Surface Tension-Driven Self-Folding PolyhedraClick to copy article linkArticle link copied!
Abstract
We discuss finite element simulations and experiments involving the surface tension-driven self-folding of patterned polyhedra. Two-dimensional (2D) photolithographically patterned templates folded spontaneously when solder hinges between adjacent faces were liquefied. Minimization of interfacial free energy of the molten solder with the surrounding fluidic medium caused the solder to ball up, resulting in a torque that rotated adjacent faces and drove folding. The simulations indicate that the folding process can be precisely controlled, has fault tolerance, and can be used to fold polyhedra composed of a variety of materials, ranging in size from the millimeter scale down to the nanometer scale. Experimentally, we have folded metallic, arbitrarily patterned polyhedra ranging in size from 2 mm to 15 μm.
†
Department of Chemical and Biomolecular Engineering, Johns Hopkins University.
§
Baltimore Polytechnic Institute.
*
Corresponding author. E-mail: [email protected].
‡
Department of Chemistry, Johns Hopkins University.
Cited By
This article is cited by 138 publications.
- Zengnan Wu, Yajing Zheng, Ling Lin, Gaowa Xing, Tianze Xie, Jiaxu Lin, Xiaorui Wang, Jin-Ming Lin. Construction of Multiplexed Assays on Single Anisotropic Particles Using Microfluidics. ACS Central Science 2025, Article ASAP.
- Adam L. Bachmann, Brendan Hanrahan, Michael D. Dickey, Nathan Lazarus. Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS Applied Materials & Interfaces 2022, 14
(12)
, 14774-14782. https://doi.org/10.1021/acsami.2c01027
- Michael
F. Reynolds, Kathryn L. McGill, Maritha A. Wang, Hui Gao, Fauzia Mujid, Kibum Kang, Jiwoong Park, Marc Z. Miskin, Itai Cohen, Paul L. McEuen. Capillary Origami with Atomically Thin Membranes. Nano Letters 2019, 19
(9)
, 6221-6226. https://doi.org/10.1021/acs.nanolett.9b02281
- Chen Hao, Zhaoyu Xie, Timothy J. Atherton, Patrick T. Spicer. Arrested Coalescence of Viscoelastic Droplets: Ellipsoid Shape Effects and Reorientation. Langmuir 2018, 34
(41)
, 12379-12386. https://doi.org/10.1021/acs.langmuir.8b02136
- Zhaoxin Lao, Yanlei Hu, Chenchu Zhang, Liang Yang, Jiawen Li, Jiaru Chu, and Dong Wu . Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles. ACS Nano 2015, 9
(12)
, 12060-12069. https://doi.org/10.1021/acsnano.5b04914
- Yaoming Zhang and Leonid Ionov . Reversibly Cross-Linkable Thermoresponsive Self-Folding Hydrogel Films. Langmuir 2015, 31
(15)
, 4552-4557. https://doi.org/10.1021/acs.langmuir.5b00277
- David J. Broesch and Joelle Frechette . From Concave to Convex: Capillary Bridges in Slit Pore Geometry. Langmuir 2012, 28
(44)
, 15548-15554. https://doi.org/10.1021/la302942k
- Michaël F. L. De Volder, Sameh Tawfick, Sei Jin Park, and A. John Hart . Corrugated Carbon Nanotube Microstructures with Geometrically Tunable Compliance. ACS Nano 2011, 5
(9)
, 7310-7317. https://doi.org/10.1021/nn202156q
- Sameh Tawfick, Michael De Volder, and A. John Hart . Structurally Programmed Capillary Folding of Carbon Nanotube Assemblies. Langmuir 2011, 27
(10)
, 6389-6394. https://doi.org/10.1021/la200635g
- Jeong-Hyun Cho, Anum Azam, and David H. Gracias . Three Dimensional Nanofabrication Using Surface Forces. Langmuir 2010, 26
(21)
, 16534-16539. https://doi.org/10.1021/la1013889
- Jatinder S. Randhawa, Levi N. Kanu, Gursimranbir Singh and David H. Gracias . Importance of Surface Patterns for Defect Mitigation in Three-Dimensional Self-Assembly. Langmuir 2010, 26
(15)
, 12534-12539. https://doi.org/10.1021/la101188z
- Jeong-Hyun Cho and David H. Gracias . Self-Assembly of Lithographically Patterned Nanoparticles. Nano Letters 2009, 9
(12)
, 4049-4052. https://doi.org/10.1021/nl9022176
- Noy Bassik, Beza T. Abebe and David H. Gracias. Solvent Driven Motion of Lithographically Fabricated Gels. Langmuir 2008, 24
(21)
, 12158-12163. https://doi.org/10.1021/la801329g
- Gregory Lecrivain, Pierre Lorenz, Klaus Zimmer, Uwe Hampel. Self-folding of two-dimensional thin templates into pyramidal microstructures by a liquid drop: a numerical model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2024, 480
(2299)
https://doi.org/10.1098/rspa.2024.0277
- WenGuang Yang, WenHao Wang, XiangYu Teng, ZeZheng Qiao, HaiBo Yu. Construction and manipulation of origami-inspired tubular structures with controlled mechanical buckling for collection and transportation of microspheres based on optically induced electrokinetics. Science China Technological Sciences 2024, 67
(9)
, 2954-2964. https://doi.org/10.1007/s11431-023-2674-7
- Pedro H. O. Moreira, Alper K. Soydan, Johannes Reiprich, Nishchay A. Isaac, Bardia Aliabadian, Guilherme J. Vernizzi, Heiko O. Jacobs. Patterned Liquid Micro Rails for the Transport of Micrometer Sized Chips. Advanced Materials Technologies 2024, 2 https://doi.org/10.1002/admt.202400235
- Maks Pecnik Bambic, Nuno A. M. Araújo, Benjamin J. Walker, Duncan R. Hewitt, Qing Xiang Pei, Ran Ni, Giorgio Volpe. Optimal face-to-face coupling for fast self-folding kirigami. Soft Matter 2024, 20
(5)
, 1114-1119. https://doi.org/10.1039/D3SM01474F
- Jiahe Liao, Carmel Majidi, Metin Sitti. Liquid Metal Actuators: A Comparative Analysis of Surface Tension Controlled Actuation. Advanced Materials 2024, 36
(1)
https://doi.org/10.1002/adma.202300560
- Takuma Harada, Yuki Fukatsu, Naoya Waragai, Ryosuke Tsumura, Hiroki Shigemune. Origami-inspired corrugated stretchable sensor fabricated by inkjet printing. IEEE Sensors Letters 2024, , 1-4. https://doi.org/10.1109/LSENS.2024.3506997
- Yusuke Sato, Eiji Iwase. Self‐Folding Method Using a Linkage Mechanism for Origami Structures. Advanced Intelligent Systems 2023, 5
(6)
https://doi.org/10.1002/aisy.202200445
- Chenguang Zhang. On the bifurcation behavior of a folded notebook page. American Journal of Physics 2023, 91
(5)
, 335-339. https://doi.org/10.1119/5.0097340
- Aofei Mao, Peixun Fan, Loic Constantin, Nan Li, Xi Huang, Bai Cui, Jean-Francois Silvain, Xinwei Wang, Yong Feng Lu. Forming three-dimensional micro-objects using two-dimensional gradient printing. Applied Materials Today 2022, 28 , 101538. https://doi.org/10.1016/j.apmt.2022.101538
- Jiajie Liu, Shaowei Wang, Moli Zhao, Yue Xiao. Dynamic response of Maxwell fluid in an elastic cylindrical tube. Physics of Fluids 2022, 34
(7)
https://doi.org/10.1063/5.0100887
- Minhyuk Park, Dapeng Li, Tianyu Wang, Binbin Zhou, Yang Yang Li, Deng Zou, Paddy K. L. Chan, Yong Yang. Elasto‐Capillary Manipulation of Freestanding Inorganic Nanosheets: An Implication for Nano‐Manufacturing of Low‐Dimensional Structures. Advanced Materials Interfaces 2022, 9
(20)
https://doi.org/10.1002/admi.202200355
- Atsushi Eda, Hiroki Yasuga, Takashi Sato, Yusuke Sato, Kai Suto, Tomohiro Tachi, Eiji Iwase. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices. Micromachines 2022, 13
(6)
, 907. https://doi.org/10.3390/mi13060907
- Thanh‐An Truong, Tuan‐Khoa Nguyen, Hangbo Zhao, Nhat‐Khuong Nguyen, Toan Dinh, Yoonseok Park, Thanh Nguyen, Yusuke Yamauchi, Nam‐Trung Nguyen, Hoang‐Phuong Phan. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. Small 2022, 18
(4)
https://doi.org/10.1002/smll.202105748
- Timothy Twohig, Andrew B. Croll. Adhesion directed capillary origami. Soft Matter 2021, 17
(40)
, 9170-9180. https://doi.org/10.1039/D1SM01142A
- Govind Menon. The second law: information theory and self-assembly. Biophysical Journal 2021, 120
(19)
, 4252-4263. https://doi.org/10.1016/j.bpj.2021.06.028
- Nami Ha, Jooyoung Park, Sung Ho Park, Eunseok Seo, Jae Hong Lim, Sang Joon Lee. Domino‐like water transport on
Tillandsia
through flexible trichome wings. New Phytologist 2021, 231
(5)
, 1906-1922. https://doi.org/10.1111/nph.17336
- Minhyuk Park, Tianyu Wang, Jingyang Zhang, Quanfeng He, Qing Yu, Yong Yang. Self-Constructed micro-origami of 2D metal. Applied Materials Today 2021, 23 , 101039. https://doi.org/10.1016/j.apmt.2021.101039
- Zhaoxin Lao, Rui Sun, Dongdong Jin, Zhongguo Ren, Chen Xin, Yachao Zhang, Shaojun Jiang, Yiyuan Zhang, Li Zhang. Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters. International Journal of Extreme Manufacturing 2021, 3
(2)
, 025001. https://doi.org/10.1088/2631-7990/abe092
- Derosh George, Marc J. Madou. Origami MEMS. 2021, 197-239. https://doi.org/10.1007/978-981-15-5712-5_9
- Quentin M. P. Lahondes, Alfred Wilmot, Shuhei Miyashita. Origami-Inspired Microrobots. 2021, 1-11. https://doi.org/10.1007/978-3-642-41610-1_195-1
- Marc Z. Miskin. Atomic origami. Current Opinion in Solid State and Materials Science 2020, 24
(6)
, 100882. https://doi.org/10.1016/j.cossms.2020.100882
- Daniil Karnaushenko, Tong Kang, Vineeth K. Bandari, Feng Zhu, Oliver G. Schmidt. 3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications. Advanced Materials 2020, 32
(15)
https://doi.org/10.1002/adma.201902994
- Kam Sang Kwok, Qi Huang, Massimo Mastrangeli, David H. Gracias. Self‐Folding Using Capillary Forces. Advanced Materials Interfaces 2020, 7
(5)
https://doi.org/10.1002/admi.201901677
- Koji Ouchi, Ryuhei Uehara. Minimum Forcing Sets for Single-vertex Crease Pattern. Journal of Information Processing 2020, 28
(0)
, 800-805. https://doi.org/10.2197/ipsjjip.28.800
- Christian Becker, Daniil Karnaushenko, Tong Kang, Dmitriy D. Karnaushenko, Maryam Faghih, Alaleh Mirhajivarzaneh, Oliver G. Schmidt. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. Science Advances 2019, 5
(12)
https://doi.org/10.1126/sciadv.aay7459
- Nathan Lazarus, Gabriel L. Smith, Michael D. Dickey. Self‐Folding Metal Origami. Advanced Intelligent Systems 2019, 1
(7)
https://doi.org/10.1002/aisy.201900059
- Fei Ma, Borui Xu, Shuai Wu, Lu Wang, Biran Zhang, Gaoshan Huang, Ai Du, Bin Zhou, YongFeng Mei. Thermal-controlled releasing and assembling of functional nanomembranes through polymer pyrolysis. Nanotechnology 2019, 30
(35)
, 354001. https://doi.org/10.1088/1361-6528/ab1dcc
- Zuolin Liu, Hongbin Fang, Jian Xu. Identification of piecewise linear dynamical systems using physically-interpretable neural-fuzzy networks: Methods and applications to origami structures. Neural Networks 2019, 116 , 74-87. https://doi.org/10.1016/j.neunet.2019.04.007
- Taehoon Lee, Yaroslav I. Sobolev, Olgierd Cybulski, Bartosz A. Grzybowski. Dynamic Assembly of Small Parts in Vortex–Vortex Traps Established within a Rotating Fluid. Advanced Materials 2019, 31
(32)
https://doi.org/10.1002/adma.201902298
- Sushmita Challa, Canisha Ternival, Shafquatul Islam, Jasmin Beharic, Cindy Harnett. Transferring Microelectromechanical Devices to Breathable Fabric Carriers with Strain-Engineered Grippers. MRS Advances 2019, 4
(23)
, 1327-1334. https://doi.org/10.1557/adv.2019.6
- Daniil Karnaushenko, Tong Kang, Oliver G. Schmidt. Shapeable Material Technologies for 3D Self‐Assembly of Mesoscale Electronics. Advanced Materials Technologies 2019, 4
(4)
https://doi.org/10.1002/admt.201800692
- Suyi Li, Hongbin Fang, Sahand Sadeghi, Priyanka Bhovad, Kon‐Well Wang. Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties. Advanced Materials 2019, 31
(5)
https://doi.org/10.1002/adma.201805282
- Changhao Xu, Xiang Wu, Gaoshan Huang, Yongfeng Mei. Rolled‐up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies 2019, 4
(1)
https://doi.org/10.1002/admt.201800486
- Byoungkwon An, Shuhei Miyashita, Aaron Ong, Michael T. Tolley, Martin L. Demaine, Erik D. Demaine, Robert J. Wood, Daniela Rus. An End-to-End Approach to Self-Folding Origami Structures. IEEE Transactions on Robotics 2018, 34
(6)
, 1409-1424. https://doi.org/10.1109/TRO.2018.2862882
- Zhi Ern Teoh, Brennan T. Phillips, Kaitlyn P. Becker, Griffin Whittredge, James C. Weaver, Chuck Hoberman, David F. Gruber, Robert J. Wood. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms. Science Robotics 2018, 3
(20)
https://doi.org/10.1126/scirobotics.aat5276
- N. A. M. Araújo, R. A. da Costa, S. N. Dorogovtsev, J. F. F. Mendes. Finding the Optimal Nets for Self-Folding Kirigami. Physical Review Letters 2018, 120
(18)
https://doi.org/10.1103/PhysRevLett.120.188001
- Mingliang Zhang, Jiacen Guo, Yao Yu, Yaoting Wu, Hongseok Yun, Davit Jishkariani, Wenxiang Chen, Nicholas J. Greybush, Christian Kübel, Aaron Stein, Christopher B. Murray, Cherie R. Kagan. 3D Nanofabrication via Chemo‐Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials 2018, 30
(22)
https://doi.org/10.1002/adma.201800233
- Hongbin Fang, Shih‐Cheng A. Chu, Yutong Xia, Kon‐Well Wang. Programmable Self‐Locking Origami Mechanical Metamaterials. Advanced Materials 2018, 30
(15)
https://doi.org/10.1002/adma.201706311
- Y Iwata, S Miyashita, E Iwase. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet. Journal of Micromechanics and Microengineering 2017, 27
(12)
, 124003. https://doi.org/10.1088/1361-6439/aa94b4
- Bo Chang, Zhaofei Zhu, Mikko Koverola, Quan Zhou. Laser-Assisted Mist Capillary Self-Alignment. Micromachines 2017, 8
(12)
, 361. https://doi.org/10.3390/mi8120361
- William P. Weston-Dawkes, Aaron C. Ong, Mohamad Ramzi Abdul Majit, Francis Joseph, Michael T. Tolley. Towards rapid mechanical customization of cm-scale self-folding agents. 2017, 4312-4318. https://doi.org/10.1109/IROS.2017.8206295
- Chao Liu, Joseph Schauff, Daeha Joung, Jeong‐Hyun Cho. Remotely Controlled Microscale 3D Self‐Assembly Using Microwave Energy. Advanced Materials Technologies 2017, 2
(8)
https://doi.org/10.1002/admt.201700035
- Sehyuk Yim, Shuhei Miyashita, Daniela Rus, Sangbae Kim. Teleoperated Micromanipulation System Manufactured by Cut-and-Fold Techniques. IEEE Transactions on Robotics 2017, 33
(2)
, 456-467. https://doi.org/10.1109/TRO.2016.2636904
- Christian D. Santangelo. Extreme Mechanics: Self-Folding Origami. Annual Review of Condensed Matter Physics 2017, 8
(1)
, 165-183. https://doi.org/10.1146/annurev-conmatphys-031016-025316
- Joonwoo Jeong, Yigil Cho, Su Yeon Lee, Xingting Gong, Randall D. Kamien, Shu Yang, A. G. Yodh. Topography-guided buckling of swollen polymer bilayer films into three-dimensional structures. Soft Matter 2017, 13
(5)
, 956-962. https://doi.org/10.1039/C6SM02299E
- Prerna Dahiya, Andrew DeBenedictis, Timothy J. Atherton, Marco Caggioni, Stuart W. Prescott, Richard W. Hartel, Patrick T. Spicer. Arrested coalescence of viscoelastic droplets: triplet shape and restructuring. Soft Matter 2017, 13
(14)
, 2686-2697. https://doi.org/10.1039/C6SM02830F
- Hervé Elettro, Fritz Vollrath, Arnaud Antkowiak, Sébastien Neukirch. Drop-on-coilable-fibre systems exhibit negative stiffness events and transitions in coiling morphology. Soft Matter 2017, 13
(33)
, 5509-5517. https://doi.org/10.1039/C7SM00368D
- Hongbin Fang, Suyi Li, K. W. Wang. Self-locking degree-4 vertex origami structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 472
(2195)
, 20160682. https://doi.org/10.1098/rspa.2016.0682
- Shuhua Wei, Minglong Qin, Jing Zhang. Mechanism and application of capillary-force self-assembly micro/nanofabrication. 2016, 256-260. https://doi.org/10.1109/3M-NANO.2016.7824940
- Pedro Anacleto, Evin Gultepe, Sofia Gomes, Paulo M. Mendes, David H. Gracias. Self-folding microcube antennas for wireless power transfer in dispersive media. TECHNOLOGY 2016, 04
(02)
, 120-129. https://doi.org/10.1142/S2339547816500047
- Daeha Joung, Kriti Agarwal, Hyeong‐Ryeol Park, Chao Liu, Sang‐Hyun Oh, Jeong‐Hyun Cho. Self‐Assembled Multifunctional 3D Microdevices. Advanced Electronic Materials 2016, 2
(6)
https://doi.org/10.1002/aelm.201500459
- Liyu Wang, Mark M. Plecnik, Ronald S. Fearing. Robotic folding of 2D and 3D structures from a ribbon. 2016, 3655-3660. https://doi.org/10.1109/ICRA.2016.7487550
- Joyce Breger, Dongyeon Helen Shin, Kate Malachowski, Shivendra Pandey, David H. Gracias. Origami-Inspired 3D Assembly of Egg-Crate Shaped Metamaterials Using Stress and Surface Tension Forces. MRS Advances 2016, 1
(24)
, 1743-1748. https://doi.org/10.1557/adv.2015.27
- Shivendra Pandey, Nicholas Macias, Carmen Ciobanu, ChangKyu Yoon, Christof Teuscher, David Gracias. Assembly of a 3D Cellular Computer Using Folded E-Blocks. Micromachines 2016, 7
(5)
, 78. https://doi.org/10.3390/mi7050078
- Nicholas J. Macias, Christof Teuscher, Lisa J. K. Durbeck. Design of Introspective Circuits for Analysis of Cell-Level Dis-orientation in Self-Assembled Cellular Systems. Frontiers in Robotics and AI 2016, 3 https://doi.org/10.3389/frobt.2016.00002
- Ying Liu, Jan Genzer, Michael D. Dickey. “2D or not 2D”: Shape-programming polymer sheets. Progress in Polymer Science 2016, 52 , 79-106. https://doi.org/10.1016/j.progpolymsci.2015.09.001
- Veronica Iacovacci, Leonardo Ricotti, Arianna Menciassi, Paolo Dario. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochemical Pharmacology 2016, 100 , 12-27. https://doi.org/10.1016/j.bcp.2015.08.107
- Shivendra Pandey, ChangKyu Yoon, Zhilin Zhang, Hye Rin Kwag, Jinpyo Hong, David H. Gracias. Patterned soft-micropolyhedra by self-folding and molding. 2016, 203-206. https://doi.org/10.1109/MEMSYS.2016.7421594
- Bo Chang, Ali Shah, Quan Zhou, Robin H. A. Ras, Klas Hjort. Self-transport and self-alignment of microchips using microscopic rain. Scientific Reports 2015, 5
(1)
https://doi.org/10.1038/srep14966
- Daniil Karnaushenko, Dmitriy D. Karnaushenko, Denys Makarov, Stefan Baunack, Rudolf Schäfer, Oliver G. Schmidt. Self‐Assembled On‐Chip‐Integrated Giant Magneto‐Impedance Sensorics. Advanced Materials 2015, 27
(42)
, 6582-6589. https://doi.org/10.1002/adma.201503127
- Nader S. Shaar, George Barbastathis, Carol Livermore. Integrated Folding, Alignment, and Latching for Reconfigurable Origami Microelectromechanical Systems. Journal of Microelectromechanical Systems 2015, 24
(4)
, 1043-1051. https://doi.org/10.1109/JMEMS.2014.2379432
- Yevgeniy V. Kalinin, Shivendra Pandey, Jinpyo Hong, David H. Gracias. A Chemical Display: Generating Animations by Controlled Diffusion from Porous Voxels. Advanced Functional Materials 2015, 25
(26)
, 3998-4004. https://doi.org/10.1002/adfm.201500281
- A. Legrain, J.W. Berenschot, N.R. Tas, L. Abelmann. Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges. Microelectronic Engineering 2015, 140 , 60-66. https://doi.org/10.1016/j.mee.2015.06.004
- Michael J. Motala, Daniel Perlitz, Christopher M. Daly, Peixi Yuan, Ralph G. Nuzzo, K. Jimmy Hsia. Programming matter through strain. Extreme Mechanics Letters 2015, 3 , 8-16. https://doi.org/10.1016/j.eml.2015.04.004
- Antoine Legrain, Erwin J. W. Berenschot, Niels R. Tas, Leon Abelmann, . Elasto-Capillary Folding Using Stop-Programmable Hinges Fabricated by 3D Micro-Machining. PLOS ONE 2015, 10
(5)
, e0125891. https://doi.org/10.1371/journal.pone.0125891
- Sehyuk Yim, Sangbae Kim. Origami-inspired printable tele-micromanipulation system. 2015, 2704-2709. https://doi.org/10.1109/ICRA.2015.7139565
- Jun‐Hee Na, Arthur A. Evans, Jinhye Bae, Maria C. Chiappelli, Christian D. Santangelo, Robert J. Lang, Thomas C. Hull, Ryan C. Hayward. Programming Reversibly Self‐Folding Origami with Micropatterned Photo‐Crosslinkable Polymer Trilayers. Advanced Materials 2015, 27
(1)
, 79-85. https://doi.org/10.1002/adma.201403510
- Shivendra Pandey, Daniel Johnson, Ryan Kaplan, Joseph Klobusicky, Govind Menon, David H. Gracias, . Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom. PLoS ONE 2014, 9
(10)
, e108960. https://doi.org/10.1371/journal.pone.0108960
- F. Boulogne, H. A. Stone. Self-crumpling elastomers: Bending induced by the drying stimulus of a nanoparticle suspension. EPL (Europhysics Letters) 2014, 108
(1)
, 19001. https://doi.org/10.1209/0295-5075/108/19001
- ChangKyu Yoon, Rui Xiao, JaeHyun Park, Jaepyeong Cha, Thao D Nguyen, David H Gracias. Functional stimuli responsive hydrogel devices by self-folding. Smart Materials and Structures 2014, 23
(9)
, 094008. https://doi.org/10.1088/0964-1726/23/9/094008
- A. Legrain, T. G. Janson, J. W. Berenschot, L. Abelmann, N. R. Tas. Controllable elastocapillary folding of three-dimensional micro-objects by through-wafer filling. Journal of Applied Physics 2014, 115
(21)
https://doi.org/10.1063/1.4878460
- Dae Yeon Kim, Seung Jae Yi, Kyung Chun Kim. Visualization study on the interactions between water droplet and elastic film. Journal of Visualization 2014, 17
(2)
, 89-99. https://doi.org/10.1007/s12650-014-0195-4
- Jean-Philippe Péraud, Eric Lauga. Geometry and wetting of capillary folding. Physical Review E 2014, 89
(4)
https://doi.org/10.1103/PhysRevE.89.043011
- Zhou Ye, Stephane Regnier, Metin Sitti. Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella. IEEE Transactions on Robotics 2014, 30
(1)
, 3-13. https://doi.org/10.1109/TRO.2013.2280058
- Edwin A. Peraza Hernandez, Darren J. Hartl, Ergun Akleman, Katherine Frei. Connectivity of Shape Memory Alloy-based Self-Folding Structures. 2014https://doi.org/10.2514/6.2014-1415
- Marco Caggioni, Alexandra V. Bayles, Jessica Lenis, Eric M. Furst, Patrick T. Spicer. Interfacial stability and shape change of anisotropic endoskeleton droplets. Soft Matter 2014, 10
(38)
, 7647-7652. https://doi.org/10.1039/C4SM01482K
- Daniel S. Choi, Jungrae Park, Ke Xu, Rose Kringel, John J. Choi, In Tak Jeon, Young Keun Kim. Dynamic Microcontainers as Microvacuums for Collecting Nanomaterials After Clinical Treatments. IEEE Transactions on Magnetics 2013, 49
(7)
, 3464-3467. https://doi.org/10.1109/TMAG.2013.2243906
- Leonid Ionov. Bioinspired Microorigami by Self‐Folding Polymer Films. Macromolecular Chemistry and Physics 2013, 214
(11)
, 1178-1183. https://doi.org/10.1002/macp.201200246
- Marie Pinti, Tanuja Kambham, Bowen Wang, Shaurya Prakash. Fabrication of Centimeter Long, Ultra-Low Aspect Ratio Nanochannel Networks in Borosilicate Glass Substrates. Journal of Nanotechnology in Engineering and Medicine 2013, 4
(2)
https://doi.org/10.1115/1.4025366
- Madhav Rao, John C. Lusth, Susan L. Burkett. Demonstration of electrical connectivity between self-assembled structures. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2013, 31
(3)
https://doi.org/10.1116/1.4802914
- Nathan B. Crane, Onursal Onen, Jose Carballo, Qi Ni, Rasim Guldiken. Fluidic assembly at the microscale: progress and prospects. Microfluidics and Nanofluidics 2013, 14
(3-4)
, 383-419. https://doi.org/10.1007/s10404-012-1060-1
- Xi Chen, Jie Yin. Mechanical Self-Assembly vs. Morphogenesis. 2013, 9-23. https://doi.org/10.1007/978-1-4614-4562-3_2
- Rohan Fernandes, David H. Gracias. Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews 2012, 64
(14)
, 1579-1589. https://doi.org/10.1016/j.addr.2012.02.012
- Marco Rivetti, Sébastien Neukirch. Instabilities in a drop-strip system: a simplified model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012, 468
(2141)
, 1304-1324. https://doi.org/10.1098/rspa.2011.0589
- Christina L. Randall, Evin Gultepe, David H. Gracias. Self-folding devices and materials for biomedical applications. Trends in Biotechnology 2012, 30
(3)
, 138-146. https://doi.org/10.1016/j.tibtech.2011.06.013
- Robert J. Knuesel, Sechul Park, Wei Zheng, Heiko O. Jacobs. Self-Assembly and Self-Tiling: Integrating Active Dies Across Length Scales on Flexible Substrates. Journal of Microelectromechanical Systems 2012, 21
(1)
, 85-99. https://doi.org/10.1109/JMEMS.2011.2174424
- Ying Liu, Julie K. Boyles, Jan Genzer, Michael D. Dickey. Self-folding of polymer sheets using local light absorption. Soft Matter 2012, 8
(6)
, 1764-1769. https://doi.org/10.1039/C1SM06564E
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.