ACS Publications. Most Trusted. Most Cited. Most Read
Lipid Exchange and Flip-Flop in Solid Supported Bilayers
My Activity
    Article

    Lipid Exchange and Flip-Flop in Solid Supported Bilayers
    Click to copy article linkArticle link copied!

    View Author Information
    Institut Laue-Langevin, 6, rue Jules Horowitz, 38042, Grenoble CEDEX 9, France
    Department of Chemistry, University of Naples Federico II, Corso Umberto I, 40, 80138 Naples, Italy
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2013, 29, 41, 12762–12769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la402708u
    Published September 17, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Inter- and intrabilayer transfer of phospholipid molecules was investigated by neutron reflectometry. The structure of solid supported lipid bilayers exposed to a solution of isotopically labeled vesicles was monitored as a function of temperature, time, and vesicle concentration. Lipid interbilayer exchange was shown to be the time limiting process, while lipid intrabilayer movement, the so-called flip-flop, was too fast to be visualized within the experimental acquisition time. The exchange process was characterized by an Arrhenius-like behavior and the activation energy of the process was concentration-independent. The results are discussed and compared extensively with the literature available on the topic.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The α(t,T) curves obtained on different instruments were highly reproducible. This material is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 56 publications.

    1. Fernanda S. C. Leomil, Mareike Stephan, Shreya Pramanik, Karin A. Riske, Rumiana Dimova. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration. Langmuir 2024, 40 (9) , 4719-4731. https://doi.org/10.1021/acs.langmuir.3c03370
    2. Grant J. Myres, Jay P. Kitt, Joel M. Harris. Inter-Leaflet Phospholipid Exchange Impacts the Ligand Density Available for Protein Binding at Supported Lipid Bilayers. Langmuir 2022, 38 (22) , 6967-6976. https://doi.org/10.1021/acs.langmuir.2c00526
    3. Josefine Eilsø Nielsen, Reidar Lund. Molecular Transport and Growth of Lipid Vesicles Exposed to Antimicrobial Peptides. Langmuir 2022, 38 (1) , 374-384. https://doi.org/10.1021/acs.langmuir.1c02736
    4. Pradyumn Sharma, Rajat Desikan, K. Ganapathy Ayappa. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes. The Journal of Physical Chemistry B 2021, 125 (24) , 6587-6599. https://doi.org/10.1021/acs.jpcb.1c03277
    5. Yangmingyue Liu, Elizabeth G. Kelley, Krishna C. Batchu, Lionel Porcar, Ursula Perez-Salas. Creating Asymmetric Phospholipid Vesicles via Exchange With Lipid-Coated Silica Nanoparticles. Langmuir 2020, 36 (30) , 8865-8873. https://doi.org/10.1021/acs.langmuir.0c01188
    6. Yi-Ting Lee, Lilo D. Pozzo. Contrast-Variation Time-Resolved Small-Angle Neutron Scattering Analysis of Oil-Exchange Kinetics Between Oil-in-Water Emulsions Stabilized by Anionic Surfactants. Langmuir 2019, 35 (47) , 15192-15203. https://doi.org/10.1021/acs.langmuir.9b02423
    7. Ian Bruzas, Bruce E. Brinson, Zohre Gorunmez, William Lum, Emilie Ringe, Laura Sagle. Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS Applied Materials & Interfaces 2019, 11 (36) , 33442-33451. https://doi.org/10.1021/acsami.9b09988
    8. Michael H. L. Nguyen, Mitchell DiPasquale, Brett W. Rickeard, Milka Doktorova, Frederick A. Heberle, Haden L. Scott, Francisco N. Barrera, Graham Taylor, Charles P. Collier, Christopher B. Stanley, John Katsaras, Drew Marquardt. Peptide-Induced Lipid Flip-Flop in Asymmetric Liposomes Measured by Small Angle Neutron Scattering. Langmuir 2019, 35 (36) , 11735-11744. https://doi.org/10.1021/acs.langmuir.9b01625
    9. Tania Kjellerup Lind, Maximilian W. A. Skoda, Marité Cárdenas. Formation and Characterization of Supported Lipid Bilayers Composed of Phosphatidylethanolamine and Phosphatidylglycerol by Vesicle Fusion, a Simple but Relevant Model for Bacterial Membranes. ACS Omega 2019, 4 (6) , 10687-10694. https://doi.org/10.1021/acsomega.9b01075
    10. Kabir H. Biswas, Nam-Joon Cho, Jay T. Groves. Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported Membrane Microarray. Langmuir 2018, 34 (33) , 9781-9788. https://doi.org/10.1021/acs.langmuir.8b01364
    11. Benno M. Blaschke, Philip Böhm, Simon Drieschner, Bert Nickel, Jose A. Garrido. Lipid Monolayer Formation and Lipid Exchange Monitored by a Graphene Field-Effect Transistor. Langmuir 2018, 34 (14) , 4224-4233. https://doi.org/10.1021/acs.langmuir.8b00162
    12. Samantha Micciulla, Yuri Gerelli, Richard A. Campbell, and Emanuel Schneck . A Versatile Method for the Distance-Dependent Structural Characterization of Interacting Soft Interfaces by Neutron Reflectometry. Langmuir 2018, 34 (3) , 789-800. https://doi.org/10.1021/acs.langmuir.7b02971
    13. J. P. Michel, Y. X. Wang, I. Kiesel, Y. Gerelli, and V. Rosilio . Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. Langmuir 2017, 33 (41) , 11028-11039. https://doi.org/10.1021/acs.langmuir.7b02864
    14. Drew Marquardt, Frederick A. Heberle, Tatiana Miti, Barbara Eicher, Erwin London, John Katsaras, and Georg Pabst . 1H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir 2017, 33 (15) , 3731-3741. https://doi.org/10.1021/acs.langmuir.6b04485
    15. Benny Wah, Jeffrey M. Breidigan, Joseph Adams, Piotr Horbal, Sumit Garg, Lionel Porcar, and Ursula Perez-Salas . Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study. Langmuir 2017, 33 (14) , 3384-3394. https://doi.org/10.1021/acs.langmuir.6b04013
    16. John S. Allhusen and John C. Conboy . The Ins and Outs of Lipid Flip-Flop. Accounts of Chemical Research 2017, 50 (1) , 58-65. https://doi.org/10.1021/acs.accounts.6b00435
    17. Rui Xu and Xuehao He . Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory. The Journal of Physical Chemistry B 2016, 120 (9) , 2262-2270. https://doi.org/10.1021/acs.jpcb.5b12193
    18. Andreas Truszkowski, Karina van den Broek, Hubert Kuhn, Achim Zielesny, and Matthias Epple . Mesoscopic Simulation of Phospholipid Membranes, Peptides, and Proteins with Molecular Fragment Dynamics. Journal of Chemical Information and Modeling 2015, 55 (5) , 983-997. https://doi.org/10.1021/ci5006096
    19. Yujia Jing, Angelika Kunze, and Sofia Svedhem . Phase Transition-Controlled Flip-Flop in Asymmetric Lipid Membranes. The Journal of Physical Chemistry B 2014, 118 (9) , 2389-2395. https://doi.org/10.1021/jp406502b
    20. Joshua M. Taylor, Kai H. Gerton, John C. Conboy. Does vitamin E behave like cholesterol? An examination of vitamin E’s effects on phospholipid membrane structure and dynamics through sum-frequency vibrational spectroscopy. Biophysical Journal 2025, 124 (8) , 1226-1244. https://doi.org/10.1016/j.bpj.2025.02.028
    21. Shayna L. Hilburg, Anna Sokolova, Marina Cagnes, Lilo D. Pozzo. Time-resolved small-angle neutron scattering for characterization of molecular exchange in lipid nanoparticle therapeutics. Journal of Colloid and Interface Science 2025, 677 , 387-395. https://doi.org/10.1016/j.jcis.2024.08.061
    22. Joshua M. Taylor, John C. Conboy. Issues with lipid probes in flip-flop measurements: A comparative study using sum-frequency vibrational spectroscopy and second-harmonic generation. The Journal of Chemical Physics 2024, 161 (8) https://doi.org/10.1063/5.0226075
    23. Max Wolff, Henrich Frielinghaus, Marité Cárdenas, Juan Fransisco Gonzalez, Katharina Theis-Bröhl, Olaf Softwedel, Regine von Klitzing, Georgia A. Pilkington, Mark W. Rutland, Reiner Dahint, Philipp Gutfreund. Grazing incidence neutron scattering for the study of solid–liquid interfaces. 2024, 305-323. https://doi.org/10.1016/B978-0-323-85669-0.00014-3
    24. Yuri Gerelli. Artificial asymmetric lipid membranes at planar interfaces. 2024, 1-23. https://doi.org/10.1016/bs.abl.2024.10.001
    25. Stuart R. Castillo, Michael H.L. Nguyen, Mitchell DiPasquale, Elizabeth G. Kelley, Drew Marquardt. Mitocans induce lipid flip-flop and permeabilize the membrane to signal apoptosis. Biophysical Journal 2023, 122 (11) , 2353-2366. https://doi.org/10.1016/j.bpj.2023.03.039
    26. Julio Pusterla, Ernesto Scoppola, Christian Appel, Tetiana Mukhina, Chen Shen, Gerald Brezesinski, Emanuel Schneck. Characterization of lipid bilayers adsorbed to functionalized air/water interfaces. Nanoscale 2022, 14 (40) , 15048-15059. https://doi.org/10.1039/D2NR03334H
    27. V. Forooqi Motlaq, F.A. Adlmann, V. Agmo Hernández, A. Vorobiev, M. Wolff, L.M. Bergström. Dissolution mechanism of supported phospholipid bilayer in the presence of amphiphilic drug investigated by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864 (10) , 183976. https://doi.org/10.1016/j.bbamem.2022.183976
    28. Alessandra Luchini, Giuseppe Vitiello. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics 2021, 6 (1) , 3. https://doi.org/10.3390/biomimetics6010003
    29. Ursula Perez-Salas, Sumit Garg, Yuri Gerelli, Lionel Porcar. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. 2021, 359-412. https://doi.org/10.1016/bs.ctm.2021.10.004
    30. Josefine Eilsø Nielsen, Victoria Ariel Bjørnestad, Vitaliy Pipich, Håvard Jenssen, Reidar Lund. Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. Journal of Colloid and Interface Science 2021, 582 , 793-802. https://doi.org/10.1016/j.jcis.2020.08.094
    31. Robin Delhom, Andrew Nelson, Valerie Laux, Michael Haertlein, Wolfgang Knecht, Giovanna Fragneto, Hanna P. Wacklin-Knecht. The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. Nanomaterials 2020, 10 (12) , 2439. https://doi.org/10.3390/nano10122439
    32. Lionel Porcar, Yuri Gerelli. On the lipid flip-flop and phase transition coupling. Soft Matter 2020, 16 (33) , 7696-7703. https://doi.org/10.1039/D0SM01161D
    33. Yuri Gerelli, , . Applications of neutron reflectometry in biology. EPJ Web of Conferences 2020, 236 , 04002. https://doi.org/10.1051/epjconf/202023604002
    34. Lindsey N. Miller, William T. Brewer, Julia D. Williams, Elizabeth M. Fozo, Tessa R. Calhoun. Second Harmonic Generation Spectroscopy of Membrane Probe Dynamics in Gram-Positive Bacteria. Biophysical Journal 2019, 117 (8) , 1419-1428. https://doi.org/10.1016/j.bpj.2019.09.014
    35. Sumit Garg, Yangmingyue Liu, Ursula Perez-Salas, Lionel Porcar, Paul D Butler. Anomalous inter-membrane cholesterol transport in fluid phase phosphoserine vesicles driven by headgroup ordered to disordered entropic transition. Chemistry and Physics of Lipids 2019, 223 , 104779. https://doi.org/10.1016/j.chemphyslip.2019.05.004
    36. Josefine Eilsø Nielsen, Tania Kjellerup Lind, Abdullah Lone, Yuri Gerelli, Paul Robert Hansen, Håvard Jenssen, Marité Cárdenas, Reidar Lund. A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (7) , 1355-1364. https://doi.org/10.1016/j.bbamem.2019.04.003
    37. Yuri Gerelli. Phase Transitions in a Single Supported Phospholipid Bilayer: Real-Time Determination by Neutron Reflectometry. Physical Review Letters 2019, 122 (24) https://doi.org/10.1103/PhysRevLett.122.248101
    38. Michael H.L. Nguyen, Mitchell DiPasquale, Brett W. Rickeard, Christopher B. Stanley, Elizabeth G. Kelley, Drew Marquardt. Methanol Accelerates DMPC Flip-Flop and Transfer: A SANS Study on Lipid Dynamics. Biophysical Journal 2019, 116 (5) , 755-759. https://doi.org/10.1016/j.bpj.2019.01.021
    39. Graham Taylor, Mary-Anne Nguyen, Subhadeep Koner, Eric Freeman, C. Patrick Collier, Stephen A. Sarles. Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (1) , 335-343. https://doi.org/10.1016/j.bbamem.2018.07.001
    40. Norifumi L. Yamada, Michele Sferrazza, So Fujinami. In-situ measurement of phospholipid nanodisk adhesion on a solid substrate using neutron reflectometry and atomic force microscopy. Physica B: Condensed Matter 2018, 551 , 222-226. https://doi.org/10.1016/j.physb.2017.11.066
    41. Giovanna Fragneto, Robin Delhom, Loïc Joly, Ernesto Scoppola. Neutrons and model membranes: Moving towards complexity. Current Opinion in Colloid & Interface Science 2018, 38 , 108-121. https://doi.org/10.1016/j.cocis.2018.10.003
    42. Richard A. Campbell. Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Current Opinion in Colloid & Interface Science 2018, 37 , 49-60. https://doi.org/10.1016/j.cocis.2018.06.002
    43. Kabir H. Biswas, Chen Zhongwen, Alok Kumar Dubey, Dongmyung Oh, Jay T. Groves. Multicomponent Supported Membrane Microarray for Monitoring Spatially Resolved Cellular Signaling Reactions. Advanced Biosystems 2018, 2 (4) https://doi.org/10.1002/adbi.201800015
    44. Rafael L. Schoch, Itay Barel, Frank L. H. Brown, Gilad Haran. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking. The Journal of Chemical Physics 2018, 148 (12) https://doi.org/10.1063/1.5010341
    45. K. L. Browning, T. K. Lind, S. Maric, S. Malekkhaiat-Häffner, G. N. Fredrikson, E. Bengtsson, M. Malmsten, M. Cárdenas. Human Lipoproteins at Model Cell Membranes: Effect of Lipoprotein Class on Lipid Exchange. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07505-0
    46. Theyencheri Narayanan, Hanna Wacklin, Oleg Konovalov, Reidar Lund. Recent applications of synchrotron radiation and neutrons in the study of soft matter. Crystallography Reviews 2017, 23 (3) , 160-226. https://doi.org/10.1080/0889311X.2016.1277212
    47. Maria Maddalena Sperotto, Alberta Ferrarini. Spontaneous Lipid Flip-Flop in Membranes: A Still Unsettled Picture from Experiments and Simulations. 2017, 29-60. https://doi.org/10.1007/978-981-10-6244-5_2
    48. Zoe Fisher, Andrew Jackson, Andrey Kovalevsky, Esko Oksanen, Hanna Wacklin. Biological Structures. 2017, 1-75. https://doi.org/10.1016/B978-0-12-805324-9.00001-7
    49. Vladimir P. Zhdanov, Björn Agnarsson, Fredrik Höök. Kinetics of enzyme-mediated hydrolysis of lipid vesicles. Chemical Physics Letters 2016, 663 , 51-56. https://doi.org/10.1016/j.cplett.2016.09.018
    50. O. Eicher-Lorka, T. Charkova, A. Matijoška, Z. Kuodis, G. Urbelis, T. Penkauskas, M. Mickevičius, A. Bulovas, G. Valinčius. Cholesterol-based tethers and markers for model membranes investigation. Chemistry and Physics of Lipids 2016, 195 , 71-86. https://doi.org/10.1016/j.chemphyslip.2015.12.006
    51. Yuri Gerelli. Aurore : new software for neutron reflectivity data analysis. Journal of Applied Crystallography 2016, 49 (1) , 330-339. https://doi.org/10.1107/S1600576716000108
    52. Fang Zhao, Jenny Perez Holmberg, Zareen Abbas, Rickard Frost, Tora Sirkka, Bengt Kasemo, Martin Hassellöv, Sofia Svedhem. TiO 2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches. RSC Advances 2016, 6 (94) , 91102-91110. https://doi.org/10.1039/C6RA05693H
    53. Yujia Jing, Hana Dobšíček Trefná, Mikael Persson, Sofia Svedhem. Heat-activated liposome targeting to streptavidin-coated surfaces. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015, 1848 (6) , 1417-1423. https://doi.org/10.1016/j.bbamem.2015.02.022
    54. Michal Belička, Yuri Gerelli, Norbert Kučerka, Giovanna Fragneto. The component group structure of DPPC bilayers obtained by specular neutron reflectometry. Soft Matter 2015, 11 (31) , 6275-6283. https://doi.org/10.1039/C5SM00274E
    55. Giovanna Fragneto. Étudier la structure des membranes biologiques : l’intérêt des systèmes modèles et des neutrons. Reflets de la physique 2014, (41) , 36-40. https://doi.org/10.1051/refdp/201441036
    56. Ingo Hoffmann. Neutrons for the study of dynamics in soft matter systems. Colloid and Polymer Science 2014, 292 (9) , 2053-2069. https://doi.org/10.1007/s00396-014-3330-9

    Langmuir

    Cite this: Langmuir 2013, 29, 41, 12762–12769
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la402708u
    Published September 17, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1240

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.