ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Multicomponent Adsorption of Alcohols onto Silicalite-1 from Aqueous Solution: Isotherms, Structural Analysis, and Assessment of Ideal Adsorbed Solution Theory

View Author Information
Departments of Chemistry and of Chemical Engineering and Materials Science and the Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
*E-mail [email protected]; Ph +1 612 624-1844; Fax +1 612 626-7541.
Cite this: Langmuir 2012, 28, 44, 15566–15576
Publication Date (Web):October 10, 2012
https://doi.org/10.1021/la303247c
Copyright © 2012 American Chemical Society

    Article Views

    1779

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)

    Abstract

    Abstract Image

    Configurational-bias Monte Carlo (CBMC) simulations in the isobaric–isothermal version of the Gibbs ensemble (GE) were carried out to probe the adsorption from aqueous solutions of methanol and/or ethanol onto silicalite-1. This methodology does require neither specification of the chemical potential nor any reference to activity models based on experimental data. The CBMC-GE methodology can be applied to the complete range of mixture compositions from pure water to pure alcohols and can also be used when multiple solute types are present at high concentration. The simulations demonstrate high selectivities for the alcohols (αethanol > αmethanol) almost over the entire composition range. The ideal adsorbed solution theory is found to substantially underpredict the amount of sorbed water and leads to very large errors for low alcohol solution concentrations. The simulations indicate that, at lower loadings, the adsorbed alcohol molecules can serve as seeds for water adsorption but, at higher loadings, alcohols displace water molecules from their preferred region.

    Cited By

    This article is cited by 71 publications.

    1. Chris Torres, David S. Potts, David W. Flaherty. Solvent Mediated Interactions on Alkene Epoxidations in Ti-MFI: Effects of Solvent Identity and Silanol Density. ACS Catalysis 2023, 13 (13) , 8925-8942. https://doi.org/10.1021/acscatal.3c01073
    2. Saumil Chheda, WooSeok Jeong, Nikita Hanikel, Laura Gagliardi, J. Ilja Siepmann. Monte Carlo Simulations of Water Adsorption in Aluminum Oxide Rod-Based Metal–Organic Frameworks. The Journal of Physical Chemistry C 2023, 127 (16) , 7837-7851. https://doi.org/10.1021/acs.jpcc.3c00354
    3. Henry A. Cortés, Damian A. Scherlis, Matías H. Factorovich. Partition Constant of Binary Mixtures for the Equilibrium between a Bulk and a Confined Phase. The Journal of Physical Chemistry B 2022, 126 (36) , 6985-6996. https://doi.org/10.1021/acs.jpcb.2c03532
    4. Roshan Patel, Jorge Castro, Michael Tsapatsis, J. Ilja Siepmann. Molecular Simulations Probing the Adsorption and Diffusion of Ammonia, Nitrogen, Hydrogen, and Their Mixtures in Bulk MFI Zeolite and MFI Nanosheets at High Temperature and Pressure. Journal of Chemical & Engineering Data 2022, 67 (7) , 1779-1791. https://doi.org/10.1021/acs.jced.2c00086
    5. Mona S. Minkara, Tyler R. Josephson, Connor L. Venteicher, Benjamin R. Greenvall, Rebecca K. Lindsey, Peter H. Koenig, J. Ilja Siepmann. Nonane and Hexanol Adsorption in the Lamellar Phase of a Nonionic Surfactant: Molecular Simulations and Comparison to Ideal Adsorbed Solution Theory. The Journal of Physical Chemistry B 2022, 126 (21) , 3940-3949. https://doi.org/10.1021/acs.jpcb.2c02871
    6. Bihong Li, Shaomin Gong, Piao Cao, Weiqun Gao, Weizhong Zheng, Weizhen Sun, Xiaoyan Zhang, Xiaojun Wu. Screening of Biocompatible MOFs for the Clearance of Indoxyl Sulfate Using GCMC Simulations. Industrial & Engineering Chemistry Research 2022, 61 (19) , 6618-6627. https://doi.org/10.1021/acs.iecr.2c00283
    7. Swagata Pahari, Matheus Dorneles de Mello, Mansi S. Shah, Tyler R. Josephson, Limin Ren, Huong Giang T. Nguyen, Roger D. Van Zee, Michael Tsapatsis, J. Ilja Siepmann. Ethanol and Water Adsorption in Conventional and Hierarchical All-Silica MFI Zeolites. ACS Physical Chemistry Au 2022, 2 (2) , 79-88. https://doi.org/10.1021/acsphyschemau.1c00026
    8. Peng Bai, Matthew Neurock, J. Ilja Siepmann. First-Principles Grand-Canonical Simulations of Water Adsorption in Proton-Exchanged Zeolites. The Journal of Physical Chemistry C 2021, 125 (11) , 6090-6098. https://doi.org/10.1021/acs.jpcc.0c10104
    9. Rajamani Krishna, Jasper M. van Baten. Water/Alcohol Mixture Adsorption in Hydrophobic Materials: Enhanced Water Ingress Caused by Hydrogen Bonding. ACS Omega 2020, 5 (43) , 28393-28402. https://doi.org/10.1021/acsomega.0c04491
    10. Zhaozhuo Yu, Hongguo Wu, Yan Li, Yufei Xu, Hu Li, Song Yang. Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials. Industrial & Engineering Chemistry Research 2020, 59 (39) , 16970-16986. https://doi.org/10.1021/acs.iecr.0c01625
    11. Daniel T. Bregante, David S. Potts, Ohsung Kwon, E. Zeynep Ayla, Jun Zhi Tan, David W. Flaherty. Effects of Hydrofluoric Acid Concentration on the Density of Silanol Groups and Water Adsorption in Hydrothermally Synthesized Transition-Metal-Substituted Silicalite-1. Chemistry of Materials 2020, 32 (17) , 7425-7437. https://doi.org/10.1021/acs.chemmater.0c02405
    12. Daniel T. Bregante, David W. Flaherty. Impact of Specific Interactions Among Reactive Surface Intermediates and Confined Water on Epoxidation Catalysis and Adsorption in Lewis Acid Zeolites. ACS Catalysis 2019, 9 (12) , 10951-10962. https://doi.org/10.1021/acscatal.9b03323
    13. Brian R. Pimentel, Melinda L. Jue, Er-Kang Zhou, Ross J. Verploegh, Johannes Leisen, David S. Sholl, Ryan P. Lively. Sorption and Transport of Vapors in ZIF-11: Adsorption, Diffusion, and Linker Flexibility. The Journal of Physical Chemistry C 2019, 123 (20) , 12862-12870. https://doi.org/10.1021/acs.jpcc.9b02192
    14. Daniel T. Bregante, Alayna M. Johnson, Ami Y. Patel, E. Zeynep Ayla, Michael J. Cordon, Brandon C. Bukowski, Jeffrey Greeley, Rajamani Gounder, David W. Flaherty. Cooperative Effects between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen Bonding on Alkene Epoxidation in Zeolites. Journal of the American Chemical Society 2019, 141 (18) , 7302-7319. https://doi.org/10.1021/jacs.8b12861
    15. Bai Xue, David B. Harwood, Jingyi L. Chen, J. Ilja Siepmann. Monte Carlo Simulations of Fluid Phase Equilibria and Interfacial Properties for Water/Alkane Mixtures: An Assessment of Nonpolarizable Water Models and of Departures from the Lorentz–Berthelot Combining Rules. Journal of Chemical & Engineering Data 2018, 63 (11) , 4256-4268. https://doi.org/10.1021/acs.jced.8b00757
    16. Paula Gómez-Álvarez, Eva G. Noya, Enrique Lomba, Susana Valencia, João Pires. Study of Short-Chain Alcohol and Alcohol–Water Adsorption in MEL and MFI Zeolites. Langmuir 2018, 34 (43) , 12739-12750. https://doi.org/10.1021/acs.langmuir.8b02326
    17. Amirfarrokh Farzaneh, Robert F. DeJaco, Lindsay Ohlin, Allan Holmgren, J. Ilja Siepmann, and Mattias Grahn . Comparative Study of the Effect of Defects on Selective Adsorption of Butanol from Butanol/Water Binary Vapor Mixtures in Silicalite-1 Films. Langmuir 2017, 33 (34) , 8420-8427. https://doi.org/10.1021/acs.langmuir.7b02097
    18. Peng Bai and J. Ilja Siepmann . Assessment and Optimization of Configurational-Bias Monte Carlo Particle Swap Strategies for Simulations of Water in the Gibbs Ensemble. Journal of Chemical Theory and Computation 2017, 13 (2) , 431-440. https://doi.org/10.1021/acs.jctc.6b00973
    19. Robert F. DeJaco, Peng Bai, Michael Tsapatsis, and J. Ilja Siepmann . Adsorptive Separation of 1-Butanol from Aqueous Solutions Using MFI- and FER-Type Zeolite Frameworks: A Monte Carlo Study. Langmuir 2016, 32 (8) , 2093-2101. https://doi.org/10.1021/acs.langmuir.5b04483
    20. Mansi S. Shah, Michael Tsapatsis, and J. Ilja Siepmann . Monte Carlo Simulations Probing the Adsorptive Separation of Hydrogen Sulfide/Methane Mixtures Using All-Silica Zeolites. Langmuir 2015, 31 (44) , 12268-12278. https://doi.org/10.1021/acs.langmuir.5b03015
    21. Chun-Hung Wang, Peng Bai, J. Ilja Siepmann, and Aurora E. Clark . Deconstructing Hydrogen-Bond Networks in Confined Nanoporous Materials: Implications for Alcohol–Water Separation. The Journal of Physical Chemistry C 2014, 118 (34) , 19723-19732. https://doi.org/10.1021/jp502867v
    22. Michelle E. Dose, Ke Zhang, Joshua A. Thompson, Johannes Leisen, Ronald R. Chance, William J. Koros, Benjamin A. McCool, and Ryan P. Lively . Effect of Crystal Size on Framework Defects and Water Uptake in Fluoride Mediated Silicalite-1. Chemistry of Materials 2014, 26 (15) , 4368-4376. https://doi.org/10.1021/cm500914b
    23. Pritha Ghosh, Ki Chul Kim, and Randall Q. Snurr . Modeling Water and Ammonia Adsorption in Hydrophobic Metal–Organic Frameworks: Single Components and Mixtures. The Journal of Physical Chemistry C 2014, 118 (2) , 1102-1110. https://doi.org/10.1021/jp410758t
    24. Peng Bai, Michael Tsapatsis, and J. Ilja Siepmann . TraPPE-zeo: Transferable Potentials for Phase Equilibria Force Field for All-Silica Zeolites. The Journal of Physical Chemistry C 2013, 117 (46) , 24375-24387. https://doi.org/10.1021/jp4074224
    25. Ke Zhang, Ryan P. Lively, Chen Zhang, Ronald R. Chance, William J. Koros, David S. Sholl, and Sankar Nair . Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations. The Journal of Physical Chemistry Letters 2013, 4 (21) , 3618-3622. https://doi.org/10.1021/jz402019d
    26. John R. Copeland, Ivan A. Santillan, Sarah McNew Schimming, Jessica L. Ewbank, and Carsten Sievers . Surface Interactions of Glycerol with Acidic and Basic Metal Oxides. The Journal of Physical Chemistry C 2013, 117 (41) , 21413-21425. https://doi.org/10.1021/jp4078695
    27. Ke Zhang, Ryan P. Lively, Chen Zhang, William J. Koros, and Ronald R. Chance . Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: An Adsorption and Diffusion Study. The Journal of Physical Chemistry C 2013, 117 (14) , 7214-7225. https://doi.org/10.1021/jp401548b
    28. Yachan Liu, Gustavo Perez, Zezhou Cheng, Aaron Sun, Samuel C. Hoover, Wei Fan, Subhransu Maji, Peng Bai. ZeoNet: 3D convolutional neural networks for predicting adsorption in nanoporous zeolites. Journal of Materials Chemistry A 2023, 11 (33) , 17570-17580. https://doi.org/10.1039/D3TA01911J
    29. Abdelkarim Maziz, Nadjat Chouat, Boumediéne Bensafi, Fatiha Djafri. dTG and FTIR investigation of methanol behavior adsorbed within MFI-type zeolites. Journal of Porous Materials 2023, 30 (4) , 1403-1415. https://doi.org/10.1007/s10934-023-01431-5
    30. David S. Potts, Chris Torres, Ohsung Kwon, David W. Flaherty. Engineering intraporous solvent environments: effects of aqueous-organic solvent mixtures on competition between zeolite-catalyzed epoxidation and H 2 O 2 decomposition pathways. Chemical Science 2023, 14 (12) , 3160-3181. https://doi.org/10.1039/D2SC06473A
    31. Paula Gómez-Álvarez, Eva G. Noya, Enrique Lomba. Structural study of water/alcohol mixtures adsorbed in MFI and MEL porosils. Journal of Molecular Liquids 2022, 368 , 120527. https://doi.org/10.1016/j.molliq.2022.120527
    32. Shubham Malviya, Joseph C. Tapia, Peng Bai. Calculating adsorption isotherms using the two-phase thermodynamic method and molecular dynamics simulations. Journal of Applied Physics 2022, 132 (3) https://doi.org/10.1063/5.0099790
    33. David S. Potts, Daniel T. Bregante, Jason S. Adams, Chris Torres, David W. Flaherty. Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces. Chemical Society Reviews 2021, 50 (22) , 12308-12337. https://doi.org/10.1039/D1CS00539A
    34. Daniel T. Bregante, Matthew C. Chan, Jun Zhi Tan, E. Zeynep Ayla, Christopher P. Nicholas, Diwakar Shukla, David W. Flaherty. The shape of water in zeolites and its impact on epoxidation catalysis. Nature Catalysis 2021, 4 (9) , 797-808. https://doi.org/10.1038/s41929-021-00672-4
    35. Rui Li, William A. Elliott, R. John Clark, James G. Sutjianto, Robert M. Rioux, Jeremy C. Palmer, Jeffrey D. Rimer. Factors controlling the molecular modification of one-dimensional zeolites. Physical Chemistry Chemical Physics 2021, 23 (34) , 18610-18617. https://doi.org/10.1039/D1CP02619D
    36. Ryan Oozeerally, David L. Burnett, Thomas W. Chamberlain, Reza J. Kashtiban, Steven Huband, Richard I. Walton, Volkan Degirmenci. Systematic Modification of UiO‐66 Metal‐Organic Frameworks for Glucose Conversion into 5‐Hydroxymethyl Furfural in Water. ChemCatChem 2021, 13 (10) , 2517-2529. https://doi.org/10.1002/cctc.202001989
    37. Jason S. Bates, Rajamani Gounder. Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis. Chemical Science 2021, 12 (13) , 4699-4708. https://doi.org/10.1039/D1SC00151E
    38. Tyler R. Josephson, Paul J. Dauenhauer, Michael Tsapatsis, J. Ilja Siepmann. Adsorption of furan, hexanoic acid, and alkanes in a hierarchical zeolite at reaction conditions: Insights from molecular simulations. Journal of Computational Science 2021, 48 , 101267. https://doi.org/10.1016/j.jocs.2020.101267
    39. Nicholas S. Gould, Sha Li, Hong Je Cho, Harrison Landfield, Stavros Caratzoulas, Dionisios Vlachos, Peng Bai, Bingjun Xu. Understanding solvent effects on adsorption and protonation in porous catalysts. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14860-6
    40. Imranul I. Laskar, Zaher Hashisho. Insights into modeling adsorption equilibria of single and multicomponent systems of organic and water vapors. Separation and Purification Technology 2020, 241 , 116681. https://doi.org/10.1016/j.seppur.2020.116681
    41. Robert F. DeJaco, Matheus Dorneles de Mello, Huong Giang T. Nguyen, Mi Young Jeon, Roger D. van Zee, Michael Tsapatsis, Joern Ilja Siepmann. Vapor‐ and liquid‐phase adsorption of alcohol and water in silicalite‐1 synthesized in fluoride media. AIChE Journal 2020, 66 (4) https://doi.org/10.1002/aic.16868
    42. Arpan Kundu, Kaido Sillar, Joachim Sauer. Predicting adsorption selectivities from pure gas isotherms for gas mixtures in metal–organic frameworks. Chemical Science 2020, 11 (3) , 643-655. https://doi.org/10.1039/C9SC03008E
    43. Juan José Gutiérrez-Sevillano, Sofía Calero. Computational Approaches to Zeolite-Based Adsorption Processes. 2020, 57-83. https://doi.org/10.1007/430_2020_66
    44. Benjamin Claessens, Julien Cousin-Saint-Remi, Joeri F. M. Denayer. Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents. 2020, 85-119. https://doi.org/10.1007/430_2020_68
    45. Mohammad I. Hossain, Jackson D. Cunningham, Tim M. Becker, Bogna E. Grabicka, Krista S. Walton, Brooks D. Rabideau, T. Grant Glover. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chemical Engineering Science 2019, 203 , 346-357. https://doi.org/10.1016/j.ces.2019.03.053
    46. Yangzesheng Sun, Robert F. DeJaco, J. Ilja Siepmann. Deep neural network learning of complex binary sorption equilibria from molecular simulation data. Chemical Science 2019, 10 (16) , 4377-4388. https://doi.org/10.1039/C8SC05340E
    47. Paulina Pršlja, Enrique Lomba, Paula Gómez-Álvarez, Tomaz Urbič, Eva G. Noya. Adsorption of water, methanol, and their mixtures in slit graphite pores. The Journal of Chemical Physics 2019, 150 (2) https://doi.org/10.1063/1.5078603
    48. Torin F. Stetina, Aurora E. Clark, Xiaosong Li. X‐ray absorption signatures of hydrogen‐bond structure in water–alcohol solutions. International Journal of Quantum Chemistry 2019, 119 (1) https://doi.org/10.1002/qua.25802
    49. Jianguang Zhang, Xiangping Li, Juping Liu, Chuanbin Wang. A Comparative Study of MFI Zeolite Derived from Different Silica Sources: Synthesis, Characterization and Catalytic Performance. Catalysts 2019, 9 (1) , 13. https://doi.org/10.3390/catal9010013
    50. Rajamani Krishna, Jasper M. van Baten, Richard Baur. Highlighting the origins and consequences of thermodynamic non-idealities in mixture separations using zeolites and metal-organic frameworks. Microporous and Mesoporous Materials 2018, 267 , 274-292. https://doi.org/10.1016/j.micromeso.2018.03.013
    51. Robert F. DeJaco, Bahman Elyassi, Matheus Dorneles de Mello, Nitish Mittal, Michael Tsapatsis, J. Ilja Siepmann. Understanding the unique sorption of alkane- α , ω -diols in silicalite-1. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5026937
    52. Nitish Mittal, Peng Bai, J. Ilja Siepmann, Prodromos Daoutidis, Michael Tsapatsis. Bioethanol enrichment using zeolite membranes: Molecular modeling, conceptual process design and techno-economic analysis. Journal of Membrane Science 2017, 540 , 464-476. https://doi.org/10.1016/j.memsci.2017.06.075
    53. Hannah Nguyen, Robert F. DeJaco, Nitish Mittal, J. Ilja Siepmann, Michael Tsapatsis, Mark A. Snyder, Wei Fan, Basudeb Saha, Dionisios G. Vlachos. A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annual Review of Chemical and Biomolecular Engineering 2017, 8 (1) , 115-137. https://doi.org/10.1146/annurev-chembioeng-060816-101303
    54. John D. Kestell, Jian-Qiang Zhong, Meera Shete, Iradwikanari Waluyo, Jerzy T. Sadowski, Dario J. Stacchiola, Michael Tsapatsis, J. Anibal Boscoboinik. Studying two-dimensional zeolites with the tools of surface science: MFI nanosheets on Au(111). Catalysis Today 2017, 280 , 283-288. https://doi.org/10.1016/j.cattod.2016.07.015
    55. Jinjie Qian, Qipeng Li, Linfeng Liang, Ting-Ting Li, Yue Hu, Shaoming Huang. A microporous MOF with open metal sites and Lewis basic sites for selective CO 2 capture. Dalton Trans. 2017, 46 (41) , 14102-14106. https://doi.org/10.1039/C7DT03255B
    56. Nitish Mittal, Peng Bai, Adam Kelloway, J. Ilja Siepmann, Prodromos Daoutidis, Michael Tsapatsis. A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane-distillation processes for butane isomer separations. Journal of Membrane Science 2016, 520 , 434-449. https://doi.org/10.1016/j.memsci.2016.06.041
    57. Irina Delidovich, Regina Palkovits. Catalytic Isomerization of Biomass‐Derived Aldoses: A Review. ChemSusChem 2016, 9 (6) , 547-561. https://doi.org/10.1002/cssc.201501577
    58. David Dubbeldam, Sofía Calero, Donald E. Ellis, Randall Q. Snurr. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 2016, 42 (2) , 81-101. https://doi.org/10.1080/08927022.2015.1010082
    59. Lennart Joos, Johanna M. Huck, Veronique Van Speybroeck, Berend Smit. Cutting the cost of carbon capture: a case for carbon capture and utilization. Faraday Discuss. 2016, 192 , 391-414. https://doi.org/10.1039/C6FD00031B
    60. L. Pasti, E. Rodeghero, E. Sarti, V. Bosi, A. Cavazzini, R. Bagatin, A. Martucci. Competitive adsorption of VOCs from binary aqueous mixtures on zeolite ZSM-5. RSC Advances 2016, 6 (59) , 54544-54552. https://doi.org/10.1039/C6RA08872D
    61. Krista S. Walton, David S. Sholl. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE Journal 2015, 61 (9) , 2757-2762. https://doi.org/10.1002/aic.14878
    62. Peng Bai, Mi Young Jeon, Limin Ren, Chris Knight, Michael W. Deem, Michael Tsapatsis, J. Ilja Siepmann. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms6912
    63. N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis. Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews 2015, 44 (20) , 7128-7154. https://doi.org/10.1039/C5CS00292C
    64. Lennart Joos, Kurt Lejaeghere, Johanna M. Huck, Veronique Van Speybroeck, Berend Smit. Carbon capture turned upside down: high-temperature adsorption & low-temperature desorption (HALD). Energy & Environmental Science 2015, 8 (8) , 2480-2491. https://doi.org/10.1039/C5EE01690H
    65. A. Martucci, I. Braschi, C. Bisio, E. Sarti, E. Rodeghero, R. Bagatin, L. Pasti. Influence of water on the retention of methyl tertiary-butyl ether by high silica ZSM-5 and Y zeolites: a multidisciplinary study on the adsorption from liquid and gas phase. RSC Advances 2015, 5 (106) , 86997-87006. https://doi.org/10.1039/C5RA15201A
    66. Van T. Nguyen, Phuong T.M. Nguyen, Liem X. Dang, Donghai Mei, Collin D. Wick, Duong D. Do. A comparative study of the adsorption of water and methanol in zeolite BEA: a molecular simulation study. Molecular Simulation 2014, 40 (14) , 1113-1124. https://doi.org/10.1080/08927022.2013.848280
    67. Peng Bai, Pritha Ghosh, Jeffrey C. Sung, Daniela Kohen, J. Ilja Siepmann, Randall Q. Snurr. A computational study of the adsorption of n-perfluorohexane in zeolite BCR-704. Fluid Phase Equilibria 2014, 366 , 146-151. https://doi.org/10.1016/j.fluid.2013.07.018
    68. Samuel J. Keasler, Peng Bai, Michael Tsapatsis, J. Ilja Siepmann. Concentration effects on the selective extraction of ethanol from aqueous solution using silicalite-1 and decanol isomers. Fluid Phase Equilibria 2014, 362 , 118-124. https://doi.org/10.1016/j.fluid.2013.09.034
    69. Kai Stückenschneider, Juliane Merz, Gerhard Schembecker. Molecular interactions of alcohols with zeolite BEA and MOR frameworks. Journal of Molecular Modeling 2013, 19 (12) , 5611-5624. https://doi.org/10.1007/s00894-013-2048-9
    70. Peng Bai, J. Ilja Siepmann, Michael W. Deem. Adsorption of glucose into zeolite beta from aqueous solution. AIChE Journal 2013, 59 (9) , 3523-3529. https://doi.org/10.1002/aic.14104
    71. Ke Zhang, Ryan P. Lively, Michelle E. Dose, Andrew J. Brown, Chen Zhang, Jaeyub Chung, Sankar Nair, William J. Koros, Ronald R. Chance. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chemical Communications 2013, 49 (31) , 3245. https://doi.org/10.1039/c3cc39116g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect