ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Effect of Functionalized Gold Nanoparticles on Floating Lipid Bilayers

View Author Information
Department of Physics, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France
§ Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Australia
*M.M.: e-mail, [email protected]. S.T.: e-mail, [email protected]
Cite this: Langmuir 2013, 29, 22, 6606–6614
Publication Date (Web):May 2, 2013
https://doi.org/10.1021/la401074y
Copyright © 2013 American Chemical Society

    Article Views

    3123

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of novel nano-engineered materials poses important questions regarding the impact of these new materials on living systems. Possible adverse effects must be assessed in order to prevent risks for health and the environment. On the other hand, a thorough understanding of their interaction with biological systems might also result in the creation of novel biomedical applications. We present a study on the interaction of model lipid membranes with gold nanoparticles (AuNP) of different surface modifications. Neutron reflectometry experiments on zwitterionic lipid double bilayers were performed in the presence of AuNP functionalized with cationic and anionic head groups. Structural information was obtained that provided insight into the fate of the AuNPs with regard to the integrity of the model cell membranes. The AuNPs functionalized with cationic head groups penetrate into the hydrophobic moiety of the lipid bilayers and cause membrane disruption at an increased concentration. In contrast, the AuNPs functionalized with anionic head groups do not enter but seem to impede the destruction of the lipid bilayer at an alkaline pH. The information obtained might influence the strategy for a better nanoparticle risk assessment based on a surface charge evaluation and contribute to nano-safety considerations during their design.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Fitting plots, tables of fit parameters of the data not shown in the main text, and off-specular scattering are available in the supporting materials. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 129 publications.

    1. Ya Guan, Hong Niu, Jiaxing Wen, Yu Dang, Mohamed Zayed, Jianjun Guan. Rescuing Cardiac Cells and Improving Cardiac Function by Targeted Delivery of Oxygen-Releasing Nanoparticles after or Even before Acute Myocardial Infarction. ACS Nano 2022, 16 (11) , 19551-19566. https://doi.org/10.1021/acsnano.2c10043
    2. Ripa Paul, Hritinava Banik, Meshal Alzaid, Debajyoti Bhattacharjee, Syed Arshad Hussain. Interaction of a Phospholipid and a Coagulating Protein: Potential Candidate for Bioelectronic Applications. ACS Omega 2022, 7 (21) , 17583-17592. https://doi.org/10.1021/acsomega.1c07395
    3. Alex K. Chew, Joel A. Pedersen, Reid C. Van Lehn. Predicting the Physicochemical Properties and Biological Activities of Monolayer-Protected Gold Nanoparticles Using Simulation-Derived Descriptors. ACS Nano 2022, 16 (4) , 6282-6292. https://doi.org/10.1021/acsnano.2c00301
    4. Hengzhi Liu, Yong Pei. Atomistic Molecular Dynamics Simulation Study on the Interaction between Atomically Precise Thiolate-Protected Gold Nanoclusters and Phospholipid Membranes. Langmuir 2022, 38 (5) , 1653-1661. https://doi.org/10.1021/acs.langmuir.1c02001
    5. Vaishnavi Kanduri, Danielle LaVigne, Jessica Larsen. Current Advances Toward the Encapsulation of Cas9. ACS Macro Letters 2021, 10 (12) , 1576-1589. https://doi.org/10.1021/acsmacrolett.1c00538
    6. Sebastian Köhler, Giovanna Fragneto, Jean-Pierre Alcaraz, Andrew Nelson, Donald K. Martin, Marco Maccarini. Nanostructural Characterization of Cardiolipin-Containing Tethered Lipid Bilayers Adsorbed on Gold and Silicon Substrates for Protein Incorporation. Langmuir 2021, 37 (30) , 8908-8923. https://doi.org/10.1021/acs.langmuir.1c00119
    7. Michael Malek, Isabel S. Curtis, Tyson J. MacCormack, M.-Vicki Meli. Charged and Neutral Au Nanoparticles Interact Differently with Langmuir Film-Based Synthetic Membranes: Implications for Nanoparticle Uptake and Membrane Protein Activity. ACS Applied Nano Materials 2020, 3 (9) , 9276-9284. https://doi.org/10.1021/acsanm.0c01906
    8. Luping Ou, Valentina Corradi, D. Peter Tieleman, Qing Liang. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. The Journal of Physical Chemistry B 2020, 124 (22) , 4466-4475. https://doi.org/10.1021/acs.jpcb.9b11989
    9. Mitradip Das, Udaya Dahal, Oluwaseun Mesele, Dongyue Liang, Qiang Cui. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models. The Journal of Physical Chemistry B 2019, 123 (49) , 10547-10561. https://doi.org/10.1021/acs.jpcb.9b08259
    10. Miftah Faried, Keishi Suga, Yukihiro Okamoto, Kamyar Shameli, Mikio Miyake, Hiroshi Umakoshi. Membrane Surface-Enhanced Raman Spectroscopy for Cholesterol-Modified Lipid Systems: Effect of Gold Nanoparticle Size. ACS Omega 2019, 4 (9) , 13687-13695. https://doi.org/10.1021/acsomega.9b01073
    11. Nishu Kanwa, Ananya Patnaik, Soumya Kanti De, Mirajuddin Ahamed, Anjan Chakraborty. Effect of Surface Ligand and Temperature on Lipid Vesicle–Gold Nanoparticle Interaction: A Spectroscopic Investigation. Langmuir 2019, 35 (4) , 1008-1020. https://doi.org/10.1021/acs.langmuir.8b03673
    12. Tobias Pfeiffer, Antonio De Nicola, Costanza Montis, Francesco Carlà, Nico F. A. van der Vegt, Debora Berti, Giuseppe Milano. Nanoparticles at Biomimetic Interfaces: Combined Experimental and Simulation Study on Charged Gold Nanoparticles/Lipid Bilayer Interfaces. The Journal of Physical Chemistry Letters 2019, 10 (2) , 129-137. https://doi.org/10.1021/acs.jpclett.8b03399
    13. Kwahun Lee, Yan Yu. Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance. Langmuir 2018, 34 (41) , 12387-12393. https://doi.org/10.1021/acs.langmuir.8b02298
    14. Olga Borozenko, Manon Faral, Shirin Behyan, Abdullah Khan, Jennifer Coulombe, Christine DeWolf, Antonella Badia. Silica Nanoparticle-Induced Structural Reorganizations in Pulmonary Surfactant Films: What Monolayer Compression Isotherms Do Not Say. ACS Applied Nano Materials 2018, 1 (9) , 5268-5278. https://doi.org/10.1021/acsanm.8b01259
    15. Kwahun Lee, Liuyang Zhang, Yi Yi, Xianqiao Wang, Yan Yu. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano 2018, 12 (4) , 3646-3657. https://doi.org/10.1021/acsnano.8b00759
    16. Andrea Torchi, Federica Simonelli, Riccardo Ferrando, and Giulia Rossi . Local Enhancement of Lipid Membrane Permeability Induced by Irradiated Gold Nanoparticles. ACS Nano 2017, 11 (12) , 12553-12561. https://doi.org/10.1021/acsnano.7b06690
    17. Sebastian Salassi, Federica Simonelli, Davide Bochicchio, Riccardo Ferrando, and Giulia Rossi . Au Nanoparticles in Lipid Bilayers: A Comparison between Atomistic and Coarse-Grained Models. The Journal of Physical Chemistry C 2017, 121 (20) , 10927-10935. https://doi.org/10.1021/acs.jpcc.6b12148
    18. Reid C. Van Lehn and Alfredo Alexander-Katz . Grafting Charged Species to Membrane-Embedded Scaffolds Dramatically Increases the Rate of Bilayer Flipping. ACS Central Science 2017, 3 (3) , 186-195. https://doi.org/10.1021/acscentsci.6b00365
    19. Alasdair T. M. Hubbard, Robert Barker, Reg Rehal, Kalliopi-Kelli A. Vandera, Richard D. Harvey, and Anthony R. M. Coates . Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and Model Bacterial Membranes. Biochemistry 2017, 56 (8) , 1163-1174. https://doi.org/10.1021/acs.biochem.6b01135
    20. Alexandros Koutsioubas . Combined Coarse-Grained Molecular Dynamics and Neutron Reflectivity Characterization of Supported Lipid Membranes. The Journal of Physical Chemistry B 2016, 120 (44) , 11474-11483. https://doi.org/10.1021/acs.jpcb.6b05433
    21. Afroditi Maria Zaki, Alessandro Troisi, and Paola Carbone . Unexpected Like-Charge Self-Assembly of a Biguanide-Based Antimicrobial Polyelectrolyte. The Journal of Physical Chemistry Letters 2016, 7 (19) , 3730-3735. https://doi.org/10.1021/acs.jpclett.6b01631
    22. Siheng Sean You, Charles T. R. Heffern, Yeling Dai, Mati Meron, J. Michael Henderson, Wei Bu, Wenyi Xie, Ka Yee C. Lee, and Binhua Lin . Liquid Surface X-ray Studies of Gold Nanoparticle–Phospholipid Films at the Air/Water Interface. The Journal of Physical Chemistry B 2016, 120 (34) , 9132-9141. https://doi.org/10.1021/acs.jpcb.6b03734
    23. Hideki Nabika, Aya Sakamoto, Toshinori Motegi, Ryugo Tero, Daiki Yamaguchi, and Kei Unoura . Imaging Characterization of Cluster-Induced Morphological Changes of a Model Cell Membrane. The Journal of Physical Chemistry C 2016, 120 (29) , 15640-15647. https://doi.org/10.1021/acs.jpcc.5b08014
    24. Feng Wang, Dennis E. Curry, and Juewen Liu . Driving Adsorbed Gold Nanoparticle Assembly by Merging Lipid Gel/Fluid Interfaces. Langmuir 2015, 31 (49) , 13271-13274. https://doi.org/10.1021/acs.langmuir.5b03606
    25. Federica Simonelli, Davide Bochicchio, Riccardo Ferrando, and Giulia Rossi . Monolayer-Protected Anionic Au Nanoparticles Walk into Lipid Membranes Step by Step. The Journal of Physical Chemistry Letters 2015, 6 (16) , 3175-3179. https://doi.org/10.1021/acs.jpclett.5b01469
    26. Suzana Šegota, Danijela Vojta, Dania Kendziora, Ishtiaq Ahmed, Ljiljana Fruk, and Goran Baranović . Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium. The Journal of Physical Chemistry B 2015, 119 (16) , 5208-5219. https://doi.org/10.1021/acs.jpcb.5b00898
    27. Nabil A. Alhakamy, Ibrahim Elandaloussi, Saba Ghazvini, Cory J. Berkland, and Prajnaparamita Dhar . Effect of Lipid Headgroup Charge and pH on the Stability and Membrane Insertion Potential of Calcium Condensed Gene Complexes. Langmuir 2015, 31 (14) , 4232-4245. https://doi.org/10.1021/la504970n
    28. Reid C. Van Lehn and Alfredo Alexander-Katz . Membrane-Embedded Nanoparticles Induce Lipid Rearrangements Similar to Those Exhibited by Biological Membrane Proteins. The Journal of Physical Chemistry B 2014, 118 (44) , 12586-12598. https://doi.org/10.1021/jp506239p
    29. Reid C. Van Lehn and Alfredo Alexander-Katz . Fusion of Ligand-Coated Nanoparticles with Lipid Bilayers: Effect of Ligand Flexibility. The Journal of Physical Chemistry A 2014, 118 (31) , 5848-5856. https://doi.org/10.1021/jp411662c
    30. Gabriel J. Gordillo, Željka Krpetić, and Mathias Brust . Interactions of Gold Nanoparticles with a Phospholipid Monolayer Membrane on Mercury. ACS Nano 2014, 8 (6) , 6074-6080. https://doi.org/10.1021/nn501395e
    31. Elena Heikkilä, Hector Martinez-Seara, Andrey A. Gurtovenko, Matti Javanainen, Hannu Häkkinen, Ilpo Vattulainen, and Jaakko Akola . Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations. The Journal of Physical Chemistry C 2014, 118 (20) , 11131-11141. https://doi.org/10.1021/jp5024026
    32. Blanche Collin, Emily Oostveen, Olga V. Tsyusko, and Jason M. Unrine . Influence of Natural Organic Matter and Surface Charge on the Toxicity and Bioaccumulation of Functionalized Ceria Nanoparticles in Caenorhabditis elegans. Environmental Science & Technology 2014, 48 (2) , 1280-1289. https://doi.org/10.1021/es404503c
    33. Jiaqi Lin and Alfredo Alexander-Katz . Cell Membranes Open “Doors” for Cationic Nanoparticles/Biomolecules: Insights into Uptake Kinetics. ACS Nano 2013, 7 (12) , 10799-10808. https://doi.org/10.1021/nn4040553
    34. Christian A. Reardon-Lochbaum, Ravithree D. Senanayake, Rocio Amaro Marquez, Kha Trinh, Khoi Nguyen L. Hoang, Tobias Rangel Guillen, Catherine J. Murphy, Robert J. Hamers, Joel A. Pedersen, Rigoberto Hernandez. Influence of sensor composition on nanoparticle and protein interaction with supported lipid bilayers. Environmental Science: Nano 2024, 19 https://doi.org/10.1039/D3EN00406F
    35. Matej Daniel, Jitka Řezníčková, Katarína Mendová. Interactions between biomembrane embedded nanoparticles mediated by lipid bilayer. 2023, 17-36. https://doi.org/10.1016/bs.abl.2023.09.001
    36. Yuri Gerelli. Exploring interactions between lipid membranes and nanoparticles through neutron and X-ray reflectometry techniques. 2023, 37-61. https://doi.org/10.1016/bs.abl.2023.07.001
    37. Mona Connolly, David Hernández-Moreno, Estefanía Conde, Alicia Garnica, José M. Navas, Fernando Torrent, Isabel Rucandio, María L. Fernandez-Cruz. Influence of citrate and PEG coatings on the bioaccumulation of TiO2 and CeO2 nanoparticles following dietary exposure in rainbow trout. Environmental Sciences Europe 2022, 34 (1) https://doi.org/10.1186/s12302-021-00581-0
    38. Alan J. Sheridan, Katherine C. Thompson, Jonathan M. Slater. Interaction of negatively and positively capped gold nanoparticle with different lipid model membranes. Biophysical Chemistry 2022, 290 , 106896. https://doi.org/10.1016/j.bpc.2022.106896
    39. Van-Phuoc Thai, Hieu Duy Nguyen, Nobuo Saito, Kazumasa Takahashi, Toru Sasaki, Takashi Kikuchi. Precise size-control and functionalization of gold nanoparticles synthesized by plasma–liquid interactions: using carboxylic, amino, and thiol ligands. Nanoscale Advances 2022, 4 (21) , 4490-4501. https://doi.org/10.1039/D2NA00542E
    40. Tian Yuan, Ling Gao, Wenbo Zhan, Daniele Dini. Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter. Pharmaceutical Research 2022, 39 (4) , 767-781. https://doi.org/10.1007/s11095-022-03222-0
    41. Loveleen Kaur Gulati, Gurleen Kaur Gulati, Satish Kumar. Photochromic materials as a photosensitizer in reversible reactive singlet oxygen generation. Dyes and Pigments 2022, 199 , 110104. https://doi.org/10.1016/j.dyepig.2022.110104
    42. Lucrezia Caselli, Andrea Ridolfi, Gaetano Mangiapia, Pierfrancesco Maltoni, Jean-François Moulin, Debora Berti, Nina-Juliane Steinke, Emil Gustafsson, Tommy Nylander, Costanza Montis. Interaction of nanoparticles with lipid films: the role of symmetry and shape anisotropy. Physical Chemistry Chemical Physics 2022, 24 (5) , 2762-2776. https://doi.org/10.1039/D1CP03201A
    43. L. Bar, F. Perissinotto, L. Redondo-Morata, M.I. Giannotti, J. Goole, P. Losada-Pérez. Interactions of hydrophilic quantum dots with defect-free and defect containing supported lipid membranes. Colloids and Surfaces B: Biointerfaces 2022, 210 , 112239. https://doi.org/10.1016/j.colsurfb.2021.112239
    44. Anjali, Sonal Rattan, Rahul Sharma, Twinkle, Manpreet Kaur, Harjot Singh, Nihal, Mamta Sharma, Suresh Kumar, J. K. Goswamy. Reduced Graphene Oxide-Copper Nanocomposites Synthesis via Green Chemistry. 2022, 315-322. https://doi.org/10.1007/978-981-16-7691-8_31
    45. Elisa Parra-Ortiz, Martin Malmsten. Photocatalytic nanoparticles – From membrane interactions to antimicrobial and antiviral effects. Advances in Colloid and Interface Science 2022, 299 , 102526. https://doi.org/10.1016/j.cis.2021.102526
    46. Ester Canepa, Sebastian Salassi, Federica Simonelli, Riccardo Ferrando, Ranieri Rolandi, Chiara Lambruschini, Fabio Canepa, Silvia Dante, Annalisa Relini, Giulia Rossi. Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80953-3
    47. Noorah Abdulaziz Othman Alkubaisi, Nagwa Mohammed Amin Aref. Introductory Chapter: Atlas of Ultrastructure Interaction Proteome between Barley Yellow Dwarf Virus and Gold Nanoparticles. 2021https://doi.org/10.5772/intechopen.97438
    48. Xingda An, Ayan Majumder, James McNeely, Jialing Yang, Taranee Puri, Zhiliang He, Taimeng Liang, John K. Snyder, John E. Straub, Björn M. Reinhard. Interfacial hydration determines orientational and functional dimorphism of sterol-derived Raman tags in lipid-coated nanoparticles. Proceedings of the National Academy of Sciences 2021, 118 (33) https://doi.org/10.1073/pnas.2105913118
    49. Yoko Ikeda, Hideya Nakamura, Shuji Ohsaki, Satoru Watano. Direct translocation of a negatively charged nanoparticle across a negatively charged model cell membrane. Physical Chemistry Chemical Physics 2021, 23 (17) , 10591-10599. https://doi.org/10.1039/D0CP06278B
    50. I. A. Vasyukova, O. V. Zakharova, V. V. Chaika, K. S. Pikula, K. S. Golokhvast, A. A. Gusev. Toxic Effect of Metal-Based Nanomaterials on Representatives of Marine Ecosystems: A Review. Nanobiotechnology Reports 2021, 16 (2) , 138-154. https://doi.org/10.1134/S2635167621020178
    51. Anurag Chaudhury, Koushik Debnath, Wei Bu, Nikhil R. Jana, Jaydeep Kumar Basu. Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. Soft Matter 2021, 17 (7) , 1963-1974. https://doi.org/10.1039/D0SM01945C
    52. Xingda An, Shyamsunder Erramilli, Björn M. Reinhard. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. Nanoscale 2021, 13 (6) , 3374-3411. https://doi.org/10.1039/D0NR08353D
    53. Shinji Kihara, Ingo Köper, Jitendra P. Mata, Duncan J. McGillivray. Reviewing nanoplastic toxicology: It's an interface problem. Advances in Colloid and Interface Science 2021, 288 , 102337. https://doi.org/10.1016/j.cis.2020.102337
    54. Anna A. Druzina, Olga B. Zhidkova, Nadezhda V. Dudarova, Irina D. Kosenko, Ivan V. Ananyev, Sergey V. Timofeev, Vladimir I. Bregadze. Synthesis and Structure of Nido-Carboranyl Azide and Its “Click” Reactions. Molecules 2021, 26 (3) , 530. https://doi.org/10.3390/molecules26030530
    55. Hussain Shabbir, Amjad Muhammad. A Review on Gold Nanoparticles (GNPs) and their Advancement in Cancer Therapy. International Journal of Nanomaterials, Nanotechnology and Nanomedicine 2021, 10 , 019-025. https://doi.org/10.17352/2455-3492.000040
    56. Triati Dewi Kencana Wungu, Damar Rastri Adhika, Meqorry Yusfi, Atsarina Larasati Anindya, Eduardus Bimo Aksono, Raden Roro Fosa Sarassina, Christofora Hanny Wijaya, Suprijadi. Synthesis, Characterisation, and Density Functional Theory Study of Encapsulated Bioactive Components of Ginger. Pertanika Journal of Science and Technology 2021, 29 (4) https://doi.org/10.47836/pjst.29.4.22
    57. Amir Jangizehi, Friederike Schmid, Pol Besenius, Kurt Kremer, Sebastian Seiffert. Defects and defect engineering in Soft Matter. Soft Matter 2020, 16 (48) , 10809-10859. https://doi.org/10.1039/D0SM01371D
    58. Claudia Contini, James W. Hindley, Thomas J. Macdonald, Joseph D. Barritt, Oscar Ces, Nick Quirke. Size dependency of gold nanoparticles interacting with model membranes. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00377-y
    59. Costanza Montis, Lucrezia Caselli, Francesco Valle, Andrea Zendrini, Francesco Carlà, Ralf Schweins, Marco Maccarini, Paolo Bergese, Debora Berti. Shedding light on membrane-templated clustering of gold nanoparticles. Journal of Colloid and Interface Science 2020, 573 , 204-214. https://doi.org/10.1016/j.jcis.2020.03.123
    60. Liliana Cepoi, Inga Zinicovscaia, Ludmila Rudi, Tatiana Chiriac, Ion Rotari, Vitalii Turchenko, Svetlana Djur. Effects of PEG-Coated Silver and Gold Nanoparticles on Spirulina platensis Biomass during Its Growth in a Closed System. Coatings 2020, 10 (8) , 717. https://doi.org/10.3390/coatings10080717
    61. Uttam Kumar Basak, C Roobala, Jaydeep K Basu, Prabal K Maiti. Size-dependent interaction of hydrophilic/hydrophobic ligand functionalized cationic and anionic nanoparticles with lipid bilayers. Journal of Physics: Condensed Matter 2020, 32 (10) , 104003. https://doi.org/10.1088/1361-648X/ab5770
    62. Anjali, J. K. Goswamy, Mamta Sharma. Optical and surface properties of bio-synthesized silver nanoparticles. 2020, 020131. https://doi.org/10.1063/5.0005457
    63. Sara Malekkhaiat Häffner, Martin Malmsten. Interplay between amphiphilic peptides and nanoparticles for selective membrane destabilization and antimicrobial effects. Current Opinion in Colloid & Interface Science 2019, 44 , 59-71. https://doi.org/10.1016/j.cocis.2019.09.004
    64. Imen Ben Tahar, Patrick Fickers, Andrzej Dziedzic, Dariusz Płoch, Bartosz Skóra, Małgorzata Kus-Liśkiewicz. Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physico-chemical and biological characteristics. Microbial Cell Factories 2019, 18 (1) https://doi.org/10.1186/s12934-019-1254-2
    65. Marco Mendozza, Lucrezia Caselli, Annalisa Salvatore, Costanza Montis, Debora Berti. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. Soft Matter 2019, 15 (44) , 8951-8970. https://doi.org/10.1039/C9SM01601E
    66. Shivani Bharti, Gurvir Kaur, Shikshita Jain, Shikha Gupta, S. K. Tripathi. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. Journal of Drug Targeting 2019, 27 (8) , 813-829. https://doi.org/10.1080/1061186X.2018.1561888
    67. Mine Silindir‐Gunay, Elif Tugce Sarcan, Asuman Yekta Ozer. Near‐infrared imaging of diseases: A nanocarrier approach. Drug Development Research 2019, 80 (5) , 521-534. https://doi.org/10.1002/ddr.21532
    68. Sinem Simsek, Melis Ozge Alas, Belma Ozbek, Rukan Genc. Fluorescent Carbon Dots from Nerium oleander: Effects of Physical Conditions and the Extract Types. Journal of Fluorescence 2019, 29 (4) , 853-864. https://doi.org/10.1007/s10895-019-02390-4
    69. Weizhen Liu, Changzhou Weng, Jiayi Zheng, Xiaoqian Peng, Jing Zhang, Zhang Lin. Emerging investigator series: treatment and recycling of heavy metals from nanosludge. Environmental Science: Nano 2019, 6 (6) , 1657-1673. https://doi.org/10.1039/C9EN00120D
    70. Fabio Lolicato, Loic Joly, Hector Martinez‐Seara, Giovanna Fragneto, Ernesto Scoppola, Francesca Baldelli Bombelli, Ilpo Vattulainen, Jaakko Akola, Marco Maccarini. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. Small 2019, 15 (23) https://doi.org/10.1002/smll.201805046
    71. Alessandra Luchini, Giuseppe Vitiello. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00343
    72. Sebastian Salassi, Ester Canepa, Riccardo Ferrando, Giulia Rossi. Anionic nanoparticle-lipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption. RSC Advances 2019, 9 (25) , 13992-13997. https://doi.org/10.1039/C9RA02462J
    73. Alessio De Francesco, Luisa Scaccia, R. Bruce Lennox, Eleonora Guarini, Ubaldo Bafile, Peter Falus, Marco Maccarini. Model-free description of polymer-coated gold nanoparticle dynamics in aqueous solutions obtained by Bayesian analysis of neutron spin echo data. Physical Review E 2019, 99 (5) https://doi.org/10.1103/PhysRevE.99.052504
    74. Zhiqiang Shen, William Baker, Huilin Ye, Ying Li. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles. Nanoscale 2019, 11 (15) , 7371-7385. https://doi.org/10.1039/C8NR09617A
    75. Bojana Milutinović, Sanja Goč, Ninoslav Mitić, Maja Kosanović, Miroslava Janković. Surface glycans contribute to differences between seminal prostasomes from normozoospermic and oligozoospermic men. Upsala Journal of Medical Sciences 2019, 124 (2) , 111-118. https://doi.org/10.1080/03009734.2019.1592266
    76. Kwahun Lee, Yan Yu. Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids. Soft Matter 2019, 15 (11) , 2373-2380. https://doi.org/10.1039/C8SM02525H
    77. Amin Reza Zolghadr, Sedigheh Saddat Moosavi. Interactions of neutral gold nanoparticles with DPPC and POPC lipid bilayers: simulation and experiment. RSC Advances 2019, 9 (9) , 5197-5205. https://doi.org/10.1039/C8RA06777E
    78. Reid C. Van Lehn, Alfredo Alexander-Katz, . Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study. PLOS ONE 2019, 14 (1) , e0209492. https://doi.org/10.1371/journal.pone.0209492
    79. Yu Fang, Xizhen Lian, Yanyan Huang, Guo Fu, Zhifeng Xiao, Qi Wang, Beiyan Nan, Jean‐Philippe Pellois, Hong‐Cai Zhou. Investigating Subcellular Compartment Targeting Effect of Porous Coordination Cages for Enhancing Cancer Nanotherapy. Small 2018, 14 (47) https://doi.org/10.1002/smll.201802709
    80. Andressa dos Santos Corrêa, Luis Alberto Contreras, Wanderson Juvencio Keijok, Divan Henrique Fernandes Barcelos, Ana Cláudia Hertel Pereira, Rodrigo Rezende Kitagawa, Rodrigo Scherer, Daniel Cláudio de Oliveira Gomes, André Romero da Silva, Denise Coutinho Endringer, Jairo Pinto de Oliveira, Marco C.C. Guimarães. Virola oleifera-capped gold nanoparticles showing radical-scavenging activity and low cytotoxicity. Materials Science and Engineering: C 2018, 91 , 853-858. https://doi.org/10.1016/j.msec.2018.06.027
    81. Saurav Kumar, Amol P Bhondekar, Prateek Jain, Sudeshna Bagchi, Anupma Sharma, Ritesh Kumar, Sunita Mishra. Artificial lipid membrane: surface modification and effect in taste sensing. IOP Conference Series: Materials Science and Engineering 2018, 360 (1) , 012039. https://doi.org/10.1088/1757-899X/360/1/012039
    82. Alessandra Luchini, Gerardino D’Errico, Serena Leone, Zahra Vaezi, Annalisa Bortolotti, Lorenzo Stella, Giuseppe Vitiello, Luigi Paduano. Structural organization of lipid-functionalized-Au nanoparticles. Colloids and Surfaces B: Biointerfaces 2018, 168 , 2-9. https://doi.org/10.1016/j.colsurfb.2018.04.044
    83. Tiina Titma. The effect of surface charge and pH on the physiological behaviour of cobalt, copper, manganese, antimony, zinc and titanium oxide nanoparticles in vitro. Toxicology in Vitro 2018, 50 , 11-21. https://doi.org/10.1016/j.tiv.2018.02.010
    84. Federico Locardi, Ester Canepa, Silvia Villa, Ilaria Nelli, Chiara Lambruschini, Maurizio Ferretti, Fabio Canepa. Thermogravimetry and evolved gas analysis for the investigation of ligand-exchange reaction in thiol-functionalized gold nanoparticles. Journal of Analytical and Applied Pyrolysis 2018, 132 , 11-18. https://doi.org/10.1016/j.jaap.2018.03.023
    85. Nathalie Pytlik, Eike Brunner. Diatoms as potential “green” nanocomposite and nanoparticle synthesizers: challenges, prospects, and future materials applications. MRS Communications 2018, 8 (2) , 322-331. https://doi.org/10.1557/mrc.2018.34
    86. Costanza Montis, Viola Generini, Giulia Boccalini, Paolo Bergese, Daniele Bani, Debora Berti. Model lipid bilayers mimic non-specific interactions of gold nanoparticles with macrophage plasma membranes. Journal of Colloid and Interface Science 2018, 516 , 284-294. https://doi.org/10.1016/j.jcis.2018.01.064
    87. Thorsten Auth, Sabyasachi Dasgupta, Gerhard Gompper. Interaction of Particles and Pathogens with Biological Membranes. 2018, 471-498. https://doi.org/10.1007/978-3-030-00630-3_17
    88. Shirin Behyan, Olga Borozenko, Abdullah Khan, Manon Faral, Antonella Badia, Christine DeWolf. Nanoparticle-induced structural changes in lung surfactant membranes: an X-ray scattering study. Environmental Science: Nano 2018, 5 (5) , 1218-1230. https://doi.org/10.1039/C8EN00189H
    89. Marta Markiewicz, Jolanta Kumirska, Iseult Lynch, Marianne Matzke, Jan Köser, Steve Bemowsky, Dominic Docter, Roland Stauber, Dana Westmeier, Stefan Stolte. Changing environments and biomolecule coronas: consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chemistry 2018, 20 (18) , 4133-4168. https://doi.org/10.1039/C8GC01171K
    90. Yue Yu, Masahiro Nishikawa, Ming Liu, Takahiro Tei, Sunil C. Kaul, Renu Wadhawa, Minfang Zhang, Junko Takahashi, Eijiro Miyako. Self-assembled nanodiamond supraparticles for anticancer chemotherapy. Nanoscale 2018, 10 (19) , 8969-8978. https://doi.org/10.1039/C8NR00641E
    91. Paolo Pengo, Maria Şologan, Lucia Pasquato, Filomena Guida, Sabrina Pacor, Alessandro Tossi, Francesco Stellacci, Domenico Marson, Silvia Boccardo, Sabrina Pricl, Paola Posocco. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. European Biophysics Journal 2017, 46 (8) , 749-771. https://doi.org/10.1007/s00249-017-1250-6
    92. Sara Malekkhaiat Häffner, Martin Malmsten. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Advances in Colloid and Interface Science 2017, 248 , 105-128. https://doi.org/10.1016/j.cis.2017.07.029
    93. Desirè Di Silvio, Marco Maccarini, Roger Parker, Alan Mackie, Giovanna Fragneto, Francesca Baldelli Bombelli. The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. Journal of Colloid and Interface Science 2017, 504 , 741-750. https://doi.org/10.1016/j.jcis.2017.05.086
    94. Dmitry A. Nedosekin, Tariq Fahmi, Zeid A. Nima, Jacqueline Nolan, Chengzhong Cai, Mustafa Sarimollaoglu, Enkeleda Dervishi, Alexei Basnakian, Alexandru S. Biris, Vladimir P. Zharov. Photoacoustic flow cytometry for nanomaterial research. Photoacoustics 2017, 6 , 16-25. https://doi.org/10.1016/j.pacs.2017.03.002
    95. Alessandra Luchini, Yuri Gerelli, Giovanna Fragneto, Tommy Nylander, Gunnar K Pálsson, Marie-Sousai Appavou, Luigi Paduano. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Colloids and Surfaces B: Biointerfaces 2017, 151 , 76-87. https://doi.org/10.1016/j.colsurfb.2016.12.005
    96. Anupama Bhat, Lance W. Edwards, Xiao Fu, Dillon L. Badman, Samuel Huo, Albert J. Jin, Qi Lu. Effects of gold nanoparticles on lipid packing and membrane pore formation. Applied Physics Letters 2016, 109 (26) https://doi.org/10.1063/1.4972868
    97. Jacob N. Lockhart, Dain B. Beezer, David M. Stevens, Benjamin R. Spears, Eva Harth. One-pot polyglycidol nanogels via liposome master templates for dual drug delivery. Journal of Controlled Release 2016, 244 , 366-374. https://doi.org/10.1016/j.jconrel.2016.07.013
    98. Marco Maccarini, Erik B. Watkins, Barry Stidder, Jean-Pierre Alcaraz, Bruce A. Cornell, Donald K. Martin. Nanostructural determination of a lipid bilayer tethered to a gold substrate. The European Physical Journal E 2016, 39 (12) https://doi.org/10.1140/epje/i2016-16123-5
    99. Giulia Rossi, Luca Monticelli. Gold nanoparticles in model biological membranes: A computational perspective. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (10) , 2380-2389. https://doi.org/10.1016/j.bbamem.2016.04.001
    100. Radka Gromnicova, Mehmet Kaya, Ignacio A. Romero, Phil Williams, Simon Satchell, Basil Sharrack, David Male, . Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues. PLOS ONE 2016, 11 (8) , e0161610. https://doi.org/10.1371/journal.pone.0161610
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect