ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Adsorption of n-Pentane on Mesoporous Silica and Adsorbent Deformation

View Author Information
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria
§ TimberTower GmbH, Vahrenwalder Strasse 7, 30165 Hannover, Germany
Centro de Química de Évora and Departamento de Química, Universidade de Évora, Colégio Luís António Verney, 7000-671 Évora, Portugal
Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
Cite this: Langmuir 2013, 29, 27, 8601–8608
Publication Date (Web):June 12, 2013
https://doi.org/10.1021/la401513n
Copyright © 2013 American Chemical Society
Article Views
1028
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (709 KB)

Abstract

Abstract Image

Development of quantitative theory of adsorption-induced deformation is important, e.g., for enhanced coalbed methane recovery by CO2 injection. It is also promising for the interpretation of experimental measurements of elastic properties of porous solids. We study deformation of mesoporous silica by n-pentane adsorption. The shape of experimental strain isotherms for this system differs from the shape predicted by thermodynamic theory of adsorption-induced deformation. We show that this difference can be attributed to the difference of disjoining pressure isotherm, responsible for the solid–fluid interactions. We suggest the disjoining pressure isotherm suitable for n-pentane adsorption on silica and derive the parameters for this isotherm from experimental data of n-pentane adsorption on nonporous silica. We use this isotherm in the formalism of macroscopic theory of adsorption-induced deformation of mesoporous materials, thus extending this theory for the case of weak solid–fluid interactions. We employ the extended theory to calculate solvation pressure and strain isotherms for SBA-15 and MCM-41 silica and compare it with experimental data obtained from small-angle X-ray scattering. Theoretical predictions for MCM-41 are in good agreement with the experiment, but for SBA-15 they are only qualitative. This deviation suggests that the elastic modulus of SBA-15 may change during pore filling.

Cited By


This article is cited by 59 publications.

  1. Loïc Michel, Lukas Ludescher, Viviana Cristiglio, Elisabeth Charlaix, Oskar Paris, Cyril Picard. Bowtie-Shaped Deformation Isotherm of Superhydrophobic Cylindrical Mesopores. Langmuir 2022, 38 (1) , 211-220. https://doi.org/10.1021/acs.langmuir.1c02427
  2. Eike Gericke, Dirk Wallacher, Robert Wendt, Giorgia Greco, Michael Krumrey, Simone Raoux, Armin Hoell, Simone Mascotto. Direct Observation of the Xenon Physisorption Process in Mesopores by Combining In Situ Anomalous Small-Angle X-ray Scattering and X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2021, 12 (16) , 4018-4023. https://doi.org/10.1021/acs.jpclett.1c00557
  3. Sugata P. Tan, Elizabeth Barsotti, Mohammad Piri. Criticality of Confined Fluids Based on the Tensile Strength of Liquids. Industrial & Engineering Chemistry Research 2020, 59 (22) , 10673-10688. https://doi.org/10.1021/acs.iecr.0c01848
  4. Xingdong Qiu, Sugata P. Tan, Morteza Dejam, Hertanto Adidharma. Experimental Study on the Criticality of a Methane/Ethane Mixture Confined in Nanoporous Media. Langmuir 2019, 35 (36) , 11635-11642. https://doi.org/10.1021/acs.langmuir.9b01399
  5. Lukas Ludescher, Roland Morak, Christian Balzer, Anna M. Waag, Stephan Braxmeier, Florian Putz, Sebastian Busch, Gennady Y. Gor, Alexander V. Neimark, Nicola Hüsing, Gudrun Reichenauer, Oskar Paris. In Situ Small-Angle Neutron Scattering Investigation of Adsorption-Induced Deformation in Silica with Hierarchical Porosity. Langmuir 2019, 35 (35) , 11590-11600. https://doi.org/10.1021/acs.langmuir.9b01375
  6. Mingyang Chen, Benoit Coasne, Robert Guyer, Dominique Derome, Jan Carmeliet. Molecular Simulation of Sorption-Induced Deformation in Atomistic Nanoporous Materials. Langmuir 2019, 35 (24) , 7751-7758. https://doi.org/10.1021/acs.langmuir.9b00859
  7. Christian Balzer, Anna M. Waag, Florian Putz, Nicola Huesing, Oskar Paris, Gennady Y. Gor, Alexander V. Neimark, Gudrun Reichenauer. Mechanical Characterization of Hierarchical Structured Porous Silica by in Situ Dilatometry Measurements during Gas Adsorption. Langmuir 2019, 35 (8) , 2948-2956. https://doi.org/10.1021/acs.langmuir.8b03242
  8. Klaus Schappert, Rolf Pelster. Requirements to Determine the Average Pore Size of Nanoporous Media Using Ultrasound. ACS Omega 2018, 3 (12) , 18906-18910. https://doi.org/10.1021/acsomega.8b03091
  9. Klaus Schappert, Rolf Pelster. Liquid Argon in Nanopores: The Impact of Confinement on the Pressure Dependence of the Adiabatic Longitudinal Modulus. The Journal of Physical Chemistry C 2018, 122 (48) , 27425-27432. https://doi.org/10.1021/acs.jpcc.8b08136
  10. Thomas Goetsch, Patrick Zimmermann, Bettina Scharzec, Sabine Enders, Tim Zeiner. Adsorption Isotherms of Liquid Isomeric Mixtures. Industrial & Engineering Chemistry Research 2018, 57 (32) , 11210-11218. https://doi.org/10.1021/acs.iecr.8b02296
  11. Evan Lowry, Mohammad Piri. Effect of Surface Chemistry on Confined Phase Behavior in Nanoporous Media: An Experimental and Molecular Modeling Study. Langmuir 2018, 34 (32) , 9349-9358. https://doi.org/10.1021/acs.langmuir.8b00986
  12. A. L. Kolesnikov, N. Georgi, Yu A. Budkov, J. Möllmer, J. Hofmann, J. Adolphs, R. Gläser. Effects of Enhanced Flexibility and Pore Size Distribution on Adsorption-Induced Deformation of Mesoporous Materials. Langmuir 2018, 34 (25) , 7575-7584. https://doi.org/10.1021/acs.langmuir.8b00591
  13. Klaus Schappert, Rolf Pelster. Temperature Dependence of the Longitudinal Modulus of Liquid Argon in Nanopores. The Journal of Physical Chemistry C 2018, 122 (10) , 5537-5544. https://doi.org/10.1021/acs.jpcc.7b12839
  14. J. Puibasset . Adsorption-Induced Deformation of a Nanoporous Material: Influence of the Fluid–Adsorbent Interaction and Surface Freezing on the Pore-Load Modulus Measurement. The Journal of Physical Chemistry C 2017, 121 (34) , 18779-18788. https://doi.org/10.1021/acs.jpcc.7b06888
  15. Klaus Schappert, Nicolas Reiplinger, and Rolf Pelster . Correlation between the Sorption-Induced Deformation of Nanoporous Glass and the Continuous Freezing of Adsorbed Argon. Langmuir 2016, 32 (31) , 7741-7746. https://doi.org/10.1021/acs.langmuir.6b01533
  16. Christian Balzer, Stephan Braxmeier, Alexander V. Neimark, and Gudrun Reichenauer . Deformation of Microporous Carbon during Adsorption of Nitrogen, Argon, Carbon Dioxide, and Water Studied by in Situ Dilatometry. Langmuir 2015, 31 (45) , 12512-12519. https://doi.org/10.1021/acs.langmuir.5b03184
  17. Klaus Schappert and Rolf Pelster . Unexpected Sorption-Induced Deformation of Nanoporous Glass: Evidence for Spatial Rearrangement of Adsorbed Argon. Langmuir 2014, 30 (46) , 14004-14013. https://doi.org/10.1021/la502974w
  18. Gennady Y. Gor . Adsorption Stress Changes the Elasticity of Liquid Argon Confined in a Nanopore. Langmuir 2014, 30 (45) , 13564-13569. https://doi.org/10.1021/la503877q
  19. A L Kolesnikov, Yu A Budkov, G Y Gor. Models of adsorption-induced deformation: ordered materials and beyond. Journal of Physics: Condensed Matter 2022, 34 (6) , 063002. https://doi.org/10.1088/1361-648X/ac3101
  20. Y. Li, K. Leith, M.A. Perras, S. Loew. Digital image correlation–based analysis of hygroscopic expansion in Herrnholz granite. International Journal of Rock Mechanics and Mining Sciences 2021, 146 , 104859. https://doi.org/10.1016/j.ijrmms.2021.104859
  21. Lukas Ludescher, Roland Morak, Stephan Braxmeier, Christian Balzer, Florian Putz, Sebastian Busch, Nicola Hüsing, Gudrun Reichenauer, Gennady Y. Gor, Oskar Paris. Adsorption-induced deformation of hierarchical organised carbon materials with ordered, non-convex mesoporosity. Molecular Physics 2021, 119 (15-16) https://doi.org/10.1080/00268976.2021.1894362
  22. Christoph Buttersack. General Cluster Sorption Isotherm. Microporous and Mesoporous Materials 2021, 316 , 110909. https://doi.org/10.1016/j.micromeso.2021.110909
  23. Alina Emelianova, Max A. Maximov, Gennady Y. Gor. Solvation pressure in spherical mesopores: Macroscopic theory and molecular simulations. AIChE Journal 2021, 67 (3) https://doi.org/10.1002/aic.16542
  24. Takahiro Takei, Miku Takehara, Tomohiro Takabayashi, Sayaka Yanagida, Nobuhiro Kumada. Synthesis of mesoporous silica containing group 2-metal cations and their performance behavior in rare earth cation adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 610 , 125664. https://doi.org/10.1016/j.colsurfa.2020.125664
  25. A. L. Kolesnikov, Yu. A. Budkov, G. Y. Gor. Adsorption-induced deformation of mesoporous materials with corrugated cylindrical pores. The Journal of Chemical Physics 2020, 153 (19) , 194703. https://doi.org/10.1063/5.0025473
  26. Lukas Ludescher, Roland Morak, Stephan Braxmeier, Florian Putz, Nicola Hüsing, Gudrun Reichenauer, Oskar Paris. Hierarchically organized materials with ordered mesopores: adsorption isotherm and adsorption-induced deformation from small-angle scattering. Physical Chemistry Chemical Physics 2020, 22 (22) , 12713-12723. https://doi.org/10.1039/D0CP01026J
  27. Lukas Ludescher, Stephan Braxmeier, Christian Balzer, Gudrun Reichenauer, Florian Putz, Nicola Hüsing, Gennady Y. Gor, Oskar Paris. Capillary bridge formation between hexagonally ordered carbon nanorods. Adsorption 2020, 26 (4) , 563-578. https://doi.org/10.1007/s10450-020-00215-6
  28. Mingyang Chen, Benoit Coasne, Dominique Derome, Jan Carmeliet. Coupling of sorption and deformation in soft nanoporous polymers: Molecular simulation and poromechanics. Journal of the Mechanics and Physics of Solids 2020, 137 , 103830. https://doi.org/10.1016/j.jmps.2019.103830
  29. Elizabeth Barsotti, Sugata P. Tan, Mohammad Piri, Jin-Hong Chen. Capillary-condensation hysteresis in naturally-occurring nanoporous media. Fuel 2020, 263 , 116441. https://doi.org/10.1016/j.fuel.2019.116441
  30. Sudhir K. Singh, Anjali Mehta. Corresponding state behaviour of capillary condensation of confined alkanes. Molecular Simulation 2019, 45 (13) , 1014-1028. https://doi.org/10.1080/08927022.2019.1628228
  31. Kun Sang Lee, Tae Hong Kim. Specific Mechanisms in Shale Reservoirs. 2019,,, 35-67. https://doi.org/10.1016/B978-0-12-817860-7.00003-6
  32. Ana María Carvajal-Bernal, Fernando Gómez-Granados, Liliana Giraldo, Juan Carlos Moreno-Piraján. Influence of stacked structure of carbons modified on its surface on n-pentane adsorption. Heliyon 2019, 5 (1) , e01156. https://doi.org/10.1016/j.heliyon.2019.e01156
  33. Xingdong Qiu, Sugata P. Tan, Morteza Dejam, Hertanto Adidharma. Simple and accurate isochoric differential scanning calorimetry measurements: phase transitions for pure fluids and mixtures in nanopores. Physical Chemistry Chemical Physics 2019, 21 (1) , 224-231. https://doi.org/10.1039/C8CP06691D
  34. Yonghong Zeng, Lumeng Liu, Han Zhang, D.D. Do, D. Nicholson. A Monte Carlo study of adsorption-induced deformation in wedge-shaped graphitic micropores. Chemical Engineering Journal 2018, 346 , 672-681. https://doi.org/10.1016/j.cej.2018.04.076
  35. Gennady Y. Gor, Patrick Huber, Jörg Weissmüller. Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress. Physical Review Materials 2018, 2 (8) https://doi.org/10.1103/PhysRevMaterials.2.086002
  36. Gennady Y. Gor, Boris Gurevich. Gassmann Theory Applies to Nanoporous Media. Geophysical Research Letters 2018, 45 (1) , 146-155. https://doi.org/10.1002/2017GL075321
  37. Stepan Hlushak. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory. Physical Chemistry Chemical Physics 2018, 20 (2) , 872-888. https://doi.org/10.1039/C7CP06591D
  38. Rui Diao, Chunyan Fan, D.D. Do, D. Nicholson. Adsorption induced deformation in graphitic slit mesopores: A Monte Carlo simulation study. Chemical Engineering Journal 2017, 328 , 280-292. https://doi.org/10.1016/j.cej.2017.07.013
  39. J. Puibasset. Adsorption-Induced Deformation in Nanopores: Unexpected Results Obtained by Molecular Simulations. 2017,,, 547-554. https://doi.org/10.1061/9780784480779.067
  40. D. Barreda, A.M. Pérez-Mas, A. Silvestre-Albero, M.E. Casco, S. Rudić, C. Herdes, E.A. Müller, C. Blanco, R. Santamaria, J. Silvestre-Albero, F. Rodríguez-Reinoso. Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. Carbon 2017, 115 , 539-545. https://doi.org/10.1016/j.carbon.2017.01.046
  41. Oskar Paris, David Lang, Jiehua Li, Peter Schumacher, Marco Deluca, Rostislav Daniel, Michael Tkadletz, Nina Schalk, Christian Mitterer, Juraj Todt, Jozef Keckes, Zaoli Zhang, Gerhard Fritz-Popovski, Christian Ganser, Christian Teichert, Helmut Clemens. Complementary High Spatial Resolution Methods in Materials Science and Engineering . Advanced Engineering Materials 2017, 19 (4) , 1600671. https://doi.org/10.1002/adem.201600671
  42. Gennady Y. Gor, Patrick Huber, Noam Bernstein. Adsorption-induced deformation of nanoporous materials—A review. Applied Physics Reviews 2017, 4 (1) , 011303. https://doi.org/10.1063/1.4975001
  43. Klaus Schappert, Rolf Pelster. Experimental method for the determination of adsorption-induced changes of pressure and surface stress in nanopores. Journal of Physics: Condensed Matter 2017, 29 (6) , 06LT01. https://doi.org/10.1088/1361-648X/aa4e7d
  44. Carlos Cuadrado-Collados, Javier Fernández-Català, François Fauth, Yongqiang Q. Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Joaquín Silvestre-Albero. Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. J. Mater. Chem. A 2017, 5 (39) , 20938-20946. https://doi.org/10.1039/C7TA05922A
  45. Nathan A. Mahynski, Vincent K. Shen. Multicomponent adsorption in mesoporous flexible materials with flat-histogram Monte Carlo methods. The Journal of Chemical Physics 2016, 145 (17) , 174709. https://doi.org/10.1063/1.4966573
  46. Sravanthi Loganathan, Mayur Tikmani, Aakanksha Mishra, Aloke Kumar Ghoshal. Amine tethered pore-expanded MCM-41 for CO2 capture: Experimental, isotherm and kinetic modeling studies. Chemical Engineering Journal 2016, 303 , 89-99. https://doi.org/10.1016/j.cej.2016.05.106
  47. Elizabeth Barsotti, Sugata P. Tan, Soheil Saraji, Mohammad Piri, Jin-Hong Chen. A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs. Fuel 2016, 184 , 344-361. https://doi.org/10.1016/j.fuel.2016.06.123
  48. Gennady Y. Gor, Daniel W. Siderius, Vincent K. Shen, Noam Bernstein. Modulus–pressure equation for confined fluids. The Journal of Chemical Physics 2016, 145 (16) , 164505. https://doi.org/10.1063/1.4965916
  49. Gennady Y. Gor, Noam Bernstein. Revisiting Bangham's law of adsorption-induced deformation: changes of surface energy and surface stress. Physical Chemistry Chemical Physics 2016, 18 (14) , 9788-9798. https://doi.org/10.1039/C6CP00051G
  50. Christian Ganser, Gerhard Fritz-Popovski, Roland Morak, Parvin Sharifi, Benedetta Marmiroli, Barbara Sartori, Heinz Amenitsch, Thomas Griesser, Christian Teichert, Oskar Paris. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers. Beilstein Journal of Nanotechnology 2016, 7 , 637-644. https://doi.org/10.3762/bjnano.7.56
  51. Hae Sung Cho, Hexiang Deng, Keiichi Miyasaka, Zhiyue Dong, Minhyung Cho, Alexander V. Neimark, Jeung Ku Kang, Omar M. Yaghi, Osamu Terasaki. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature 2015, 527 (7579) , 503-507. https://doi.org/10.1038/nature15734
  52. Giorgio Pia, Francesco Delogu. Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling. Metals 2015, 5 (3) , 1665-1694. https://doi.org/10.3390/met5031665
  53. Gennady Y. Gor, Luca Bertinetti, Noam Bernstein, Tommy Hofmann, Peter Fratzl, Patrick Huber. Elastic response of mesoporous silicon to capillary pressures in the pores. Applied Physics Letters 2015, 106 (26) , 261901. https://doi.org/10.1063/1.4923240
  54. Patrick Huber. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics: Condensed Matter 2015, 27 (10) , 103102. https://doi.org/10.1088/0953-8984/27/10/103102
  55. A. Grosman, J. Puibasset, E. Rolley. Adsorption-induced strain of a nanoscale silicon honeycomb. EPL (Europhysics Letters) 2015, 109 (5) , 56002. https://doi.org/10.1209/0295-5075/109/56002
  56. Christian Balzer, Roland Morak, Maxim Erko, Christos Triantafillidis, Nicola Hüsing, Gudrun Reichenauer, Oskar Paris. Relationship Between Pore Structure and Sorption-Induced Deformation in Hierarchical Silica-Based Monoliths. Zeitschrift für Physikalische Chemie 2015, 229 (7-8) https://doi.org/10.1515/zpch-2014-0542
  57. Saeid Nikoosokhan, Matthieu Vandamme, Patrick Dangla. A poromechanical model for coal seams saturated with binary mixtures of CH4 and CO2. Journal of the Mechanics and Physics of Solids 2014, 71 , 97-111. https://doi.org/10.1016/j.jmps.2014.07.002
  58. Klaus Schappert, Rolf Pelster. Influence of the Laplace pressure on the elasticity of argon in nanopores. EPL (Europhysics Letters) 2014, 105 (5) , 56001. https://doi.org/10.1209/0295-5075/105/56001
  59. Matthias Thommes, Katie A. Cychosz. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 2014, 20 (2-3) , 233-250. https://doi.org/10.1007/s10450-014-9606-z

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE