuir 2021, 37 (34) , 10259-10271. https://doi.org/10.1021/acs.langmuir.1c01049
    8. Mohammad Mahmoudzadeh, Aniket Magarkar, Artturi Koivuniemi, Tomasz Róg, Alex Bunker. Mechanistic Insight into How PEGylation Reduces the Efficacy of pH-Sensitive Liposomes from Molecular Dynamics Simulations. Molecular Pharmaceutics 2021, 18 (7) , 2612-2621. https://doi.org/10.1021/acs.molpharmaceut.1c00122
    9. Shirin Tavakoli, Otto Kalevi Kari, Tiina Turunen, Tatu Lajunen, Mechthild Schmitt, Julia Lehtinen, Fumitaka Tasaka, Petteri Parkkila, Joseph Ndika, Tapani Viitala, Harri Alenius, Arto Urtti, Astrid Subrizi. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Molecular Pharmaceutics 2021, 18 (2) , 699-713. https://doi.org/10.1021/acs.molpharmaceut.0c00411
    10. Pin Zhang, Tiep Pham, Chang Liu, Paola Leon Plata, Joseph Kalkowski, Gang Cheng, Wei Bu, Binhua Lin, Ying Liu. Impeded Molecular Reorganization by Polyethylene Glycol Conjugation Revealed by X-ray Reflectivity and Diffraction Measurements. Langmuir 2020, 36 (26) , 7573-7581. https://doi.org/10.1021/acs.langmuir.0c01202
    11. Michal Bodik, Ondrej Maxian, Jakub Hagara, Peter Nadazdy, Matej Jergel, Eva Majkova, Peter Siffalovic. Langmuir–Scheaffer Technique as a Method for Controlled Alignment of 1D Materials. Langmuir 2020, 36 (16) , 4540-4547. https://doi.org/10.1021/acs.langmuir.0c00045
    12. Rafael Maglia de Souza, Leonardo José Amaral de Siqueira, Mikko Karttunen, Luis Gustavo Dias. Molecular Dynamics Simulations of Polymer–Ionic Liquid (1-Ethyl-3-methylimidazolium Tetracyanoborate) Ternary Electrolyte for Sodium and Potassium Ion Batteries. Journal of Chemical Information and Modeling 2020, 60 (2) , 485-499. https://doi.org/10.1021/acs.jcim.9b00750
    13. Francesca Mastrotto, Chiara Brazzale, Federica Bellato, Sara De Martin, Guillaume Grange, Mohamad Mahmoudzadeh, Aniket Magarkar, Alex Bunker, Stefano Salmaso, Paolo Caliceti. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Molecular Pharmaceutics 2020, 17 (2) , 472-487. https://doi.org/10.1021/acs.molpharmaceut.9b00887
    14. Giray Enkavi, Matti Javanainen, Waldemar Kulig, Tomasz Róg, Ilpo Vattulainen. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chemical Reviews 2019, 119 (9) , 5607-5774. https://doi.org/10.1021/acs.chemrev.8b00538
    15. Elena Ambrosio, Adrian Podmore, Ana L. Gomes dos Santos, Aniket Magarkar, Alex Bunker, Paolo Caliceti, Francesca Mastrotto, Christopher F. van der Walle, Stefano Salmaso. Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules 2018, 19 (10) , 3958-3969. https://doi.org/10.1021/acs.biomac.8b00887
    16. Nishu Kanwa, Soumya Kanti De, Chandan Adhikari, and Anjan Chakraborty . Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology. The Journal of Physical Chemistry B 2017, 121 (50) , 11333-11343. https://doi.org/10.1021/acs.jpcb.7b08455
    17. Evelyne M. Houang, Frank S. Bates, Yuk Y. Sham, and Joseph M. Metzger . All-Atom Molecular Dynamics-Based Analysis of Membrane-Stabilizing Copolymer Interactions with Lipid Bilayers Probed under Constant Surface Tensions. The Journal of Physical Chemistry B 2017, 121 (47) , 10657-10664. https://doi.org/10.1021/acs.jpcb.7b08938
    18. Evelyne M. Houang, Karen J. Haman, Mihee Kim, Wenjia Zhang, Dawn A. Lowe, Yuk Y. Sham, Timothy P. Lodge, Benjamin J. Hackel, Frank S. Bates, and Joseph M. Metzger . Chemical End Group Modified Diblock Copolymers Elucidate Anchor and Chain Mechanism of Membrane Stabilization. Molecular Pharmaceutics 2017, 14 (7) , 2333-2339. https://doi.org/10.1021/acs.molpharmaceut.7b00197
    19. Monika Dzieciuch-Rojek, Chetan Poojari, Jan Bednar, Alex Bunker, Bartłomiej Kozik, Maria Nowakowska, Ilpo Vattulainen, Paweł Wydro, Mariusz Kepczynski, and Tomasz Róg . Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Molecular Pharmaceutics 2017, 14 (4) , 1057-1070. https://doi.org/10.1021/acs.molpharmaceut.6b00969
    20. Priyanka A. Oroskar, Cynthia J. Jameson, and Sohail Murad . Simulated Permeation and Characterization of PEGylated Gold Nanoparticles in a Lipid Bilayer System. Langmuir 2016, 32 (30) , 7541-7555. https://doi.org/10.1021/acs.langmuir.6b01740
    21. Tatu Lajunen, Leena-Stiina Kontturi, Lauri Viitala, Moutusi Manna, Oana Cramariuc, Tomasz Róg, Alex Bunker, Timo Laaksonen, Tapani Viitala, Lasse Murtomäki, and Arto Urtti . Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release. Molecular Pharmaceutics 2016, 13 (6) , 2095-2107. https://doi.org/10.1021/acs.molpharmaceut.6b00207
    22. Yuan Xiang, Rong-Guang Xu, and Yongsheng Leng . Molecular Dynamics Simulations of a Poly(ethylene glycol)-Grafted Polyamide Membrane and Its Interaction with a Calcium Alginate Gel. Langmuir 2016, 32 (18) , 4424-4433. https://doi.org/10.1021/acs.langmuir.6b00348
    23. Hwankyu Lee and Ronald G. Larson . Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density. Biomacromolecules 2016, 17 (5) , 1757-1765. https://doi.org/10.1021/acs.biomac.6b00146
    24. Monika Dzieciuch, Sami Rissanen, Natalia Szydłowska, Alex Bunker, Marta Kumorek, Dorota Jamróz, Ilpo Vattulainen, Maria Nowakowska, Tomasz Róg, and Mariusz Kepczynski . PEGylated Liposomes as Carriers of Hydrophobic Porphyrins. The Journal of Physical Chemistry B 2015, 119 (22) , 6646-6657. https://doi.org/10.1021/acs.jpcb.5b01351
    25. Aniket Magarkar, Tomasz Róg, and Alex Bunker . Molecular Dynamics Simulation of Inverse-Phosphocholine Lipids. The Journal of Physical Chemistry C 2014, 118 (33) , 19444-19449. https://doi.org/10.1021/jp505633y
    26. Aniket Magarkar, Tomasz Róg, and Alex Bunker . Molecular Dynamics Simulation of PEGylated Membranes with Cholesterol: Building Toward the DOXIL Formulation. The Journal of Physical Chemistry C 2014, 118 (28) , 15541-15549. https://doi.org/10.1021/jp504962m
    27. Weiwei Gao, Drew Vecchio, Jieming Li, Jingying Zhu, Qiangzhe Zhang, Victoria Fu, Jiayang Li, Soracha Thamphiwatana, Diannan Lu, and Liangfang Zhang . Hydrogel Containing Nanoparticle-Stabilized Liposomes for Topical Antimicrobial Delivery. ACS Nano 2014, 8 (3) , 2900-2907. https://doi.org/10.1021/nn500110a
    28. Sami Rissanen, Marta Kumorek, Hector Martinez-Seara, Yen-Chin Li, Dorota Jamróz, Alex Bunker, Maria Nowakowska, Ilpo Vattulainen, Mariusz Kepczynski, and Tomasz Róg . Effect of PEGylation on Drug Entry into Lipid Bilayer. The Journal of Physical Chemistry B 2014, 118 (1) , 144-151. https://doi.org/10.1021/jp4105745
    29. Eol Han and Hwankyu Lee . Effects of PEGylation on the Binding Interaction of Magainin 2 and Tachyplesin I with Lipid Bilayer Surface. Langmuir 2013, 29 (46) , 14214-14221. https://doi.org/10.1021/la4036985
    30. Soracha Thamphiwatana, Victoria Fu, Jingying Zhu, Diannan Lu, Weiwei Gao, and Liangfang Zhang . Nanoparticle-Stabilized Liposomes for pH-Responsive Gastric Drug Delivery. Langmuir 2013, 29 (39) , 12228-12233. https://doi.org/10.1021/la402695c
    31. Chueh Liu and Roland Faller . Conformational, Dynamical. and Tensional Study of Tethered Bilayer Lipid Membranes in Coarse-Grained Molecular Simulations. Langmuir 2012, 28 (45) , 15907-15915. https://doi.org/10.1021/la303511p
    32. Patrick F. J. Fuchs, Halvor S. Hansen, Philippe H. Hünenberger, and Bruno A. C. Horta . A GROMOS Parameter Set for Vicinal Diether Functions: Properties of Polyethyleneoxide and Polyethyleneglycol. Journal of Chemical Theory and Computation 2012, 8 (10) , 3943-3963. https://doi.org/10.1021/ct300245h
    33. Kanwal Tanwir, Muhammad Naeem Shahid, Andre Thomas, and Valeria Tsoukanova . Coexisting Phases in PEGylated Phosphocholine Membranes: A Model Study. Langmuir 2012, 28 (39) , 14000-14009. https://doi.org/10.1021/la302156x
    34. Yen-Chin Li, Sami Rissanen, Michał Stepniewski, Oana Cramariuc, Tomasz Róg, Sabir Mirza, Henri Xhaard, Magdalena Wytrwal, Mariusz Kepczynski, and Alex Bunker . Study of Interaction Between PEG Carrier and Three Relevant Drug Molecules: Piroxicam, Paclitaxel, and Hematoporphyrin. The Journal of Physical Chemistry B 2012, 116 (24) , 7334-7341. https://doi.org/10.1021/jp300301z
    35. Michał Stępniewski, Mariusz Kepczynski, Dorota Jamróz, Maria Nowakowska, Sami Rissanen, Ilpo Vattulainen, and Tomasz Róg . Interaction of Hematoporphyrin with Lipid Membranes. The Journal of Physical Chemistry B 2012, 116 (16) , 4889-4897. https://doi.org/10.1021/jp300899b
    36. Aniket Magarkar, Esra Karakas, Michał Stepniewski, Tomasz Róg, and Alex Bunker . Molecular Dynamics Simulation of PEGylated Bilayer Interacting with Salt Ions: A Model of the Liposome Surface in the Bloodstream. The Journal of Physical Chemistry B 2012, 116 (14) , 4212-4219. https://doi.org/10.1021/jp300184z
    37. Vaclav Janout, Trevor A. Daly, Lauren L. Cline, Leah J. Kulp, and Steven L. Regen . Stimulated Release of Cholesterol from Liposomal Membranes by a PEGylated Phospholipid. Bioconjugate Chemistry 2012, 23 (3) , 336-339. https://doi.org/10.1021/bc200669e
    38. Shou-Chuang Yang and Roland Faller . Pressure and Surface Tension Control Self-Assembled Structures in Mixtures of Pegylated and Non-Pegylated Lipids. Langmuir 2012, 28 (4) , 2275-2280. https://doi.org/10.1021/la203850z
    39. Wei-Ting Liao, Dao-Ming Chang, Meng-Xian Lin, Te-Sen Chou, Yi-Chung Tung, Jong-Kai Hsiao. Multifaceted Functional Liposomes: Theranostic Potential of Liposomal Indocyanine Green and Doxorubicin for Enhanced Anticancer Efficacy and Imaging. Pharmaceutics 2025, 17 (3) , 344. https://doi.org/10.3390/pharmaceutics17030344
    40. Alexis Cooper, Anand Bala Subramaniam. Ultrahigh yields of giant vesicles obtained through mesophase evolution and breakup. Soft Matter 2024, 20 (48) , 9547-9561. https://doi.org/10.1039/D4SM01109K
    41. Alex Bunker, Josef Kehrein. Molecular Modeling in Drug Delivery: Polymer Protective Coatings as Case Study. 2024, 104-198. https://doi.org/10.1002/9781119987260.ch5
    42. Heidi N. du Preez, Johnson Lin, Glenn E. M. Maguire, Colleen Aldous, Hendrik G. Kruger. COVID‐19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. European Journal of Clinical Investigation 2024, 54 (10) https://doi.org/10.1111/eci.14296
    43. Alexis Cooper, Anand Bala Subramaniam. Ultrahigh yields of giant vesicles obtained through mesophase evolution and breakup. 2024https://doi.org/10.1101/2024.06.03.597257
    44. Kevin Jahnke, Marko Pavlovic, Wentao Xu, Anqi Chen, Tuomas P. J. Knowles, Laura R. Arriaga, David A. Weitz. Polysaccharide functionalization reduces lipid vesicle stiffness. Proceedings of the National Academy of Sciences 2024, 121 (22) https://doi.org/10.1073/pnas.2317227121
    45. Iman Salahshoori, Mahdi Golriz, Marcos A.L. Nobre, Shahla Mahdavi, Rahime Eshaghi Malekshah, Afsaneh Javdani-Mallak, Majid Namayandeh Jorabchi, Hossein Ali Khonakdar, Qilin Wang, Amir H. Mohammadi, Seyedeh Masoomeh Sadat Mirnezami, Farshad Kargaran. Simulation-based approaches for drug delivery systems: Navigating advancements, opportunities, and challenges. Journal of Molecular Liquids 2024, 395 , 123888. https://doi.org/10.1016/j.molliq.2023.123888
    46. Lina Zhao, Meina Ren, Yanjiao Wang, Hailong An, Fude Sun. Delivery mechanism of doxorubicin by PEG–DPPE micelles on membrane invasion by dynamic simulations. Physical Chemistry Chemical Physics 2023, 25 (23) , 16114-16125. https://doi.org/10.1039/D2CP05946K
    47. Songtao Xiang, Yuxiang Lan, Zhiliang Mai, Feng Tian, Hua Mao. Dynamic monitoring of bacteriostatic process by SERS analysis based on a simple but effective detection strategy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 282 , 121611. https://doi.org/10.1016/j.saa.2022.121611
    48. Mokhtar Nasrollahpour, Mohsen Vafaee, Sahar Razzaghi. Structural and dynamical properties of Palmitoyl-Oleoyl phosphatidylserine lipid nanotubes containing cholesterols and PEGylated dioleoyl Phosphatidylethanolamine: A Coarse-Grained molecular dynamics simulation. Chemical Engineering Science 2022, 260 , 117848. https://doi.org/10.1016/j.ces.2022.117848
    49. Nikhil Mehta, Rohan Pai. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt?. Pharmaceutical Nanotechnology 2022, 10 (5) , 354-367. https://doi.org/10.2174/2211738510666220902150449
    50. Hope T. Sounouvou, Anna Lechanteur, Géraldine Piel, Brigitte Evrard. Silicones in dermatological topical drug formulation: Overview and advances. International Journal of Pharmaceutics 2022, 625 , 122111. https://doi.org/10.1016/j.ijpharm.2022.122111
    51. Marina de Souza Guimarães, Jorge Javier Muso Cachumba, Cecilia Zorzi Bueno, Karin Mariana Torres-Obreque, Grace Verónica Ruiz Lara, Gisele Monteiro, Leandro Ramos Souza Barbosa, Adalberto Pessoa, Carlota de Oliveira Rangel-Yagui. Peg-Grafted Liposomes for L-Asparaginase Encapsulation. Pharmaceutics 2022, 14 (9) , 1819. https://doi.org/10.3390/pharmaceutics14091819
    52. Poornima Kalyanram, Anu Puri, Anju Gupta. Thermotropic effects of PEGylated lipids on the stability of HPPH-encapsulated lipid nanoparticles (LNP). Journal of Thermal Analysis and Calorimetry 2022, 147 (11) , 6337-6348. https://doi.org/10.1007/s10973-021-10929-6
    53. Jennifer Gilbert, Inna Ermilova, Michihiro Nagao, Jan Swenson, Tommy Nylander. Effect of encapsulated protein on the dynamics of lipid sponge phase: a neutron spin echo and molecular dynamics simulation study. Nanoscale 2022, 14 (18) , 6990-7002. https://doi.org/10.1039/D2NR00882C
    54. Magdalena Kowalska, Marcin Broniatowski, Marzena Mach, Łukasz Płachta, Paweł Wydro. Effect of lipopolymer (DSPE-PEG750) on phospholipid monolayers and bilayers differing in the structure of the polar head group. Journal of Molecular Liquids 2021, 344 , 117715. https://doi.org/10.1016/j.molliq.2021.117715
    55. Chun Chan, Shi Du, Yizhou Dong, Xiaolin Cheng. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Current Topics in Medicinal Chemistry 2021, 21 (2) , 92-114. https://doi.org/10.2174/1568026620666201126162945
    56. Yijie Ren, Hongxia Zhou, Jin Lu, Sicheng Huang, Haomiao Zhu, Li Li. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. Membranes 2020, 10 (12) , 431. https://doi.org/10.3390/membranes10120431
    57. Alex Bunker, Tomasz Róg. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.604770
    58. Alicja Karabasz, Michał Szuwarzyński, Maria Nowakowska, Monika Bzowska, Joanna Lewandowska-Łańcucka. Stabilization of liposomes with silicone layer improves their elastomechanical properties while not compromising biological features. Colloids and Surfaces B: Biointerfaces 2020, 195 , 111272. https://doi.org/10.1016/j.colsurfb.2020.111272
    59. Syed Mahmood, Kong Chak Kiong, Chun Shern Tham, Tan Choo Chien, Ayah Rebhi Hilles, Jayarama Reddy Venugopal. PEGylated Lipid Polymeric Nanoparticle–Encapsulated Acyclovir for In Vitro Controlled Release and Ex Vivo Gut Sac Permeation. AAPS PharmSciTech 2020, 21 (7) https://doi.org/10.1208/s12249-020-01810-0
    60. Hwankyu Lee. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020, 12 (6) , 533. https://doi.org/10.3390/pharmaceutics12060533
    61. Sean M. Mackay, David Mo Aung Myint, Richard A. Easingwood, Dylan Y. Hegh, Jeffery R. Wickens, Brian I. Hyland, Guy N. L. Jameson, John N. J. Reynolds, Eng Wui Tan. Dynamic control of neurochemical release with ultrasonically-sensitive nanoshell-tethered liposomes. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0226-0
    62. Roberto Canaparo, Federica Foglietta, Francesca Giuntini, Carlo Della Pepa, Franco Dosio, Loredana Serpe. Recent Developments in Antibacterial Therapy: Focus on Stimuli-Responsive Drug-Delivery Systems and Therapeutic Nanoparticles. Molecules 2019, 24 (10) , 1991. https://doi.org/10.3390/molecules24101991
    63. Konrad Cyprych, Denis Chateau, Anthony Désert, Stephane Parola, Jaroslaw Mysliwiec. Plasmonic Nanoparticles Driven Enhanced Light Amplification in a Local 2D and 3D Self-Assembly. Nanomaterials 2018, 8 (12) , 1051. https://doi.org/10.3390/nano8121051
    64. Edouard Mobarak, Matti Javanainen, Waldemar Kulig, Alf Honigmann, Erdinc Sezgin, Noora Aho, Christian Eggeling, Tomasz Rog, Ilpo Vattulainen. How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018, 1860 (11) , 2436-2445. https://doi.org/10.1016/j.bbamem.2018.07.003
    65. Sérgio F. Sousa, Joana Peres, Manuel Coelho, Tatiana F. Vieira. Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect 2018, 3 (29) , 8415-8427. https://doi.org/10.1002/slct.201800855
    66. Seyed Mojtaba Rezaei Sani, Mojdeh Akhavan, Seifollah Jalili. Salt-induced effects on natural and inverse DPPC lipid membranes: Molecular dynamics simulation. Biophysical Chemistry 2018, 239 , 7-15. https://doi.org/10.1016/j.bpc.2018.04.006
    67. Tatu Lajunen, Riikka Nurmi, Danny Wilbie, Teemu Ruoslahti, Niklas G. Johansson, Ossi Korhonen, Tomasz Rog, Alex Bunker, Marika Ruponen, Arto Urtti. The effect of light sensitizer localization on the stability of indocyanine green liposomes. Journal of Controlled Release 2018, 284 , 213-223. https://doi.org/10.1016/j.jconrel.2018.06.029
    68. Jasmin Monpara, Chryso Kanthou, Gillian M. Tozer, Pradeep R. Vavia. Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharmaceutical Research 2018, 35 (4) https://doi.org/10.1007/s11095-018-2367-8
    69. Mingshuang Sun, Zhihong Zhu, Huixin Wang, Shanshan Jin, Xinggang Yang, Cuiyan Han, Weisan Pan. Polyarginine and PEG-AEYLR comodified nanostructured lipid carrier: 10mol% uncleavable PEG-AEYLR showed no shielding effect to polyarginine in vitro while maintaining good tumor targeting in vivo. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (2) , 284-292. https://doi.org/10.1080/21691401.2017.1307211
    70. Kazuaki Kajimoto, Tatsuhito Katsumi, Takashi Nakamura, Masatoshi Kataoka, Hideyoshi Harashima. Liposome Microencapsulation for the Surface Modification and Improved Entrapment of Cytochrome c for Targeted Delivery. Journal of the American Oil Chemists' Society 2018, 95 (1) , 101-109. https://doi.org/10.1002/aocs.12026
    71. Dong Xu, Nikolai Smolin, Rance K. Shaw, Samuel R. Battey, Aoxiang Tao, Yuying Huang, Shaikh Emdadur Rahman, Matthew L. Caylor. Molecular insights into the improved clinical performance of PEGylated interferon therapeutics: a molecular dynamics perspective. RSC Advances 2018, 8 (5) , 2315-2322. https://doi.org/10.1039/C7RA12480E
    72. Jiaqi Lin, Heng Zhang, Vahid Morovati, Roozbeh Dargazany. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature. Journal of Colloid and Interface Science 2017, 504 , 325-333. https://doi.org/10.1016/j.jcis.2017.05.046
    73. Aniket Magarkar, Tomasz Róg, Alex Bunker. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. European Journal of Pharmaceutical Sciences 2017, 103 , 128-135. https://doi.org/10.1016/j.ejps.2017.03.008
    74. Priyanka Oroskar, Cynthia J. Jameson, Sohail Murad. Molecular dynamics simulations reveal how characteristics of surface and permeant affect permeation events at the surface of soft matter. Molecular Simulation 2017, 43 (5-6) , 439-466. https://doi.org/10.1080/08927022.2016.1268259
    75. Natalia Wilkosz, Sami Rissanen, Małgorzata Cyza, Renata Szybka, Maria Nowakowska, Alex Bunker, Tomasz Róg, Mariusz Kepczynski. Effect of piroxicam on lipid membranes: Drug encapsulation and gastric toxicity aspects. European Journal of Pharmaceutical Sciences 2017, 100 , 116-125. https://doi.org/10.1016/j.ejps.2017.01.007
    76. Giovanni Settanni, Jiajia Zhou, Tongchuan Suo, Susanne Schöttler, Katharina Landfester, Friederike Schmid, Volker Mailänder. Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale 2017, 9 (6) , 2138-2144. https://doi.org/10.1039/C6NR07022A
    77. Christoph Bernhard, Steven J. Roeters, Johannes Franz, Tobias Weidner, Mischa Bonn, Grazia Gonella. Repelling and ordering: the influence of poly(ethylene glycol) on protein adsorption. Physical Chemistry Chemical Physics 2017, 19 (41) , 28182-28188. https://doi.org/10.1039/C7CP05445A
    78. Alex Bunker, Aniket Magarkar, Tapani Viitala. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (10) , 2334-2352. https://doi.org/10.1016/j.bbamem.2016.02.025
    79. Mariusz Kepczynski, Tomasz Róg. Functionalized lipids and surfactants for specific applications. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (10) , 2362-2379. https://doi.org/10.1016/j.bbamem.2016.02.038
    80. M. Ramezanpour, S.S.W. Leung, K.H. Delgado-Magnero, B.Y.M. Bashe, J. Thewalt, D.P. Tieleman. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (7) , 1688-1709. https://doi.org/10.1016/j.bbamem.2016.02.028
    81. Joanna Lewandowska-Łańcucka, Katarzyna Mystek, Adriana Gilarska, Kamil Kamiński, Marek Romek, Bogdan Sulikowski, Maria Nowakowska. Silicone-stabilized liposomes as a possible novel nanostructural drug carrier. Colloids and Surfaces B: Biointerfaces 2016, 143 , 359-370. https://doi.org/10.1016/j.colsurfb.2016.03.057
    82. Himang Mujoo, John N. J. Reynolds, Ian G. Tucker. The influence of bile salts on the response of liposomes to ultrasound. Journal of Liposome Research 2016, 23 , 1-9. https://doi.org/10.3109/08982104.2015.1019515
    83. Qianqian Wang, Tingting Zhao, Yanping Liu, Shanshan Xing, Lei Li, Dawei Gao. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes. Journal of Nanoparticle Research 2016, 18 (2) https://doi.org/10.1007/s11051-016-3339-8
    84. Mohanlal Bhuvana, Venkataraman Dharuman. Influence of alkane chain lengths and head groups on tethering of liposome–gold nanoparticle on gold surface for electrochemical DNA sensing and gene delivery. Sensors and Actuators B: Chemical 2016, 223 , 157-165. https://doi.org/10.1016/j.snb.2015.09.031
    85. Yu. B. Vysotsky, E. S. Kartashynska, D. Vollhardt. Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface. Colloid and Polymer Science 2015, 293 (11) , 3065-3089. https://doi.org/10.1007/s00396-015-3630-8
    86. Soichiro Tsuda, Tatsuya Sakakura, Satoshi Fujii, Hiroaki Suzuki, Tetsuya Yomo, . Shape Transformations of Lipid Vesicles by Insertion of Bulky-Head Lipids. PLOS ONE 2015, 10 (7) , e0132963. https://doi.org/10.1371/journal.pone.0132963
    87. Alex Bunker. Molecular Modeling as a Tool to Understand the Role of Poly(Ethylene) Glycol in Drug Delivery. 2015, 217-233. https://doi.org/10.1002/9781118573983.ch11
    88. Fikret Aydin, Geetartha Uppaladadium, Meenakshi Dutt. The design of shape-tunable hairy vesicles. Colloids and Surfaces B: Biointerfaces 2015, 128 , 268-275. https://doi.org/10.1016/j.colsurfb.2015.01.049
    89. Tatu Lajunen, Lauri Viitala, Leena-Stiina Kontturi, Timo Laaksonen, Huamin Liang, Elina Vuorimaa-Laukkanen, Tapani Viitala, Xavier Le Guével, Marjo Yliperttula, Lasse Murtomäki, Arto Urtti. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. Journal of Controlled Release 2015, 203 , 85-98. https://doi.org/10.1016/j.jconrel.2015.02.028
    90. Angelina Angelova, Borislav Angelov, Rada Mutafchieva, Sylviane Lesieur. Biocompatible Mesoporous and Soft Nanoarchitectures. Journal of Inorganic and Organometallic Polymers and Materials 2015, 25 (2) , 214-232. https://doi.org/10.1007/s10904-014-0143-8
    91. Xiaopeng Han, Zhenbao Li, Jin Sun, Cong Luo, Lin Li, Yuhai Liu, Yuqian Du, Shuhong Qiu, Xiaoyu Ai, Chunnuan Wu, He Lian, Zhonggui He. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: Probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. Journal of Controlled Release 2015, 197 , 29-40. https://doi.org/10.1016/j.jconrel.2014.10.024
    92. Daniel D. Lewis, Fernando D. Villarreal, Fan Wu, Cheemeng Tan. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems. Frontiers in Bioengineering and Biotechnology 2014, 2 https://doi.org/10.3389/fbioe.2014.00066
    93. Hwankyu Lee. Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications. Polymers 2014, 6 (3) , 776-798. https://doi.org/10.3390/polym6030776
    94. Hiroki Kitayama, Yuki Takechi, Nobutake Tamai, Hitoshi Matsuki, Chikako Yomota, Hiroyuki Saito. Thermotropic Phase Behavior of Hydrogenated Soybean Phosphatidylcholine–Cholesterol Binary Liposome Membrane. Chemical and Pharmaceutical Bulletin 2014, 62 (1) , 58-63. https://doi.org/10.1248/cpb.c13-00587
    95. Keita Hayashi, Tsuyoshi Tatsui, Toshinori Shimanouchi, Hiroshi Umakoshi. Membrane interaction between Span 80 vesicle and phospholipid vesicle (liposome): Span 80 vesicle can perturb and hemifuse with liposomal membrane. Colloids and Surfaces B: Biointerfaces 2013, 106 , 258-264. https://doi.org/10.1016/j.colsurfb.2012.12.022
    96. André Filipe Ferreira, Rodrigo José Lopes, Pedro Nuno Simões. In Silico Research in Drug Delivery Systems. 2013, 271-313. https://doi.org/10.1007/978-94-007-6010-3_10
    97. Julia Lehtinen, Aniket Magarkar, Michał Stepniewski, Satu Hakola, Mathias Bergman, Tomasz Róg, Marjo Yliperttula, Arto Urtti, Alex Bunker. Analysis of cause of failure of new targeting peptide in PEGylated liposome: Molecular modeling as rational design tool for nanomedicine. European Journal of Pharmaceutical Sciences 2012, 46 (3) , 121-130. https://doi.org/10.1016/j.ejps.2012.02.009
    98. Yoshie Maitani, Ayako Nakamura, Takumi Tanaka, Yukio Aso. Hydration of surfactant-modified and PEGylated cationic cholesterol-based liposomes and corresponding lipoplexes by monitoring a fluorescent probe and the dielectric relaxation time. International Journal of Pharmaceutics 2012, 427 (2) , 372-378. https://doi.org/10.1016/j.ijpharm.2012.02.018
    99. Alex Bunker. Poly(Ethylene Glycol) in Drug Delivery, Why Does it Work, and Can We do Better? All Atom Molecular Dynamics Simulation Provides Some Answers. Physics Procedia 2012, 34 , 24-33. https://doi.org/10.1016/j.phpro.2012.05.004
    100. Selina Nawaz, Martin Redhead, Giuseppe Mantovani, Cameron Alexander, Cynthia Bosquillon, Paola Carbone. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure. Soft Matter 2012, 8 (25) , 6744. https://doi.org/10.1039/c2sm25327e

    Langmuir

    Cite this: Langmuir 2011, 27, 12, 7788–7798
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la200003n
    Published May 23, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3362

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.