ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes

View Author Information
Department of Chemistry, University of Sheffield, Sheffield, U.K.
Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, U.K.
Cite this: Langmuir 2012, 28, 30, 10997–11006
Publication Date (Web):June 25, 2012
https://doi.org/10.1021/la301370y
Copyright © 2012 American Chemical Society

    Article Views

    5132

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    In this paper we show that processes such as Brownian motion, convection, sedimentation, and bacterial contamination can cause small particles to move through liquids in a fashion which may be mistaken as nanopropulsion. It is shown that particle tracking and subsequent statistical analysis is essential to ascertain if small particles actually propel themselves, or if they are propelled by another process. Specifically we find that it is necessary to calculate the mean-squared displacement of particles at both short and long time intervals, to show that the direction of propulsion changes coincident with rotation of the particle by Brownian motion, as this allows nanopropulsion to be differentiated from Brownian motion, convection and sedimentation. We also find that bacteria can attach themselves to particles and cause them to be propelled. This leads to motion which appears very similar to nanopropulsion and cannot be differentiated using particle tracking and therefore find that carefully designed control experiments must be performed. Finally, we suggest an experimental protocol which can be used to investigate the motion of small objects and prove if they move due to nanopropulsion.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 156 publications.

    1. Tania Patiño Padial, Erica Del Grosso, Serena Gentile, Lorena Baranda Pellejero, Rafael Mestre, Lars J. M. M. Paffen, Samuel Sánchez, Francesco Ricci. Synthetic DNA-based Swimmers Driven by Enzyme Catalysis. Journal of the American Chemical Society 2024, 146 (18) , 12664-12671. https://doi.org/10.1021/jacs.4c02094
    2. Eunbi Kang, Wanhee Lee, Hyosun Lee. Comprehensive Understanding of Self-Propelled Janus Pt/Fe2O3 Micromotor Dynamics: Impact of Size, Morphology, and Surface Structure. The Journal of Physical Chemistry Letters 2023, 14 (44) , 9811-9818. https://doi.org/10.1021/acs.jpclett.3c02637
    3. Junnan Han, Dongke Li, Jiaming Chen, Teng Sun, Yuhao Wang, Xiaodong Pi, Wei Li, Ling Xu, Jun Xu, Kunji Chen. Ab Initio Molecular Dynamics Simulation Study on Phosphorus/Boron Co-Doped Si Nanocrystals/SiO2 Core/Shell Structures. The Journal of Physical Chemistry C 2023, 127 (35) , 17609-17616. https://doi.org/10.1021/acs.jpcc.3c04190
    4. Behrouz Behdani, Jacob Lumpkins, Carlos A. Silvera Batista. Impact of the Electric Polarizability on the Transport and Collective Dynamics of Metallodielectric Janus Particles. Langmuir 2023, 39 (26) , 9025-9034. https://doi.org/10.1021/acs.langmuir.3c00567
    5. Yi Xing, Jidong Xiu, Mengyun Zhou, Tailin Xu, Meiqin Zhang, Hui Li, Xiaoyu Li, Xin Du, Tianyi Ma, Xueji Zhang. Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy. ACS Nano 2023, 17 (7) , 6789-6799. https://doi.org/10.1021/acsnano.3c00076
    6. Yingchun Long, Qiuhua Wu, Xiuyuan Zuo, Guolin Zhang, Zexin Zhang, Zhenzhong Yang, Fuxin Liang. Flask-like Janus Colloidal Motors with Explicit Direction and Tunable Speed. ACS Nano 2022, 16 (10) , 16690-16698. https://doi.org/10.1021/acsnano.2c06235
    7. José A. Epstein, Guy Z. Ramon. Connecting the Non-Brownian Dots: Increasing Near-Neighbor Particle-Tracking Efficiency by Coordinate System Manipulation. Langmuir 2022, 38 (35) , 10729-10735. https://doi.org/10.1021/acs.langmuir.2c00584
    8. Xavier Arqué, Marcelo D. T. Torres, Tania Patiño, Andreia Boaro, Samuel Sánchez, Cesar de la Fuente-Nunez. Autonomous Treatment of Bacterial Infections in Vivo Using Antimicrobial Micro- and Nanomotors. ACS Nano 2022, 16 (5) , 7547-7558. https://doi.org/10.1021/acsnano.1c11013
    9. Morgane Valles, Sílvia Pujals, Lorenzo Albertazzi, Samuel Sánchez. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS Nano 2022, 16 (4) , 5615-5626. https://doi.org/10.1021/acsnano.1c10520
    10. Jinrong Zheng, Ruiqiang Qi, Cuilian Dai, Gang Li, Mangmang Sang. Enzyme Catalysis Biomotor Engineering of Neutrophils for Nanodrug Delivery and Cell-Based Thrombolytic Therapy. ACS Nano 2022, 16 (2) , 2330-2344. https://doi.org/10.1021/acsnano.1c08538
    11. Lei Xie, Miao Yan, Tianyi Liu, Ke Gong, Xin Luo, Beilei Qiu, Jie Zeng, Qirui Liang, Shan Zhou, Yanjun He, Wei Zhang, Yilan Jiang, Yi Yu, Jinyao Tang, Kang Liang, Dongyuan Zhao, Biao Kong. Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society 2022, 144 (4) , 1634-1646. https://doi.org/10.1021/jacs.1c10391
    12. Wei Wang, Thomas E. Mallouk. A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano 2021, 15 (10) , 15446-15460. https://doi.org/10.1021/acsnano.1c07503
    13. Xianglong Lyu, Xiaoxia Liu, Chao Zhou, Shifang Duan, Pengzhao Xu, Jia Dai, Xiaowen Chen, Yixin Peng, Donghao Cui, Jinyao Tang, Xing Ma, Wei Wang. Active, Yet Little Mobility: Asymmetric Decomposition of H2O2 Is Not Sufficient in Propelling Catalytic Micromotors. Journal of the American Chemical Society 2021, 143 (31) , 12154-12164. https://doi.org/10.1021/jacs.1c04501
    14. Dandan Xu, Jing Hu, Xi Pan, Samuel Sánchez, Xiaohui Yan, Xing Ma. Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions. ACS Nano 2021, 15 (7) , 11543-11554. https://doi.org/10.1021/acsnano.1c01573
    15. Hiroshi Inaba, Kenji Hatta, Kazunori Matsuura. Directional Propulsion of DNA Microspheres Based on Light-Induced Asymmetric Growth of Peptide Nanofibers. ACS Applied Bio Materials 2021, 4 (7) , 5425-5434. https://doi.org/10.1021/acsabm.1c00146
    16. Diana Vilela, Nuria Blanco-Cabra, Ander Eguskiza, Ana C. Hortelao, Eduard Torrents, Samuel Sanchez. Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria. ACS Applied Materials & Interfaces 2021, 13 (13) , 14964-14973. https://doi.org/10.1021/acsami.1c00986
    17. Ming Luo, Shouli Li, Jieshuo Wan, Chenglin Yang, Beidi Chen, Jianguo Guan. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir 2020, 36 (25) https://doi.org/10.1021/acs.langmuir.9b03315
    18. Shuai Jiang, Anke Kaltbeitzel, Minghan Hu, Oksana Suraeva, Daniel Crespy, Katharina Landfester. One-Step Preparation of Fuel-Containing Anisotropic Nanocapsules with Stimuli-Regulated Propulsion. ACS Nano 2020, 14 (1) , 498-508. https://doi.org/10.1021/acsnano.9b06408
    19. Antoni Llopis-Lorente, Alba García-Fernández, Nerea Murillo-Cremaes, Ana C. Hortelão, Tania Patiño, Reynaldo Villalonga, Félix Sancenón, Ramón Martínez-Máñez, Samuel Sánchez. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano 2019, 13 (10) , 12171-12183. https://doi.org/10.1021/acsnano.9b06706
    20. Miguel A. Ramos-Docampo, Marina Fernández-Medina, Essi Taipaleenmäki, Ondrej Hovorka, Verónica Salgueiriño, Brigitte Städler. Microswimmers with Heat Delivery Capacity for 3D Cell Spheroid Penetration. ACS Nano 2019, 13 (10) , 12192-12205. https://doi.org/10.1021/acsnano.9b06869
    21. Yi Xing, Qi Pan, Xin Du, Tailin Xu, Yan He, Xueji Zhang. Dendritic Janus Nanomotors with Precisely Modulated Coverages and Their Effects on Propulsion. ACS Applied Materials & Interfaces 2019, 11 (10) , 10426-10433. https://doi.org/10.1021/acsami.8b22612
    22. Ana C. Hortelão, Rafael Carrascosa, Nerea Murillo-Cremaes, Tania Patiño, Samuel Sánchez. Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano 2019, 13 (1) , 429-439. https://doi.org/10.1021/acsnano.8b06610
    23. Zohreh Jalilvand, Amar B. Pawar, Ilona Kretzschmar. Experimental Study of the Motion of Patchy Particle Swimmers Near a Wall. Langmuir 2018, 34 (50) , 15593-15599. https://doi.org/10.1021/acs.langmuir.8b03220
    24. Tania Patiño, Xavier Arqué, Rafael Mestre, Lucas Palacios, Samuel Sánchez. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Accounts of Chemical Research 2018, 51 (11) , 2662-2671. https://doi.org/10.1021/acs.accounts.8b00288
    25. Edmund M. Tang, Patrick T. Underhill. Examination of the Statistical Effects Associated with Tracking Propulsive Particles. Langmuir 2018, 34 (36) , 10694-10701. https://doi.org/10.1021/acs.langmuir.8b02331
    26. Andrew Leeth Holterhoff, Mingyang Li, John G. Gibbs. Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface’s Physicochemical Properties. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5023-5028. https://doi.org/10.1021/acs.jpclett.8b02277
    27. David A. Gregory, Stephen J. Ebbens. Symmetrical Catalytically Active Colloids Collectively Induce Convective Flow. Langmuir 2018, 34 (14) , 4307-4313. https://doi.org/10.1021/acs.langmuir.8b00310
    28. Chung-Seop Lee, Jianyu Gong, Da-Som Oh, Jong-Rok Jeon, and Yoon-Seok Chang . Zerovalent-Iron/Platinum Janus Micromotors with Spatially Separated Functionalities for Efficient Water Decontamination. ACS Applied Nano Materials 2018, 1 (2) , 768-776. https://doi.org/10.1021/acsanm.7b00223
    29. Vickramjeet Singh, Cyuan-Jhang Wu, Yu-Jane Sheng, and Heng-Kwong Tsao . Self-Propulsion and Shape Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. Langmuir 2017, 33 (24) , 6182-6191. https://doi.org/10.1021/acs.langmuir.7b01120
    30. Philipp S. Schattling, Miguel A. Ramos-Docampo, Verónica Salgueiriño, and Brigitte Städler . Double-Fueled Janus Swimmers with Magnetotactic Behavior. ACS Nano 2017, 11 (4) , 3973-3983. https://doi.org/10.1021/acsnano.7b00441
    31. Jaideep Katuri, Xing Ma, Morgan M. Stanton, and Samuel Sánchez . Designing Micro- and Nanoswimmers for Specific Applications. Accounts of Chemical Research 2017, 50 (1) , 2-11. https://doi.org/10.1021/acs.accounts.6b00386
    32. Xing Ma, Seungwook Jang, Mihail N. Popescu, William E. Uspal, Albert Miguel-López, Kersten Hahn, Dong-Pyo Kim, and Samuel Sánchez . Reversed Janus Micro/Nanomotors with Internal Chemical Engine. ACS Nano 2016, 10 (9) , 8751-8759. https://doi.org/10.1021/acsnano.6b04358
    33. Hong Wang, James Guo Sheng Moo, and Martin Pumera . From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion. ACS Nano 2016, 10 (5) , 5041-5050. https://doi.org/10.1021/acsnano.5b07771
    34. Takahiko Ban, Takashi Fukuyama, Shouta Makino, Erika Nawa, and Yuichiro Nagatsu . Self-Propelled Vesicles Induced by the Mixing of Two Polymeric Aqueous Solutions through a Vesicle Membrane Far from Equilibrium. Langmuir 2016, 32 (11) , 2574-2581. https://doi.org/10.1021/acs.langmuir.6b00105
    35. Xing Ma, Xu Wang, Kersten Hahn, and Samuel Sánchez . Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano 2016, 10 (3) , 3597-3605. https://doi.org/10.1021/acsnano.5b08067
    36. Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez . Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Letters 2015, 15 (10) , 7043-7050. https://doi.org/10.1021/acs.nanolett.5b03100
    37. David A. Gregory, Andrew I. Campbell, and Stephen J. Ebbens . Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories. The Journal of Physical Chemistry C 2015, 119 (27) , 15339-15348. https://doi.org/10.1021/acs.jpcc.5b03773
    38. Takahiko Ban and Hiroki Nakata . Metal-Ion-Dependent Motion of Self-Propelled Droplets Due to the Marangoni Effect. The Journal of Physical Chemistry B 2015, 119 (23) , 7100-7105. https://doi.org/10.1021/acs.jpcb.5b02522
    39. Christoph Haiden, Thomas Wopelka, Martin Jech, Franz Keplinger, and Michael J. Vellekoop . Sizing of Metallic Nanoparticles Confined to a Microfluidic Film Applying Dark-Field Particle Tracking. Langmuir 2014, 30 (31) , 9607-9615. https://doi.org/10.1021/la5016675
    40. Jahir Orozco, Beatriz Jurado-Sánchez, Gregory Wagner, Wei Gao, Rafael Vazquez-Duhalt, Sirilak Sattayasamitsathit, Michael Galarnyk, Allan Cortés, David Saintillan, and Joseph Wang . Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir 2014, 30 (18) , 5082-5087. https://doi.org/10.1021/la500819r
    41. Hong Wang, Guanjia Zhao, and Martin Pumera . Crucial Role of Surfactants in Bubble-Propelled Microengines. The Journal of Physical Chemistry C 2014, 118 (10) , 5268-5274. https://doi.org/10.1021/jp410003e
    42. Hong Wang, Guanjia Zhao, and Martin Pumera . Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts. Journal of the American Chemical Society 2014, 136 (7) , 2719-2722. https://doi.org/10.1021/ja411705d
    43. Arijit Ghosh, Debadrita Paria, Govindan Rangarajan, and Ambarish Ghosh . Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be. The Journal of Physical Chemistry Letters 2014, 5 (1) , 62-68. https://doi.org/10.1021/jz402186w
    44. Andrew I. Campbell and Stephen J. Ebbens . Gravitaxis in Spherical Janus Swimming Devices. Langmuir 2013, 29 (46) , 14066-14073. https://doi.org/10.1021/la403450j
    45. Takahiko Ban, Tomoko Yamagami, Hiroki Nakata, and Yasunori Okano . pH-Dependent Motion of Self-Propelled Droplets due to Marangoni Effect at Neutral pH. Langmuir 2013, 29 (8) , 2554-2561. https://doi.org/10.1021/la3047164
    46. Larysa Baraban, Robert Streubel, Denys Makarov, Luyang Han, Dmitriy Karnaushenko, Oliver G. Schmidt, and Gianaurelio Cuniberti . Fuel-Free Locomotion of Janus Motors: Magnetically Induced Thermophoresis. ACS Nano 2013, 7 (2) , 1360-1367. https://doi.org/10.1021/nn305726m
    47. Bo Shuang, Chad P. Byers, Lydia Kisley, Lin-Yung Wang, Julia Zhao, Hiroyuki Morimura, Stephan Link, and Christy F. Landes . Improved Analysis for Determining Diffusion Coefficients from Short, Single-Molecule Trajectories with Photoblinking. Langmuir 2013, 29 (1) , 228-234. https://doi.org/10.1021/la304063j
    48. Pouran Moradipour, Abbas Ali Khodadadi, Yadollah Mortazavi, Aliyar Javadi. Janus ZnO microrod-spherical carbon artificial bacteriabot micromotors driven by photocatalytic water splitting, corrosion, and thermal buoyancy. Chemical Engineering Science 2024, 294 , 120107. https://doi.org/10.1016/j.ces.2024.120107
    49. Tong Zhou, Kai Zhu, Zhaoyan Yang, Ziting Qian, Shenfei Zong, Yiping Cui, Zhuyuan Wang. Chemically Powered Nanomotors with Magnetically Responsive Function for Targeted Delivery of Exosomes. Small 2024, 6 https://doi.org/10.1002/smll.202311207
    50. Yufeng Wu, Minwei Song, Ziyi Zhao, Guang‐Hui Wang, Changlong Wang, Didier Astruc. Integrating theory with the nanoreactor concept to synthesize hollow carbon sphere‐encapsulated PtNi alloys for enhanced H 2 generation. Carbon Energy 2024, 29 https://doi.org/10.1002/cey2.455
    51. Zhizhou Luo, Ruonan Wang, Xiaoxia Deng, Tianxiang Chen, Xuehua Ma, Yujie Zhang, Changyong Gao, Aiguo Wu. Janus mesoporous organosilica/platinum nanomotors for active treatment of suppurative otitis media. Nanoscale 2024, 16 (6) , 3006-3010. https://doi.org/10.1039/D3NR05666J
    52. Tania Patiño, Joaquin Llacer-Wintle, Sílvia Pujals, Lorenzo Albertazzi, Samuel Sánchez. Unveiling protein corona formation around self-propelled enzyme nanomotors by nanoscopy. Nanoscale 2024, 16 (6) , 2904-2912. https://doi.org/10.1039/D3NR03749E
    53. Chandranath Ghosh, Souvik Ghosh, Ayan Chatterjee, Palash Bera, Dileep Mampallil, Pushpita Ghosh, Dibyendu Das. Dual enzyme-powered chemotactic cross β amyloid based functional nanomotors. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41301-x
    54. Artem Ryabov, Mykola Tasinkevych. Mechanochemical active ratchet. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-47465-2
    55. Ecem Tiryaki, Saida Ortolano, Gustavo Bodelón, Verónica Salgueiriño. Programming an Enhanced Uptake and the Intracellular Fate of Magnetic Microbeads. Advanced Healthcare Materials 2023, 12 (30) https://doi.org/10.1002/adhm.202301415
    56. Aleksei Kuzin, Guoxiang Chen, Fenyang Zhu, Dmitry Gorin, Brij Mohan, Udit Choudhury, Jizhai Cui, Krunal Modi, Gaoshan Huang, Yongfeng Mei, Alexander A. Solovev. Bridging the gap: harnessing liquid nanomachine know-how for tackling harmful airborne particulates. Nanoscale 2023, 15 (44) , 17727-17738. https://doi.org/10.1039/D3NR03808D
    57. Srikanta Debata, Suvendu Kumar Panda, Satyaprakash Trivedi, William Uspal, Dhruv Pratap Singh. pH-Responsive swimming behavior of light-powered rod-shaped micromotors. Nanoscale 2023, 15 (43) , 17534-17543. https://doi.org/10.1039/D3NR03775D
    58. Richard J. Archer, Stephen J. Ebbens. Symmetrical Catalytic Colloids Display Janus‐Like Active Brownian Particle Motion. Advanced Science 2023, 10 (33) https://doi.org/10.1002/advs.202303154
    59. Jiaoyu Ren, Zekun Chen, Enhui Ma, Wenjun Wang, Shaohui Zheng, Hong Wang. Dual-source powered nanomotors coupled with dual-targeting ligands for efficient capture and detection of CTCs in whole blood and in vivo tumor imaging. Colloids and Surfaces B: Biointerfaces 2023, 231 , 113568. https://doi.org/10.1016/j.colsurfb.2023.113568
    60. Hao Tian, Juanfeng Ou, Yong Wang, Jia Sun, Junbin Gao, Yicheng Ye, Ruotian Zhang, Bin Chen, Fei Wang, Weichang Huang, Huaan Li, Lu Liu, Chuxiao Shao, Zhili Xu, Fei Peng, Yingfeng Tu. Bladder microenvironment actuated proteomotors with ammonia amplification for enhanced cancer treatment. Acta Pharmaceutica Sinica B 2023, 13 (9) , 3862-3875. https://doi.org/10.1016/j.apsb.2023.02.016
    61. Shimi Liu, Dandan Xu, Junling Chen, Na Peng, Tao Ma, Feng Liang. Nanozymatic magnetic nanomotors for enhancing photothermal therapy and targeting intracellular SERS sensing. Nanoscale 2023, 15 (31) , 12944-12953. https://doi.org/10.1039/D3NR02739B
    62. Miguel A. Ramos Docampo, Sarah Nieto, Paula de Dios Andres, Xiaomin Qian, Brigitte Städler. Self‐Immolative Polymers to Initiate Locomotion in Motors. ChemNanoMat 2023, 9 (5) https://doi.org/10.1002/cnma.202300016
    63. Miguel A. Ramos Docampo. On Nanomachines and Their Future Perspectives in Biomedicine. Advanced Biology 2023, 7 (4) https://doi.org/10.1002/adbi.202200308
    64. Liang Gui, Juju Huang, Yi Xing, Yongjun Li, Junjie Zou, Yingwei Zhu, Xiao Liang, Xiwei Zhang, Qiang Xu, Xin Du. Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia. Nano Research 2023, 16 (4) , 5108-5120. https://doi.org/10.1007/s12274-022-5356-2
    65. Jeonghyeon Kim, Olivier J. F. Martin. Trap-and-Track for Characterizing Surfactants at Interfaces. Molecules 2023, 28 (6) , 2859. https://doi.org/10.3390/molecules28062859
    66. Ana Rodríguez-Ramos, Miguel A. Ramos-Docampo, Verónica Salgueiriño, Mónica L. Fanarraga. Nanoparticle biocoating to create ATP-powered swimmers capable of repairing proteins on the fly. Materials Today Advances 2023, 17 , 100353. https://doi.org/10.1016/j.mtadv.2023.100353
    67. Huaan Li, Fei Peng, Xiaohui Yan, Chun Mao, Xing Ma, Daniela A. Wilson, Qiang He, Yingfeng Tu. Medical micro- and nanomotors in the body. Acta Pharmaceutica Sinica B 2023, 13 (2) , 517-541. https://doi.org/10.1016/j.apsb.2022.10.010
    68. Miguel A. Ramos-Docampo, Pablo Hurtado, Ana B. Dávila-Ibáñez, Roberto Piñeiro, Mónica L. Fanarraga, Verónica Salgueiriño. Magnetically propelled chained nanocomposites for biologically relevant media exploration. Journal of Colloid and Interface Science 2023, 629 , 287-296. https://doi.org/10.1016/j.jcis.2022.08.154
    69. Artem Ryabov, Mykola Tasinkevych. Diffusion coefficient and power spectrum of active particles with a microscopically reversible mechanism of self-propelling. The Journal of Chemical Physics 2022, 157 (10) https://doi.org/10.1063/5.0101520
    70. Paolo M Marchi, Lara Marrone, Laurent Brasseur, Audrey Coens, Christopher P Webster, Luc Bousset, Marco Destro, Emma F Smith, Christa G Walther, Victor Alfred, Raffaele Marroccella, Emily J Graves, Darren Robinson, Allan C Shaw, Lai Mei Wan, Andrew J Grierson, Stephen J Ebbens, Kurt J De Vos, Guillaume M Hautbergue, Laura Ferraiuolo, Ronald Melki, Mimoun Azzouz. C9ORF72 -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance 2022, 5 (9) , e202101276. https://doi.org/10.26508/lsa.202101276
    71. Ayan Chatterjee, Souvik Ghosh, Chandranath Ghosh, Dibyendu Das. Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angewandte Chemie International Edition 2022, 61 (29) https://doi.org/10.1002/anie.202201547
    72. Ayan Chatterjee, Souvik Ghosh, Chandranath Ghosh, Dibyendu Das. Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angewandte Chemie 2022, 134 (29) https://doi.org/10.1002/ange.202201547
    73. Ao Feng, Xing Huang, Xie Cheng, Mengyu Chu, Shuai Wang, Xibo Yan. Programmable degrading engine powered photoactivated organic colloidal motors. Chemical Engineering Journal 2022, 440 , 135838. https://doi.org/10.1016/j.cej.2022.135838
    74. Dongmei Fu, Yicheng Ye, Chao Gao, Dazhi Xie, Fei Peng. Bienzymatic Spiky Janus Nanomotors Powered by Histamine. ChemNanoMat 2022, 8 (7) https://doi.org/10.1002/cnma.202200152
    75. Y. Zhao, D. Wang, Y. Luan, X. Du. NIR-light propelled bowl-like mesoporous polydopamine@UiO-66 metal−organic framework nanomotors for enhanced removal of organic contaminant. Materials Today Sustainability 2022, 18 , 100129. https://doi.org/10.1016/j.mtsust.2022.100129
    76. Jiaoyu Ren, Pengcheng Hu, Enhui Ma, Xiaoyu Zhou, Wenjun Wang, Shaohui Zheng, Hong Wang. Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today 2022, 27 , 101445. https://doi.org/10.1016/j.apmt.2022.101445
    77. Ye Yuan, Changyong Gao, Zhexu Wang, Jianming Fan, Haofei Zhou, Daolin Wang, Chang Zhou, Baohua Zhu, Qiang He. Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid. Journal of Materials Chemistry B 2022, 10 (3) , 358-363. https://doi.org/10.1039/D1TB02550C
    78. Johannes Sachs. Motion of Chiral and Achiral Structures at Low Re. 2022, 27-59. https://doi.org/10.1007/978-3-030-88689-9_3
    79. Alex McGlasson, Laura C. Bradley. Investigating Time‐Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering. Small 2021, 17 (52) https://doi.org/10.1002/smll.202104926
    80. Paula De Dios Andres, Miguel A. Ramos-Docampo, Xiaomin Qian, Marian Stingaciu, Brigitte Städler. Locomotion of micromotors in paper chips. Nanoscale 2021, 13 (42) , 17900-17911. https://doi.org/10.1039/D1NR06221B
    81. Taewan Kwon, Nitee Kumari, Amit Kumar, Jongwon Lim, Chang Yun Son, In Su Lee. Au/Pt‐Egg‐in‐Nest Nanomotor for Glucose‐Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie 2021, 133 (32) , 17720-17727. https://doi.org/10.1002/ange.202103827
    82. Taewan Kwon, Nitee Kumari, Amit Kumar, Jongwon Lim, Chang Yun Son, In Su Lee. Au/Pt‐Egg‐in‐Nest Nanomotor for Glucose‐Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie International Edition 2021, 60 (32) , 17579-17586. https://doi.org/10.1002/anie.202103827
    83. Devan Rouzie, Christian Lindensmith, Jay Nadeau. Microscopic Object Classification through Passive Motion Observations with Holographic Microscopy. Life 2021, 11 (8) , 793. https://doi.org/10.3390/life11080793
    84. Haichao Wu, Benjamin Greydanus, Daniel K. Schwartz. Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proceedings of the National Academy of Sciences 2021, 118 (27) https://doi.org/10.1073/pnas.2101807118
    85. Miguel A. Ramos-Docampo, Edit Brodszkij, Marcel Ceccato, Morten Foss, Mads Folkjær, Nina Lock, Brigitte Städler. Surface polymerization induced locomotion. Nanoscale 2021, 13 (22) , 10035-10043. https://doi.org/10.1039/D1NR01465J
    86. Hao Yuan, Xiaoxia Liu, Liying Wang, Xing Ma. Fundamentals and applications of enzyme powered micro/nano-motors. Bioactive Materials 2021, 6 (6) , 1727-1749. https://doi.org/10.1016/j.bioactmat.2020.11.022
    87. Yi Xing, Songsong Tang, Xin Du, Tailin Xu, Xueji Zhang. Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. Nano Research 2021, 14 (3) , 654-659. https://doi.org/10.1007/s12274-020-3092-2
    88. Johannes Sachs, S. Nikhilesh Kottapalli, Peer Fischer, Denis Botin, Thomas Palberg. Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry. Colloid and Polymer Science 2021, 299 (2) , 269-280. https://doi.org/10.1007/s00396-020-04693-6
    89. Zhiyong Liu, Tingting Xu, Meng Wang, Chun Mao, Bo Chi. Magnetic mesoporous silica/ε-polylysine nanomotor-based removers of blood Pb 2+. Journal of Materials Chemistry B 2020, 8 (48) , 11055-11062. https://doi.org/10.1039/D0TB02270E
    90. Yi Xing, Mengyun Zhou, Tailin Xu, Songsong Tang, Yang Fu, Xin Du, Lei Su, Yongqiang Wen, Xueji Zhang, Tianyi Ma. Core@Satellite Janus Nanomotors with pH‐Responsive Multi‐phoretic Propulsion. Angewandte Chemie International Edition 2020, 59 (34) , 14368-14372. https://doi.org/10.1002/anie.202006421
    91. Yi Xing, Mengyun Zhou, Tailin Xu, Songsong Tang, Yang Fu, Xin Du, Lei Su, Yongqiang Wen, Xueji Zhang, Tianyi Ma. Core@Satellite Janus Nanomotors with pH‐Responsive Multi‐phoretic Propulsion. Angewandte Chemie 2020, 132 (34) , 14474-14478. https://doi.org/10.1002/ange.202006421
    92. Xinyi Lin, Hong Zhu, Zhe Zhao, Chunyu You, Ye Kong, Yuting Zhao, Jinrun Liu, Hong Chen, Xiaojie Shi, Denys Makarov, Yongfeng Mei. Hydrogel‐Based Janus Micromotors Capped with Functional Nanoparticles for Environmental Applications. Advanced Materials Technologies 2020, 5 (8) https://doi.org/10.1002/admt.202000279
    93. Dandan Xu, Yong Wang, Chunyan Liang, Yongqiang You, Samuel Sanchez, Xing Ma. Self‐Propelled Micro/Nanomotors for On‐Demand Biomedical Cargo Transportation. Small 2020, 16 (27) https://doi.org/10.1002/smll.201902464
    94. Songsong Tang, Fangyu Zhang, Hua Gong, Fanan Wei, Jia Zhuang, Emil Karshalev, Berta Esteban-Fernández de Ávila, Chuying Huang, Zhidong Zhou, Zhengxing Li, Lu Yin, Haifeng Dong, Ronnie H. Fang, Xueji Zhang, Liangfang Zhang, Joseph Wang. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics 2020, 5 (43) https://doi.org/10.1126/scirobotics.aba6137
    95. Ying-Shuo Peng, Yu-Jane Sheng, Heng-Kwong Tsao. Partition of nanoswimmers between two immiscible phases: a soft and penetrable boundary. Soft Matter 2020, 16 (21) , 5054-5061. https://doi.org/10.1039/D0SM00298D
    96. Richard A. Archer, Johnathan R. Howse, Syuji Fujii, Hisato Kawashima, Gavin A. Buxton, Stephen J. Ebbens. pH‐Responsive Catalytic Janus Motors with Autonomous Navigation and Cargo‐Release Functions. Advanced Functional Materials 2020, 30 (19) https://doi.org/10.1002/adfm.202000324
    97. Wei Wang, Xianglong Lv, Jeffrey L. Moran, Shifang Duan, Chao Zhou. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. Soft Matter 2020, 16 (16) , 3846-3868. https://doi.org/10.1039/D0SM00222D
    98. Filip Novotný, Hong Wang, Martin Pumera. Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. Chem 2020, 6 (4) , 867-884. https://doi.org/10.1016/j.chempr.2019.12.028
    99. Marco De Corato, Xavier Arqué, Tania Patiño, Marino Arroyo, Samuel Sánchez, Ignacio Pagonabarraga. Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments. Physical Review Letters 2020, 124 (10) https://doi.org/10.1103/PhysRevLett.124.108001
    100. Long Zhao, Yuan Liu, Songzhi Xie, Pan Ran, Jiaojun Wei, Qingjie Liu, Xiaohong Li. Janus micromotors for motion-capture-ratiometric fluorescence detection of circulating tumor cells. Chemical Engineering Journal 2020, 382 , 123041. https://doi.org/10.1016/j.cej.2019.123041
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect