ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Specific Ion Binding to Macromolecules:  Effects of Hydrophobicity and Ion Pairing

View Author Information
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flamingovo nám. 2, CZ-16610 Prague 6, Czech Republic
Cite this: Langmuir 2008, 24, 7, 3387–3391
Publication Date (Web):February 23, 2008
https://doi.org/10.1021/la7034104
Copyright © 2008 American Chemical Society

    Article Views

    1331

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (166 KB)

    Abstract

    Abstract Image

    Using molecular dynamics simulations in an explicit aqueous solvent, we examine the binding of fluoride versus iodide to a spherical macromolecule with both hydrophobic and positively charged patches. Rationalizing our observations, we divide the ion association interaction into two mechanisms:  (1) poorly solvated iodide ions are attracted to hydrophobic surface patches, while (2) the strongly solvated fluoride and to a minor extent also iodide bind via cation−anion interactions. Quantitatively, the binding affinities vary significantly with the accessibility of the charged groups as well as the surface potential; therefore, we expect the ion−macromolecule association to be modulated by the local surface characteristics of the (bio-)macromolecule. The observed cation−anion pairing preference is in excellent agreement with experimental data.

    *

     To whom correspondence should be addressed. E-mail:  mikael.lund@ uochb.cas.cz.

    Cited By

    This article is cited by 101 publications.

    1. Coralie Pasquier, Stéphane Pezennec, Antoine Bouchoux, Bernard Cabane, Valérie Lechevalier, Cécile Le Floch-Fouéré, Gilles Paboeuf, Maryvonne Pasco, Benjamin Dollet, Lay-Theng Lee, Sylvie Beaufils. Protein Transport upon Advection at the Air/Water Interface: When Charge Matters. Langmuir 2021, 37 (42) , 12278-12289. https://doi.org/10.1021/acs.langmuir.1c01591
    2. Madeleine R. Fries, Nina F. Conzelmann, Luzie Günter, Olga Matsarskaia, Maximilian W. A. Skoda, Robert M. J. Jacobs, Fajun Zhang, Frank Schreiber. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. Langmuir 2021, 37 (1) , 139-150. https://doi.org/10.1021/acs.langmuir.0c02618
    3. Huiwen He, Zhen Liu, Si Chen, Xiaohua He, Xu Wang, Xiaosong Wang. Active Role of Water in the Hydration of Macromolecules with Ionic End Group for Hydrophobic Effect-Caused Assembly. Macromolecules 2020, 53 (16) , 6842-6849. https://doi.org/10.1021/acs.macromol.0c00683
    4. Philip Loche, Cihan Ayaz, Alexander Schlaich, Douwe Jan Bonthuis, Roland R. Netz. Breakdown of Linear Dielectric Theory for the Interaction between Hydrated Ions and Graphene. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6463-6468. https://doi.org/10.1021/acs.jpclett.8b02473
    5. Shijia Tang, Liuyan Tang, Xiaocun Lu, Huiying Liu, and Jeffrey S. Moore . Programmable Payload Release from Transient Polymer Microcapsules Triggered by a Specific Ion Coactivation Effect. Journal of the American Chemical Society 2018, 140 (1) , 94-97. https://doi.org/10.1021/jacs.7b11022
    6. Soohaeng Yoo Willow and Sotiris S. Xantheas . Molecular-Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1574-1577. https://doi.org/10.1021/acs.jpclett.7b00069
    7. Nicolas O. Johnson, Taylor P. Light, Gina MacDonald, and Yanjie Zhang . Anion–Caffeine Interactions Studied by 13C and 1H NMR and ATR–FTIR Spectroscopy. The Journal of Physical Chemistry B 2017, 121 (7) , 1649-1659. https://doi.org/10.1021/acs.jpcb.6b12150
    8. Bradley A. Rogers, Tye S. Thompson, and Yanjie Zhang . Hofmeister Anion Effects on Thermodynamics of Caffeine Partitioning between Aqueous and Cyclohexane Phases. The Journal of Physical Chemistry B 2016, 120 (49) , 12596-12603. https://doi.org/10.1021/acs.jpcb.6b07760
    9. Jordan W. Bye, Nicola J. Baxter, Andrea M. Hounslow, Robert J. Falconer, and Mike P. Williamson . Molecular Mechanism for the Hofmeister Effect Derived from NMR and DSC Measurements on Barnase. ACS Omega 2016, 1 (4) , 669-679. https://doi.org/10.1021/acsomega.6b00223
    10. Marianne Giesecke, Fredrik Hallberg, Yuan Fang, Peter Stilbs, and István Furó . Binding of Monovalent and Multivalent Metal Cations to Polyethylene Oxide in Methanol Probed by Electrophoretic and Diffusion NMR. The Journal of Physical Chemistry B 2016, 120 (39) , 10358-10366. https://doi.org/10.1021/acs.jpcb.6b08923
    11. Christoph Held, Elena N. Tsurko, Roland Neueder, Gabriele Sadowski, and Werner Kunz . Cation Effect on the Water Activity of Ternary (S)-Aminobutanedioic Acid Magnesium Salt Solutions at 298.15 and 310.15 K. Journal of Chemical & Engineering Data 2016, 61 (9) , 3190-3199. https://doi.org/10.1021/acs.jced.6b00295
    12. Ran Kou, Jian Zhang, Tao Wang, and Guangming Liu . Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes. Langmuir 2015, 31 (38) , 10461-10468. https://doi.org/10.1021/acs.langmuir.5b02698
    13. Jerome M. Fox, Kyungtae Kang, Woody Sherman, Annie Héroux, G. Madhavi Sastry, Mostafa Baghbanzadeh, Matthew R. Lockett, and George M. Whitesides . Interactions between Hofmeister Anions and the Binding Pocket of a Protein. Journal of the American Chemical Society 2015, 137 (11) , 3859-3866. https://doi.org/10.1021/jacs.5b00187
    14. D. Roberts, R. Keeling, M. Tracka, C. F. van der Walle, S. Uddin, J. Warwicker, and R. Curtis . Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Molecular Pharmaceutics 2015, 12 (1) , 179-193. https://doi.org/10.1021/mp500533c
    15. Di Cui, Shuching Ou, Eric Peters, and Sandeep Patel . Ion-Specific Induced Fluctuations and Free Energetics of Aqueous Protein Hydrophobic Interfaces: Toward Connecting to Specific-Ion Behaviors at Aqueous Liquid–Vapor Interfaces. The Journal of Physical Chemistry B 2014, 118 (17) , 4490-4504. https://doi.org/10.1021/jp4105294
    16. C. M. Gillespie, D. Asthagiri, and A. M. Lenhoff . Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase. Crystal Growth & Design 2014, 14 (1) , 46-57. https://doi.org/10.1021/cg401063b
    17. Rüdiger Scheu, Yixing Chen, Mireia Subinya, and Sylvie Roke . Stern Layer Formation Induced by Hydrophobic Interactions: A Molecular Level Study. Journal of the American Chemical Society 2013, 135 (51) , 19330-19335. https://doi.org/10.1021/ja4102858
    18. Jacob C. Lutter, Tsung-yu Wu, and Yanjie Zhang . Hydration of Cations: A Key to Understanding of Specific Cation Effects on Aggregation Behaviors of PEO-PPO-PEO Triblock Copolymers. The Journal of Physical Chemistry B 2013, 117 (35) , 10132-10141. https://doi.org/10.1021/jp405709x
    19. Ran Friedman . Electrolyte Solutions and Specific Ion Effects on Interfaces. Journal of Chemical Education 2013, 90 (8) , 1018-1023. https://doi.org/10.1021/ed4000525
    20. Yunchao Long, Tao Wang, Lvdan Liu, Guangming Liu, and Guangzhao Zhang . Ion Specificity at a Low Salt Concentration in Water–Methanol Mixtures Exemplified by a Growth of Polyelectrolyte Multilayer. Langmuir 2013, 29 (11) , 3645-3653. https://doi.org/10.1021/la400035e
    21. Nadine Schwierz, Dominik Horinek, and Roland R. Netz . Anionic and Cationic Hofmeister Effects on Hydrophobic and Hydrophilic Surfaces. Langmuir 2013, 29 (8) , 2602-2614. https://doi.org/10.1021/la303924e
    22. Pierandrea Lo Nostro and Barry W. Ninham . Hofmeister Phenomena: An Update on Ion Specificity in Biology. Chemical Reviews 2012, 112 (4) , 2286-2322. https://doi.org/10.1021/cr200271j
    23. Martin Turesson, Christophe Labbez, and André Nonat . Calcium Mediated Polyelectrolyte Adsorption on Like-Charged Surfaces. Langmuir 2011, 27 (22) , 13572-13581. https://doi.org/10.1021/la2030846
    24. Branden A. Deyerle and Yanjie Zhang . Effects of Hofmeister Anions on the Aggregation Behavior of PEO–PPO–PEO Triblock Copolymers. Langmuir 2011, 27 (15) , 9203-9210. https://doi.org/10.1021/la201463g
    25. Lu Ma, Zeeshan Ahmed, and Sanford A. Asher . Ultraviolet Resonance Raman Study of Side Chain Electrostatic Control of Poly-l-Lysine Conformation. The Journal of Physical Chemistry B 2011, 115 (14) , 4251-4258. https://doi.org/10.1021/jp2005343
    26. Andrew S. Thomas and Adrian H. Elcock . Molecular Dynamics Simulations Predict a Favorable and Unique Mode of Interaction between Lithium (Li+) Ions and Hydrophobic Molecules in Aqueous Solution. Journal of Chemical Theory and Computation 2011, 7 (4) , 818-824. https://doi.org/10.1021/ct100521v
    27. Hongbo Du, Ranil Wickramasinghe, and Xianghong Qian. Effects of Salt on the Lower Critical Solution Temperature of Poly (N-Isopropylacrylamide). The Journal of Physical Chemistry B 2010, 114 (49) , 16594-16604. https://doi.org/10.1021/jp105652c
    28. Peng Zhou, Feifei Tian, Jianwei Zou, Yanrong Ren, Xiuhong Liu, and Zhicai Shang. Do Halide Motifs Stabilize Protein Architecture?. The Journal of Physical Chemistry B 2010, 114 (47) , 15673-15686. https://doi.org/10.1021/jp105259d
    29. Philip E. Mason, Jan Heyda, Henry E. Fischer, and Pavel Jungwirth . Specific Interactions of Ammonium Functionalities in Amino Acids with Aqueous Fluoride and Iodide. The Journal of Physical Chemistry B 2010, 114 (43) , 13853-13860. https://doi.org/10.1021/jp104840g
    30. Peng Zhou, Yanrong Ren, Feifei Tian, Jianwei Zou and Zhicai Shang. Halogen-Ionic Bridges: Do They Exist in the Biomolecular World?. Journal of Chemical Theory and Computation 2010, 6 (7) , 2225-2241. https://doi.org/10.1021/ct100167w
    31. Matjaž Bončina, Jurij Lah, Jurij Reščič and Vojko Vlachy. Thermodynamics of the Lysozyme−Salt Interaction from Calorimetric Titrations. The Journal of Physical Chemistry B 2010, 114 (12) , 4313-4319. https://doi.org/10.1021/jp9071845
    32. Mikael Lund, Barbara Jagoda-Cwiklik, Clifford E. Woodward, Robert Vácha and Pavel Jungwirth . Dielectric Interpretation of Specificity of Ion Pairing in Water. The Journal of Physical Chemistry Letters 2010, 1 (1) , 300-303. https://doi.org/10.1021/jz900151f
    33. Joachim Dzubiella. Salt-Specific Stability of Short and Charged Alanine-Based α-Helices. The Journal of Physical Chemistry B 2009, 113 (52) , 16689-16694. https://doi.org/10.1021/jp9077932
    34. Fredrik Hallberg, István Furó and Peter Stilbs. Ion Pairing in Ethanol/Water Solution Probed by Electrophoretic and Diffusion NMR. Journal of the American Chemical Society 2009, 131 (39) , 13900-13901. https://doi.org/10.1021/ja904959y
    35. Jan Heyda, Tomáš Hrobárik and Pavel Jungwirth. Ion-Specific Interactions between Halides and Basic Amino Acids in Water. The Journal of Physical Chemistry A 2009, 113 (10) , 1969-1975. https://doi.org/10.1021/jp807993f
    36. Joachim Dzubiella. Salt-Specific Stability and Denaturation of a Short Salt-Bridge-Forming α-Helix. Journal of the American Chemical Society 2008, 130 (42) , 14000-14007. https://doi.org/10.1021/ja805562g
    37. Mikael Lund, Luboš Vrbka and Pavel Jungwirth . Specific Ion Binding to Nonpolar Surface Patches of Proteins. Journal of the American Chemical Society 2008, 130 (35) , 11582-11583. https://doi.org/10.1021/ja803274p
    38. Nazima Sultana, Debojit Kumar Deb, Kochi Ismail. A comprehensive assessment of interfacial and bulk properties of sodium dodecylsulfate via addition of competitive Hofmeister ions in presence of Cosolvent: A combined experimental and theoretical study. Journal of Molecular Liquids 2023, 390 , 122978. https://doi.org/10.1016/j.molliq.2023.122978
    39. Xiulan He, Andrew G. Ewing. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. ChemBioChem 2023, 24 (9) https://doi.org/10.1002/cbic.202200694
    40. Zhipeng Yu, Kai Li, Wei Wang, Hang Jin, Yuntong Ge, Fan Xiao, Hai Hao Wu, Jing Gong. Effect of ion species and ionic strength on the properties of underwater oleophobic (PDDA/PSS)4 polyelectrolyte multilayer film. Colloid and Polymer Science 2022, 300 (7) , 813-823. https://doi.org/10.1007/s00396-022-04976-0
    41. Yonghui Zeng, Yunzhe Jia, Tianying Yan, Wei Zhuang. Binary structure and dynamics of the hydrogen bonds in the hydration shells of ions. Physical Chemistry Chemical Physics 2021, 23 (19) , 11400-11410. https://doi.org/10.1039/D0CP06397E
    42. Olga A. Francisco, Hayden M. Glor, Mazdak Khajehpour. Salt Effects on Hydrophobic Solvation: Is the Observed Salt Specificity the Result of Excluded Volume Effects or Water Mediated Ion‐Hydrophobe Association?. ChemPhysChem 2020, 21 (6) , 484-493. https://doi.org/10.1002/cphc.201901000
    43. Jens Smiatek, Christian Holm. From the Atomistic to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte Solutions. 2020, 1381-1395. https://doi.org/10.1007/978-3-319-44677-6_33
    44. Josef Melcr, Jean-Philip Piquemal. Accurate Biomolecular Simulations Account for Electronic Polarization. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00143
    45. Saeed Zajforoushan Moghaddam, Esben Thormann. The Hofmeister series: Specific ion effects in aqueous polymer solutions. Journal of Colloid and Interface Science 2019, 555 , 615-635. https://doi.org/10.1016/j.jcis.2019.07.067
    46. Xiao Yang, Mingzhu Wang, Yang Yang, Beiliang Cui, Zhijun Xu, Xiaoning Yang. Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate. Physical Chemistry Chemical Physics 2019, 21 (27) , 14530-14540. https://doi.org/10.1039/C9CP00919A
    47. Jagadish Chandra Roy, Shuvo Das, Md. Nazrul Islam. Influence of Kosmotropes and Chaotropes on the Krafft Temperature and Critical Micelle Concentration of Tetradecyltrimethylammonium Bromide in Aqueous Solution. Journal of Solution Chemistry 2019, 48 (5) , 758-773. https://doi.org/10.1007/s10953-019-00879-x
    48. Ran Friedman. Specific Ion and Concentration Effects in Acetate Solutions with Na + , K + and Cs +. ChemPhysChem 2019, 20 (8) , 1006-1010. https://doi.org/10.1002/cphc.201900163
    49. Komol Kanta Sharker, Md. Nazrul Islam, Shuvo Das. Interactions of Some Hofmeister Cations with Sodium Dodecyl Sulfate in Aqueous Solution. Journal of Surfactants and Detergents 2019, 22 (2) , 249-258. https://doi.org/10.1002/jsde.12227
    50. Luise Henneberger, Kai-Uwe Goss. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals. 2019, 43-64. https://doi.org/10.1007/398_2019_37
    51. Xin-Jun Zhao, Jiu-Zhi Li, Ming-Yun Shi, Chao Ma, , , . Effect of thiocyanate anions on switching of poly (N-isopropylacrylamide) tethered to nanoparticle surface. Acta Physica Sinica 2019, 68 (21) , 214701. https://doi.org/10.7498/aps.68.20190682
    52. Jens Smiatek, Christian Holm. From the Atomistic to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte Solutions. 2018, 1-15. https://doi.org/10.1007/978-3-319-42913-7_33-1
    53. Anand Narayanan Krishnamoorthy, Christian Holm, Jens Smiatek. Specific ion effects for polyelectrolytes in aqueous and non-aqueous media: the importance of the ion solvation behavior. Soft Matter 2018, 14 (30) , 6243-6255. https://doi.org/10.1039/C8SM00600H
    54. Jun-Ho Choi, Hyung Ran Choi, Jonggu Jeon, Minhaeng Cho. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network. The Journal of Chemical Physics 2017, 147 (15) https://doi.org/10.1063/1.4993479
    55. Christopher W. Wahle, K. Michael Martini, Dawn M. Hollenbeck, Andreas Langner, David S. Ross, John F. Hamilton, George M. Thurston. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin. Physical Review E 2017, 96 (3) https://doi.org/10.1103/PhysRevE.96.032415
    56. Marek Ingr, Eva Kutálková, Josef Hrnčiřík. Hyaluronan random coils in electrolyte solutions—a molecular dynamics study. Carbohydrate Polymers 2017, 170 , 289-295. https://doi.org/10.1016/j.carbpol.2017.04.054
    57. Komol Kanta Sharker, Md. Nazrul Islam, Shuvo Das. Counterion Effect on Krafft Temperature and Related Properties of Octadecyltrimethylammonium Bromide. Journal of Surfactants and Detergents 2017, 20 (4) , 923-932. https://doi.org/10.1007/s11743-017-1957-5
    58. Tomaž Mohorič, Urban Bren. Microwave irradiation affects ion pairing in aqueous solutions of alkali halide salts. The Journal of Chemical Physics 2017, 146 (4) https://doi.org/10.1063/1.4974759
    59. Lvdan Liu, Ran Kou, Guangming Liu. Ion specificities of artificial macromolecules. Soft Matter 2017, 13 (1) , 68-80. https://doi.org/10.1039/C6SM01773H
    60. Euihyun Lee, Jun-Ho Choi, Minhaeng Cho. The effect of Hofmeister anions on water structure at protein surfaces. Physical Chemistry Chemical Physics 2017, 19 (30) , 20008-20015. https://doi.org/10.1039/C7CP02826A
    61. Junjie Shen, Simona Gagliardi, Martin R.S. McCoustra, Valeria Arrighi. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode. Chemosphere 2016, 159 , 66-71. https://doi.org/10.1016/j.chemosphere.2016.05.069
    62. Yuriy V. Kalyuzhnyi, Vojko Vlachy. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions. The Journal of Chemical Physics 2016, 144 (21) https://doi.org/10.1063/1.4953067
    63. Toktam Farjami, Ashkan Madadlou, Mohsen Labbafi. Modulating the textural characteristics of whey protein nanofibril gels with different concentrations of calcium chloride. Journal of Dairy Research 2016, 83 (1) , 109-114. https://doi.org/10.1017/S0022029915000667
    64. Plamen V. Petkov, Krassimir D. Danov, Peter A. Kralchevsky. Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?. Journal of Colloid and Interface Science 2016, 462 , 223-234. https://doi.org/10.1016/j.jcis.2015.09.075
    65. Tamas Oncsik, Anthony Desert, Gregor Trefalt, Michal Borkovec, Istvan Szilagyi. Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series. Physical Chemistry Chemical Physics 2016, 18 (10) , 7511-7520. https://doi.org/10.1039/C5CP07238G
    66. Shu-Ching Ou, Di Cui, Sandeep Patel. Molecular modeling of ions at interfaces: exploring similarities to hydrophobic solvation through the lens of induced aqueous interfacial fluctuations. Physical Chemistry Chemical Physics 2016, 18 (44) , 30357-30365. https://doi.org/10.1039/C6CP04112D
    67. Anand Narayanan Krishnamoorthy, Johannes Zeman, Christian Holm, Jens Smiatek. Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Physical Chemistry Chemical Physics 2016, 18 (45) , 31312-31322. https://doi.org/10.1039/C6CP05909K
    68. Md. Nazrul Islam, Komol Kanta Sharker, Khokan Chandra Sarker. Salt-Induced Modulation of the Krafft Temperature and Critical Micelle Concentration of Benzyldimethylhexadecylammonium Chloride. Journal of Surfactants and Detergents 2015, 18 (4) , 651-659. https://doi.org/10.1007/s11743-015-1696-4
    69. Shu-Ching Ou, Di Cui, Matthew Wezowicz, Michela Taufer, Sandeep Patel. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations. Journal of Computational Chemistry 2015, 36 (16) , 1196-1212. https://doi.org/10.1002/jcc.23906
    70. Elena N. Tsurko, Roland Neueder, Werner Kunz. Anion effect on glutamate solutions at 298.15 and 310.15K as deduced from vapor pressure measurements. Journal of Molecular Liquids 2015, 205 , 119-122. https://doi.org/10.1016/j.molliq.2015.03.010
    71. Goutam Ghosh. Counterion effects in protein nanoparticle electrostatic binding: A theoretical study. Colloids and Surfaces B: Biointerfaces 2015, 128 , 23-27. https://doi.org/10.1016/j.colsurfb.2015.02.015
    72. Md. Nazrul Islam, Khokan Chandra Sarker, Komol Kanta Sharker. Influence of Some Hofmeister Anions on the Krafft Temperature and Micelle Formation of Cetylpyridinium Bromide in Aqueous Solution. Journal of Surfactants and Detergents 2015, 18 (1) , 9-16. https://doi.org/10.1007/s11743-014-1642-x
    73. René Holm, Christian Schönbeck, Pitchayanun Somprasirt, Peter Westh, Huiling Mu. A study of salt effects on the complexation between β-cyclodextrins and bile salts based on the Hofmeister series. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2014, 80 (3-4) , 243-251. https://doi.org/10.1007/s10847-014-0383-9
    74. Junjie Shen, Andrea Schäfer. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere 2014, 117 , 679-691. https://doi.org/10.1016/j.chemosphere.2014.09.090
    75. Qiang Shao, Jinan Wang, Weiliang Zhu. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study. Chemical Physics 2014, 441 , 38-46. https://doi.org/10.1016/j.chemphys.2014.07.006
    76. Y. V. Kalyuzhnyi, V. Vlachy. Model for a mixture of macroions, counterions, and co-ions in a waterlike fluid. Physical Review E 2014, 90 (1) https://doi.org/10.1103/PhysRevE.90.012308
    77. Jordan W. Bye, Lauren Platts, Robert J. Falconer. Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments. Biotechnology Letters 2014, 36 (5) , 869-875. https://doi.org/10.1007/s10529-013-1445-6
    78. Yun Li, Jiajia Yang, Jing Jin, Xiaoli Sun, Longxing Wang, Jiping Chen. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. Journal of Chromatography A 2014, 1337 , 133-139. https://doi.org/10.1016/j.chroma.2014.02.044
    79. Epameinondas Leontidis, Maria Christoforou, Chara Georgiou, Thomas Delclos. The ion–lipid battle for hydration water and interfacial sites at soft-matter interfaces. Current Opinion in Colloid & Interface Science 2014, 19 (1) , 2-8. https://doi.org/10.1016/j.cocis.2014.02.003
    80. Lvdan Liu, Yang Shi, Chang Liu, Tao Wang, Guangming Liu, Guangzhao Zhang. Insight into the amplification by methylated urea of the anion specificity of macromolecules. Soft Matter 2014, 10 (16) , 2856. https://doi.org/10.1039/c3sm52778f
    81. Yana Berezovskaya, Massimiliano Porrini, Perdita E. Barran. The effect of salt on the conformations of three model proteins is revealed by variable temperature ion mobility mass spectrometry. International Journal of Mass Spectrometry 2013, 345-347 , 8-18. https://doi.org/10.1016/j.ijms.2013.02.005
    82. Linjie Han, Suk-Joon Hyung, Brandon T. Ruotolo. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discuss. 2013, 160 , 371-388. https://doi.org/10.1039/C2FD20099F
    83. Shahar Sukenik, Liel Sapir, Regina Gilman-Politi, Daniel Harries. Diversity in the mechanisms of cosolute action on biomolecular processes. Faraday Discuss. 2013, 160 , 225-237. https://doi.org/10.1039/C2FD20101A
    84. Hongbo Du, Xianghong Qian. The Interactions between Salt Ions and Thermo-Responsive Poly (N-Isopropylacrylamide) from Molecular Dynamics Simulations. 2012, 229-242. https://doi.org/10.1002/9781118389553.ch10
    85. Pengyu Ren, Jaehun Chun, Dennis G. Thomas, Michael J. Schnieders, Marcelo Marucho, Jiajing Zhang, Nathan A. Baker. Biomolecular electrostatics and solvation: a computational perspective. Quarterly Reviews of Biophysics 2012, 45 (4) , 427-491. https://doi.org/10.1017/S003358351200011X
    86. Kim D. Collins. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophysical Chemistry 2012, 167 , 43-59. https://doi.org/10.1016/j.bpc.2012.04.002
    87. Xiuhong Liu, Peng Zhou, Zhicai Shang. A systematical comparison of DFT methods in reproducing the interaction energies of halide series with protein moieties. Journal of Molecular Modeling 2012, 18 (5) , 2079-2098. https://doi.org/10.1007/s00894-011-1232-z
    88. Magdalena Kowacz, Abhik Mukhopadhyay, Ana Luísa Carvalho, José M. S. S. Esperança, Maria J. Romão, Luís Paulo N. Rebelo. Hofmeister effects of ionic liquids in protein crystallization: Direct and water-mediated interactions. CrystEngComm 2012, 14 (15) , 4912. https://doi.org/10.1039/c2ce25129a
    89. Xing Feng, Kai Chen, Yun-Qian Zhang, Sai-Feng Xue, Qiang-Jiang Zhu, Zhu Tao, Anthony I. Day. Stable cucurbit[5]uril MOF structures as ‘beaded’ rings built on a p-hydroxybenzoic acid template—a small molecule absorption material. CrystEngComm 2011, 13 (16) , 5049. https://doi.org/10.1039/c1ce05051f
    90. V. A. Kolombet, A. I. Frolov. Na+/K+ selectivity in the formation of ion pairs in aqueous solutions. Russian Journal of Physical Chemistry B 2010, 4 (6) , 875-882. https://doi.org/10.1134/S1990793110060011
    91. . Specific ion effects. 2010, 146-231. https://doi.org/10.1017/CBO9780511811531.008
    92. Yanjie Zhang, Paul S. Cremer. Chemistry of Hofmeister Anions and Osmolytes. Annual Review of Physical Chemistry 2010, 61 (1) , 63-83. https://doi.org/10.1146/annurev.physchem.59.032607.093635
    93. I Kalcher, D Horinek, R R Netz, J Dzubiella. Ion specific correlations in bulk and at biointerfaces. Journal of Physics: Condensed Matter 2009, 21 (42) , 424108. https://doi.org/10.1088/0953-8984/21/42/424108
    94. Robert M. Onorato, Dale E. Otten, Richard J. Saykally. Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proceedings of the National Academy of Sciences 2009, 106 (36) , 15176-15180. https://doi.org/10.1073/pnas.0904800106
    95. Yanjie Zhang, Paul S. Cremer. The inverse and direct Hofmeister series for lysozyme. Proceedings of the National Academy of Sciences 2009, 106 (36) , 15249-15253. https://doi.org/10.1073/pnas.0907616106
    96. E.R.A. Lima, M. Boström, E.C. Biscaia, F.W. Tavares, W. Kunz. Ion specific forces between charged self-assembled monolayers explained by modified DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 346 (1-3) , 11-15. https://doi.org/10.1016/j.colsurfa.2009.05.017
    97. Immanuel Kalcher, Joachim Dzubiella. Structure-thermodynamics relation of electrolyte solutions. The Journal of Chemical Physics 2009, 130 (13) https://doi.org/10.1063/1.3097530
    98. Maxim V. Fedorov, Jonathan M. Goodman, Stephan Schumm. The effect of sodium chloride on poly- l -glutamate conformation. Chem. Commun. 2009, 12 (8) , 896-898. https://doi.org/10.1039/B816055D
    99. Mikael Lund, Pavel Jungwirth. Patchy proteins, anions and the Hofmeister series. Journal of Physics: Condensed Matter 2008, 20 (49) , 494218. https://doi.org/10.1088/0953-8984/20/49/494218
    100. Xiaofei Li, S. Lettieri, N. Wentzel, J. D. Gunton. Phase diagram of a model of nanoparticles in electrolyte solutions. The Journal of Chemical Physics 2008, 129 (16) https://doi.org/10.1063/1.2999608
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect