ACS Publications. Most Trusted. Most Cited. Most Read
Contribution of Temperature to Deformation of Adsorbed Vesicles Studied by Nanoplasmonic Biosensing
My Activity
    Article

    Contribution of Temperature to Deformation of Adsorbed Vesicles Studied by Nanoplasmonic Biosensing
    Click to copy article linkArticle link copied!

    View Author Information
    School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
    Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
    § School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
    Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
    Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133791, Korea
    # Department of Convergence Nanoscience, College of Natural Science, Hanyang University, Seoul 133070, Korea
    Other Access Options

    Langmuir

    Cite this: Langmuir 2015, 31, 2, 771–781
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la504267g
    Published December 22, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    With increasing temperature, biological macromolecules and nanometer-sized aggregates typically undergo complex and poorly understood reconfigurations, especially in the adsorbed state. Herein, we demonstrate the strong potential of using localized surface plasmon resonance (LSPR) sensors to address challenging questions related to this topic. By employing an LSPR-based gold nanodisk array platform, we have studied the adsorption of sub-100-nm diameter 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles on titanium oxide at two temperatures, 23 and 50 °C. Inside this temperature range, DPPC lipid vesicles undergo the gel-to-fluid phase transition accompanied by membrane area expansion, while DOPC lipid vesicles remain in the fluid-phase state. To interpret the corresponding measurement results, we have derived general equations describing the effect of deformation of adsorbed vesicles on the LSPR signal. At the two temperatures, the shape of adsorbed DPPC lipid vesicles on titanium oxide remains nearly equivalent, while DOPC lipid vesicles become less deformed at higher temperature. Adsorption and rupture of DPPC lipid vesicles on silicon oxide were also studied for comparison. In contrast to the results obtained on titanium oxide, adsorbed vesicles on silicon oxide become more deformed at higher temperature. Collectively, the findings demonstrate that increasing temperature may ultimately promote, hinder, or have negligible effect on the deformation of adsorbed vesicles. The physics behind these observations is discussed, and helps to clarify the interplay of various, often hidden, factors involved in adsorption of biological macromolecules at interfaces.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 48 publications.

    1. Hyeonjin Park, Tun Naw Sut, Bo Kyeong Yoon, Vladimir P. Zhdanov, Jin Woong Kim, Nam-Joon Cho, Joshua A. Jackman. Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. The Journal of Physical Chemistry Letters 2022, 13 (6) , 1480-1488. https://doi.org/10.1021/acs.jpclett.2c00090
    2. Hyeonjin Park, Tun Naw Sut, Bo Kyeong Yoon, Vladimir P. Zhdanov, Nam-Joon Cho, Joshua A. Jackman. Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles. The Journal of Physical Chemistry Letters 2021, 12 (28) , 6722-6729. https://doi.org/10.1021/acs.jpclett.1c01510
    3. Joshua A. Jackman, Nam-Joon Cho. Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. Langmuir 2020, 36 (6) , 1387-1400. https://doi.org/10.1021/acs.langmuir.9b03706
    4. Tun Naw Sut, Joshua A. Jackman, Bo Kyeong Yoon, Soohyun Park, Kavoos Kolahdouzan, Gamaliel Junren Ma, Vladimir P. Zhdanov, Nam-Joon Cho. Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. Langmuir 2019, 35 (32) , 10658-10666. https://doi.org/10.1021/acs.langmuir.9b01644
    5. Abdul Rahim Ferhan, Barbora Špačková, Joshua A. Jackman, Gamaliel J. Ma, Tun Naw Sut, Jiří Homola, Nam-Joon Cho. Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces. Analytical Chemistry 2018, 90 (21) , 12503-12511. https://doi.org/10.1021/acs.analchem.8b02222
    6. Jae Hyeon Park, Joshua A. Jackman, Abdul Rahim Ferhan, Gamaliel Junren Ma, Bo Kyeong Yoon, Nam-Joon Cho. Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings. ACS Applied Materials & Interfaces 2018, 10 (38) , 32047-32057. https://doi.org/10.1021/acsami.8b13749
    7. Mokhtar Mapar, Silver Jõemetsa, Hudson Pace, Vladimir P. Zhdanov, Björn Agnarsson, Fredrik Höök. Spatiotemporal Kinetics of Supported Lipid Bilayer Formation on Glass via Vesicle Adsorption and Rupture. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5143-5149. https://doi.org/10.1021/acs.jpclett.8b02092
    8. Tzong-Hsien Lee, Daniel J. Hirst, Ketav Kulkarni, Mark P. Del Borgo, Marie-Isabel Aguilar. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews 2018, 118 (11) , 5392-5487. https://doi.org/10.1021/acs.chemrev.7b00729
    9. Jurriaan J. J. Gillissen, Seyed R. Tabaei, Joshua A. Jackman, and Nam-Joon Cho . Effect of Glucose on the Mobility of Membrane-Adhering Liposomes. Langmuir 2018, 34 (1) , 503-511. https://doi.org/10.1021/acs.langmuir.7b03364
    10. Joshua A. Jackman, Abdul Rahim Ferhan, Bo Kyeong Yoon, Jae Hyeon Park, Vladimir P. Zhdanov, Nam-Joon Cho. Indirect Nanoplasmonic Sensing Platform for Monitoring Temperature-Dependent Protein Adsorption. Analytical Chemistry 2017, 89 (23) , 12976-12983. https://doi.org/10.1021/acs.analchem.7b03921
    11. Abdul Rahim Ferhan, Joshua A. Jackman, and Nam-Joon Cho . Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Analytical Chemistry 2017, 89 (7) , 4301-4308. https://doi.org/10.1021/acs.analchem.7b00370
    12. Joanna Witos, Giacomo Russo, Suvi-Katriina Ruokonen, and Susanne K. Wiedmer . Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing. Langmuir 2017, 33 (4) , 1066-1076. https://doi.org/10.1021/acs.langmuir.6b04359
    13. Ferry Anggoro Ardy Nugroho, Rickard Frost, Tomasz J. Antosiewicz, Joachim Fritzsche, Elin M. Larsson Langhammer, and Christoph Langhammer . Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science. ACS Sensors 2017, 2 (1) , 119-127. https://doi.org/10.1021/acssensors.6b00612
    14. Joshua A. Jackman, Saziye Yorulmaz Avsar, Abdul Rahim Ferhan, Danlin Li, Jae Hyeon Park, Vladimir P. Zhdanov, and Nam-Joon Cho . Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance Sensor. Analytical Chemistry 2017, 89 (2) , 1102-1109. https://doi.org/10.1021/acs.analchem.6b02532
    15. Abdul Rahim Ferhan, Joshua A. Jackman, and Nam-Joon Cho . Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Analytical Chemistry 2016, 88 (24) , 12524-12531. https://doi.org/10.1021/acs.analchem.6b04303
    16. Seyed R. Tabaei, Jurriaan J. J. Gillissen, Stephan Block, Fredrik Höök, and Nam-Joon Cho . Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals Size-Dependent Conformational Changes. ACS Nano 2016, 10 (9) , 8812-8820. https://doi.org/10.1021/acsnano.6b04572
    17. Marija Dacic, Joshua A. Jackman, Saziye Yorulmaz, Vladimir P. Zhdanov, Bengt Kasemo, and Nam-Joon Cho . Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles. Langmuir 2016, 32 (25) , 6486-6495. https://doi.org/10.1021/acs.langmuir.6b00439
    18. Tao Zhu, Zhongying Jiang, Yuqiang Ma, and Yong Hu . Preservation of Supported Lipid Membrane Integrity from Thermal Disruption: Osmotic Effect. ACS Applied Materials & Interfaces 2016, 8 (9) , 5857-5866. https://doi.org/10.1021/acsami.5b12153
    19. Aleksandra Steć, Monika Targońska, Shishir Jaikishan, Rui Chen, Piotr Mucha, Grzegorz S. Czyrski, Jacek Jasiecki, Agata Płoska, Andrea Heinz, Susanne K. Wiedmer, Leszek Kalinowski, Krzysztof Waleron, Bartosz Wielgomas, Szymon Dziomba. Incorporation of doxorubicin into plant-derived nanovesicles: process monitoring and activity assessment. Drug Delivery 2025, 32 (1) https://doi.org/10.1080/10717544.2024.2439272
    20. Shishir Jaikishan, Ramila Mammadova, Rui Chen, Feby Pratiwi, Gabriella Pocsfalvi, Seppo J. Vainio, Susanne K. Wiedmer. Nanoplasmonic sensing as a rapid and sensitive methodology to investigate tolvaptan loaded plant-derived nanovesicles and liposomes. Journal of Pharmaceutical and Biomedical Analysis Open 2025, 5 , 100052. https://doi.org/10.1016/j.jpbao.2025.100052
    21. Mahendra Saini, Hemant K.S. Yadav, Priya Sen, Manish Gupta, Nidhi Chauhan. Temperature biosensors. 2025, 109-135. https://doi.org/10.1016/B978-0-443-21658-9.00011-5
    22. Shishir Jaikishan, Marine Lavainne, Susanne K. Wiedmer. Nanoplasmonic sensing for studies on liposomes and extracellular vesicles. Sensors and Actuators Reports 2024, 7 , 100192. https://doi.org/10.1016/j.snr.2024.100192
    23. Vladimir P. Zhdanov. Basics of the LSPR Sensors for Soft Matter at Interfaces. Plasmonics 2023, 18 (3) , 971-982. https://doi.org/10.1007/s11468-023-01812-1
    24. Prabha Chuphal, Soudamini Sahoo, Snigdha Thakur. Effect of Poiseuille flow on the dynamics of active vesicle. Soft Materials 2021, 19 (3) , 359-372. https://doi.org/10.1080/1539445X.2021.1937222
    25. Sivaramakrishnan Ganesan, Sophie Maricot, Jean-Francois Robillard, Etienne Okada, Mohamed-Taieb Bakouche, Laurent Hay, Jean-Pierre Vilcot. Plasmonic Layer as a Localized Temperature Control Element for Surface Plasmonic Resonance-Based Sensors. Sensors 2021, 21 (6) , 2035. https://doi.org/10.3390/s21062035
    26. Yusuke Fujino, Ryo Nakamura, Huan-Wen Han, Ichiro Yamashita, Tomohiro Shimizu, Shoso Shingubara, Takeshi Ito. Electrochemical impedance spectroscopy study of liposome adsorption and rupture on self-assembled monolayer: Effect of surface charge. Journal of Electroanalytical Chemistry 2020, 878 , 114572. https://doi.org/10.1016/j.jelechem.2020.114572
    27. Vladimir P. Zhdanov. Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer. European Biophysics Journal 2020, 49 (5) , 395-400. https://doi.org/10.1007/s00249-020-01441-0
    28. Filip Duša, Wen Chen, Joanna Witos, Antti H. Rantamäki, Alistair W.T. King, Evangelos Sklavounos, Michal Roth, Susanne K. Wiedmer. Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020, 1862 (2) , 183115. https://doi.org/10.1016/j.bbamem.2019.183115
    29. Joshua A Jackman, Abdul Rahim Ferhan, Nam-Joon Cho. Surface-Based Nanoplasmonic Sensors for Biointerfacial Science Applications. Bulletin of the Chemical Society of Japan 2019, 92 (8) , 1404-1412. https://doi.org/10.1246/bcsj.20190112
    30. Prabha Chuphal, Varun P, Snigdha Thakur. Dynamics of diffusiophoretic vesicle under external shear flow. The Journal of Chemical Physics 2019, 151 (6) https://doi.org/10.1063/1.5112808
    31. Sarah J. Routledge, John A. Linney, Alan D. Goddard. Liposomes as models for membrane integrity. Biochemical Society Transactions 2019, 47 (3) , 919-932. https://doi.org/10.1042/BST20190123
    32. Kazem Karami, Parvaneh Bayat, Ali Reza Allafchian, Razieh Amiri, Behzad Rezaei, Douglas V. Laurents. A new glucose biosensor based on Nickel/KH550 nanocomposite deposited on the GCE: An electrochemical study. Journal of Electroanalytical Chemistry 2019, 839 , 9-15. https://doi.org/10.1016/j.jelechem.2019.03.017
    33. Wen Chen, Filip Duša, Joanna Witos, Suvi-Katriina Ruokonen, Susanne K. Wiedmer. Determination of the Main Phase Transition Temperature of Phospholipids by Nanoplasmonic Sensing. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-33107-5
    34. Kervin O. Evans, David L. Compton, Michael Appell. Determination of pH Effects on Phosphatidyl-Hydroxytyrosol and Phosphatidyl-Tyrosol Bilayer Behavior. Methods and Protocols 2018, 1 (4) , 41. https://doi.org/10.3390/mps1040041
    35. Abdul Rahim Ferhan, Joshua A. Jackman, Tun Naw Sut, Nam-Joon Cho. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. Sensors 2018, 18 (4) , 1283. https://doi.org/10.3390/s18041283
    36. Abdul Rahim Ferhan, Joshua A. Jackman, Jae Hyeon Park, Nam-Joon Cho, Dong-Hwan Kim. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery Reviews 2018, 125 , 48-77. https://doi.org/10.1016/j.addr.2017.12.004
    37. Satoshi Tsukuda, Shu Seki, Masaaki Omichi, Masaki Sugimoto, Akira Idesaki, Tohru Sekino, Takahisa Omata. Fabrication of Au nanoparticles on poly(vinylpyrrolidone) nanowires exhibiting reversible frequency change of localized surface plasmon resonance. AIP Advances 2018, 8 (1) https://doi.org/10.1063/1.5001553
    38. Giacomo Russo, Joanna Witos, Antti H. Rantamäki, Susanne K. Wiedmer. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (12) , 2361-2372. https://doi.org/10.1016/j.bbamem.2017.09.011
    39. Yangyang Wang, Jianhua Zhou, Jinghong Li. Construction of Plasmonic Nano‐Biosensor‐Based Devices for Point‐of‐Care Testing. Small Methods 2017, 1 (11) https://doi.org/10.1002/smtd.201700197
    40. Carmen González-Henríquez, Vanessa Villegas-Opazo, Dallits Sagredo-Oyarce, Mauricio Sarabia-Vallejos, Claudio Terraza. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques. Biosensors 2017, 7 (3) , 34. https://doi.org/10.3390/bios7030034
    41. Abdul Ferhan, Gamaliel Ma, Joshua Jackman, Tun Sut, Jae Park, Nam-Joon Cho. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. Sensors 2017, 17 (7) , 1484. https://doi.org/10.3390/s17071484
    42. Kervin O. Evans, David L. Compton. Phosphatidyl-hydroxytyrosol and phosphatidyl-tyrosol bilayer properties. Chemistry and Physics of Lipids 2017, 202 , 69-76. https://doi.org/10.1016/j.chemphyslip.2016.11.010
    43. Abdul Rahim Ferhan, Joshua A. Jackman, Nam-Joon Cho. Investigating how vesicle size influences vesicle adsorption on titanium oxide: a competition between steric packing and shape deformation. Physical Chemistry Chemical Physics 2017, 19 (3) , 2131-2139. https://doi.org/10.1039/C6CP07930J
    44. Joshua A. Jackman, Abdul Rahim Ferhan, Nam-Joon Cho. Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews 2017, 46 (12) , 3615-3660. https://doi.org/10.1039/C6CS00494F
    45. Joshua A. Jackman, Eric Linardy, Daehan Yoo, Jeongeun Seo, Wei Beng Ng, Daniel J. Klemme, Nathan J. Wittenberg, Sang‐Hyun Oh, Nam‐Joon Cho. Plasmonic Nanohole Sensor for Capturing Single Virus‐Like Particles toward Virucidal Drug Evaluation. Small 2016, 12 (9) , 1159-1166. https://doi.org/10.1002/smll.201501914
    46. Joshua A. Jackman, Barbora Špačková, Eric Linardy, Min Chul Kim, Bo Kyeong Yoon, Jiří Homola, Nam-Joon Cho. Nanoplasmonic ruler to measure lipid vesicle deformation. Chemical Communications 2016, 52 (1) , 76-79. https://doi.org/10.1039/C5CC06861D
    47. Thomas Olsson, Vladimir P. Zhdanov, Fredrik Höök. Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: Theory and experiment. Journal of Applied Physics 2015, 118 (6) https://doi.org/10.1063/1.4928083
    48. Min Chul Kim, Jurriaan J. J. Gillissen, Seyed R. Tabaei, Vladimir P. Zhdanov, Nam-Joon Cho. Spatiotemporal dynamics of solvent-assisted lipid bilayer formation. Physical Chemistry Chemical Physics 2015, 17 (46) , 31145-31151. https://doi.org/10.1039/C5CP05950J

    Langmuir

    Cite this: Langmuir 2015, 31, 2, 771–781
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la504267g
    Published December 22, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    741

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.