ACS Publications. Most Trusted. Most Cited. Most Read
Engineered Nanoforce Gradients for Inhibition of Settlement (Attachment) of Swimming Algal Spores
My Activity
    Research Article

    Engineered Nanoforce Gradients for Inhibition of Settlement (Attachment) of Swimming Algal Spores
    Click to copy article linkArticle link copied!

    View Author Information
    J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Other Access Options

    Langmuir

    Cite this: Langmuir 2008, 24, 9, 4931–4937
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la703421v
    Published March 25, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Current antifouling strategies are focused on the development of environmentally friendly coatings that protect submerged surfaces from the accumulation of colonizing organisms (i.e., biofouling). One ecofriendly approach is the manipulation of the surface topography on nontoxic materials to deter settlement of the dispersal stages of fouling organisms. The identification of effective antifouling topographies typically occurs through trial-and-error rather than predictive models. We present a model and design methodology for the identification of nontoxic, antifouling surface topographies for use in the marine environment by the creation of engineered nanoforce gradients. The design and fabrication of these gradients incorporate discrete micrometer-sized features that are associated with the species-specific surface design technique of engineered topography and the concepts of mechanotransduction. The effectiveness of designed nanoforce gradients for antifouling applications was tested by evaluating the settlement behavior of zoospores of the alga Ulva linza. The surfaces with nanoforce gradients ranging from 125 to 374 nN all significantly reduced spore settlement relative to a smooth substrate, with the highest reduction, 53%, measured on the 374 nN gradient surface. These results confirm that the designed nanoforce gradients may be an effective tool and predictive model for the design of unique nontoxic, nonfouling surfaces for marine applications as well as biomedical surfaces in the physiological environment.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida.

     Department of Materials Science and Engineering, University of Florida.

    §

     School of Biosciences, University of Birmingham.

    *

     To whom correspondence should be addressed at the Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Gainesville, FL 32611-6400. Phone:  (352) 392-6281. Fax:  (352) 392-3771. E-mail:  [email protected]. Website:  http://brennan.mse.ufl.edu/.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 118 publications.

    1. Shu Tian, Yi Li, Hao Zhang, Guangming Lu, Ruiqi Li, Junyu Yu, Chao Zhao, Jing Yang, Lei Zhang. Amphiphilic Marine Antifouling Coatings Based on Zwitterion-Modified Silicone Polymers. Langmuir 2025, 41 (1) , 1037-1046. https://doi.org/10.1021/acs.langmuir.4c04332
    2. Xianxian Cui, Dengke Chen, Huawei Chen. Multistage Gradient Bioinspired Riblets for Synergistic Drag Reduction and Efficient Antifouling. ACS Omega 2023, 8 (9) , 8569-8581. https://doi.org/10.1021/acsomega.2c07729
    3. Zhiyong Zhao, Rui Yan, Michael Zharnikov. The Effect of Ultraviolet Light on Biorepulsive Hydrogel Poly(ethylene glycol) Films. ACS Applied Polymer Materials 2021, 3 (7) , 3446-3454. https://doi.org/10.1021/acsapm.1c00381
    4. Florian Koschitzki, Robin Wanka, Lennart Sobota, Julian Koc, Harrison Gardner, Kelli Z. Hunsucker, Geoffrey W. Swain, Axel Rosenhahn. Amphiphilic Dicyclopentenyl/Carboxybetaine-Containing Copolymers for Marine Fouling-Release Applications. ACS Applied Materials & Interfaces 2020, 12 (30) , 34148-34160. https://doi.org/10.1021/acsami.0c07599
    5. Vania Tanda Widyaya, Claas Müller, Ali Al-Ahmad, Karen Lienkamp. Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. Langmuir 2019, 35 (5) , 1211-1226. https://doi.org/10.1021/acs.langmuir.8b03410
    6. Feyza Dundar Arisoy, Kristopher W. Kolewe, Benjamin Homyak, Irene S. Kurtz, Jessica D. Schiffman, James J. Watkins. Bioinspired Photocatalytic Shark-Skin Surfaces with Antibacterial and Antifouling Activity via Nanoimprint Lithography. ACS Applied Materials & Interfaces 2018, 10 (23) , 20055-20063. https://doi.org/10.1021/acsami.8b05066
    7. James T. Waters, Ya Liu, Like Li, Anna C. Balazs. Optimizing Micromixer Surfaces To Deter Biofouling. ACS Applied Materials & Interfaces 2018, 10 (9) , 8374-8383. https://doi.org/10.1021/acsami.7b19845
    8. Agata Maria Brzozowska, Stan Maassen, Rubayn Goh Zhi Rong, Peter Imre Benke, Chin-Sing Lim, Ezequiel M. Marzinelli, Dominik Jańczewski, Serena Lay-Ming Teo, and G. Julius Vancso . Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS Applied Materials & Interfaces 2017, 9 (20) , 17508-17516. https://doi.org/10.1021/acsami.6b14262
    9. Alina Kirillova, Claudia Marschelke, Jens Friedrichs, Carsten Werner, and Alla Synytska . Hybrid Hairy Janus Particles as Building Blocks for Antibiofouling Surfaces. ACS Applied Materials & Interfaces 2016, 8 (47) , 32591-32603. https://doi.org/10.1021/acsami.6b10588
    10. Li Qun Xu, Dicky Pranantyo, Ying Xian Ng, Serena Lay-Ming Teo, Koon-Gee Neoh, En-Tang Kang, and Guo Dong Fu . Antifouling Coatings of Catecholamine Copolymers on Stainless Steel. Industrial & Engineering Chemistry Research 2015, 54 (22) , 5959-5967. https://doi.org/10.1021/acs.iecr.5b00171
    11. Joseph T. Decker, Julian T. Sheats, and Anthony B. Brennan . Engineered Antifouling Microtopographies: Surface Pattern Effects on Cell Distribution. Langmuir 2014, 30 (50) , 15212-15218. https://doi.org/10.1021/la504215b
    12. Li Wang, Cunguo Lin, Haiping Gao, Jiyong Zheng, Jinwei Zhang, Fengling Xu, and Yongqiang Sui . Self-Organizing Preparation and Marine Fouling Bioassays of a Honeycomb Microstructure Surface with Controllable Dimensions Based on Silicone–Acrylate Copolymers. Industrial & Engineering Chemistry Research 2014, 53 (45) , 17636-17644. https://doi.org/10.1021/ie5032343
    13. Jielin Ma, Chunfeng Ma, Yun Yang, Wentao Xu, and Guangzhao Zhang . Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Industrial & Engineering Chemistry Research 2014, 53 (32) , 12753-12759. https://doi.org/10.1021/ie502147t
    14. Agata M. Brzozowska, Fernando J. Parra-Velandia, Robert Quintana, Zhu Xiaoying, Serina S. C. Lee, Lim Chin-Sing, Dominik Jańczewski, Serena L.-M. Teo, and Julius G. Vancso . Biomimicking Micropatterned Surfaces and Their Effect on Marine Biofouling. Langmuir 2014, 30 (30) , 9165-9175. https://doi.org/10.1021/la502006s
    15. Jun Ren, Pingping Han, Houliang Wei, and Lingyun Jia . Fouling-Resistant Behavior of Silver Nanoparticle-Modified Surfaces against the Bioadhesion of Microalgae. ACS Applied Materials & Interfaces 2014, 6 (6) , 3829-3838. https://doi.org/10.1021/am500292y
    16. Xiaoying Zhu, Shifeng Guo, Dominik Jańczewski, Fernando Jose Parra Velandia, Serena Lay-Ming Teo, and G. Julius Vancso . Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention. Langmuir 2014, 30 (1) , 288-296. https://doi.org/10.1021/la404300r
    17. Rana M. Jisr, Thomas C. S. Keller, III, and Joseph B. Schlenoff . Patterned Friction and Cell Attachment on Schizophobic Polyelectrolyte Surfaces. Langmuir 2013, 29 (50) , 15579-15588. https://doi.org/10.1021/la403853z
    18. Joseph T. Decker, Chelsea M. Magin, Christopher J. Long, John A. Finlay, Maureen E. Callow, James A. Callow, Anthony B. Brennan. Engineered Antifouling Microtopographies: An Energetic Model That Predicts Cell Attachment. Langmuir 2013, 29 (42) , 13023-13030. https://doi.org/10.1021/la402952u
    19. Xiaoying Zhu, Dominik Jańczewski, Serina Siew Chen Lee, Serena Lay-Ming Teo, and G. Julius Vancso . Cross-Linked Polyelectrolyte Multilayers for Marine Antifouling Applications. ACS Applied Materials & Interfaces 2013, 5 (13) , 5961-5968. https://doi.org/10.1021/am4015549
    20. Linlin Xiao, Stephanie E. M. Thompson, Michael Röhrig, Maureen E. Callow, James A. Callow, Michael Grunze, and Axel Rosenhahn . Hot Embossed Microtopographic Gradients Reveal Morphological Cues That Guide the Settlement of Zoospores. Langmuir 2013, 29 (4) , 1093-1099. https://doi.org/10.1021/la303832u
    21. Harihara S. Sundaram, Youngjin Cho, Michael D. Dimitriou, John A. Finlay, Gemma Cone, Sam Williams, Dale Handlin, Joseph Gatto, Maureen E. Callow, James A. Callow, Edward J. Kramer, and Christopher K. Ober . Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface. ACS Applied Materials & Interfaces 2011, 3 (9) , 3366-3374. https://doi.org/10.1021/am200529u
    22. Yapei Wang, John A. Finlay, Douglas E. Betts, Timothy J. Merkel, J. Christopher Luft, Maureen E. Callow, James A. Callow, and Joseph M. DeSimone . Amphiphilic Co-networks with Moisture-Induced Surface Segregation for High-Performance Nonfouling Coatings. Langmuir 2011, 27 (17) , 10365-10369. https://doi.org/10.1021/la202427z
    23. Chelsea M. Magin, John A. Finlay, Gemma Clay, Maureen E. Callow, James A. Callow, and Anthony B. Brennan . Antifouling Performance of Cross-linked Hydrogels: Refinement of an Attachment Model. Biomacromolecules 2011, 12 (4) , 915-922. https://doi.org/10.1021/bm101229v
    24. Shuyu Hou, Huan Gu, Cassandra Smith, and Dacheng Ren . Microtopographic Patterns Affect Escherichia coli Biofilm Formation on Poly(dimethylsiloxane) Surfaces. Langmuir 2011, 27 (6) , 2686-2691. https://doi.org/10.1021/la1046194
    25. Christopher J. Long, James F. Schumacher and Anthony B. Brennan . Potential for Tunable Static and Dynamic Contact Angle Anisotropy on Gradient Microscale Patterned Topographies. Langmuir 2009, 25 (22) , 12982-12989. https://doi.org/10.1021/la901836w
    26. Claudia M. Grozea, Nikhil Gunari, John A. Finlay, Daniel Grozea, Maureen E. Callow, James A. Callow, Zheng-Hong Lu and Gilbert C. Walker . Water-Stable Diblock Polystyrene-block-poly(2-vinyl pyridine) and Diblock Polystyrene-block-poly(methyl methacrylate) Cylindrical Patterned Surfaces Inhibit Settlement of Zoospores of the Green Alga Ulva. Biomacromolecules 2009, 10 (4) , 1004-1012. https://doi.org/10.1021/bm900065b
    27. Yifan Wang, Yuting Huang, Hui Che, Biaowen Wei, Liyuan Zheng. Effect of micropatterning with nanowire-based microcavity array on bacterial enrichment and selective distribution. Arabian Journal of Chemistry 2024, 17 (12) , 106013. https://doi.org/10.1016/j.arabjc.2024.106013
    28. Priyabrata Banerjee, Rohan Hasda, Manilal Murmu. Environmentally Acceptable Antiscalants and Their Hydrolytic Stability. 2024, 102-131. https://doi.org/10.1002/9781394191208.ch5
    29. Daniel Gerchman, Pedro Henrique Acunha Ferrari, Oleg Baranov, Igor Levchenko, Antonio Shigueaki Takimi, Kateryna Bazaka. One-step rapid formation of wrinkled fractal antibiofouling coatings from environmentally friendly, waste-derived terpenes. Journal of Colloid and Interface Science 2024, 668 , 319-334. https://doi.org/10.1016/j.jcis.2024.04.049
    30. Anthony J. SLATE, Joels S. T. WILSON‐NIEUWENHUIS, Joshua H. SPALL, Kathryn A. WHITEHEAD. Role of Surfaces and Microbial Phenomenon. 2024, 75-113. https://doi.org/10.1002/9781394299188.ch5
    31. Chloe Richards, Adrian Delgado Ollero, Philip Daly, Yan Delauré, Fiona Regan. Disruption of diatom attachment on marine bioinspired antifouling materials based on Brill (Scophthalmus rhombus). Science of The Total Environment 2024, 912 , 169348. https://doi.org/10.1016/j.scitotenv.2023.169348
    32. Liang Li, Heting Hong, Jingyi Cao, Yange Yang. Progress in Marine Antifouling Coatings: Current Status and Prospects. Coatings 2023, 13 (11) , 1893. https://doi.org/10.3390/coatings13111893
    33. Michael G. Skilbeck, Richard D. Cannon, Mauro Farella, Li Mei. The effect of surface roughening of orthodontic elastomers on hydrophobicity and in vitro adherence of Streptococcus gordonii. Journal of the Mechanical Behavior of Biomedical Materials 2023, 143 , 105881. https://doi.org/10.1016/j.jmbbm.2023.105881
    34. Hongbin Li, Yongqiang Guo, Chao Liu, Yi Zhou, Xiaofeng Lin, Fei Gao. Microbial deposition and growth on polyamide reverse osmosis membrane surfaces: Mechanisms, impacts, and potential cures. Desalination 2023, 548 , 116301. https://doi.org/10.1016/j.desal.2022.116301
    35. André Armando Mendonça Alencar Junior, Jamile Euletério Delesposte, Fernando Benedicto Mainier, Lisiane Veiga Mattos. Industrial Sustainability in Architectural Paints: A Bibliometric Research. International Journal of Innovation and Technology Management 2023, 20 (01) https://doi.org/10.1142/S0219877023500037
    36. David A. Shifler. Biofouling Control. 2022, 573-592. https://doi.org/10.1002/9781119788867.ch20
    37. Li‐Chong Xu, Christopher A. Siedlecki. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. Journal of Biomedical Materials Research Part A 2022, 110 (6) , 1238-1250. https://doi.org/10.1002/jbm.a.37369
    38. Junjie Cai, Bo Liu, Wei Liu, Lina Liu, Zhe Fan, Song Lin. Impact of an engineered micro-patterned interface on chitosan/glycerol membranes for wound healing. Surfaces and Interfaces 2022, 30 , 101905. https://doi.org/10.1016/j.surfin.2022.101905
    39. Sabra Rostami, Bora Garipcan. Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces. Surface Innovations 2022, 10 (3) , 165-190. https://doi.org/10.1680/jsuin.21.00055
    40. Swati Sharma, Bikramjit Basu. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2022, 281 , 121331. https://doi.org/10.1016/j.biomaterials.2021.121331
    41. Tiwa Yimyai, Raweewan Thiramanas, Treethip Phakkeeree, Supitchaya Iamsaard, Daniel Crespy. Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Advanced Functional Materials 2021, 31 (37) https://doi.org/10.1002/adfm.202102568
    42. Partha Halder, Nazia Hossain, Biplob Kumar Pramanik, Muhammed A Bhuiyan. Engineered topographies and hydrodynamics in relation to biofouling control—a review. Environmental Science and Pollution Research 2021, 28 (30) , 40678-40692. https://doi.org/10.1007/s11356-020-10864-3
    43. Andre E Vellwock, Haimin Yao. Biomimetic and bioinspired surface topographies as a green strategy for combating biofouling: a review. Bioinspiration & Biomimetics 2021, 16 (4) , 041003. https://doi.org/10.1088/1748-3190/ac060f
    44. Milos Krsmanovic, Dipankar Biswas, Hessein Ali, Aloke Kumar, Ranajay Ghosh, Andrew K. Dickerson. Hydrodynamics and surface properties influence biofilm proliferation. Advances in Colloid and Interface Science 2021, 288 , 102336. https://doi.org/10.1016/j.cis.2020.102336
    45. Hongyue Yang, Songling Wang, Chunxi Li, Hengfan Li. Three-Dimensional Numerical Simulations and Antifouling Mechanism of Microorganisms on Microstructured Surfaces. Processes 2021, 9 (2) , 319. https://doi.org/10.3390/pr9020319
    46. Elena Günther, Florian Fuchs, Sebastian Hahnel. Complex Polymeric Materials and Their Interaction with Microorganisms. 2021, 71-84. https://doi.org/10.1007/978-3-030-67388-8_6
    47. Qi Liu, Lindsey Brookbank, Angela Ho, Jenna Coffey, Anthony B. Brennan, Christopher J. Jones, . Surface texture limits transfer of S. aureus, T4 bacteriophage, influenza B virus and human coronavirus. PLOS ONE 2020, 15 (12) , e0244518. https://doi.org/10.1371/journal.pone.0244518
    48. Jing Wang, Sudarat Lee, Ashley R. Bielinski, Kevin A. Meyer, Abhishek Dhyani, Alondra M. Ortiz‐Ortiz, Anish Tuteja, Neil P. Dasgupta. Rational Design of Transparent Nanowire Architectures with Tunable Geometries for Preventing Marine Fouling. Advanced Materials Interfaces 2020, 7 (17) https://doi.org/10.1002/admi.202000672
    49. Chloe Richards, Asma Slaimi, Noel E. O’Connor, Alan Barrett, Sandra Kwiatkowska, Fiona Regan. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. International Journal of Molecular Sciences 2020, 21 (14) , 5063. https://doi.org/10.3390/ijms21145063
    50. Yuan Sun, Yanghe Lang, Tiedong Sun, Qianqian Liu, Yusheng Pan, Zheng Qi, Na Ling, Yajie Feng, Miao Yu, Yubin Ji, Zhizhou Zhang. Antifouling potential of multi-walled carbon nanotubes-modified chlorinated rubber-based composites on the colonization dynamics of pioneer biofilm-forming eukaryotic microbes. International Biodeterioration & Biodegradation 2020, 149 , 104921. https://doi.org/10.1016/j.ibiod.2020.104921
    51. Hongyue Yang, Songling Wang. A Review on the Effect of Microstructure Surface on the Adhesion of Marine Fouling Organisms. IOP Conference Series: Materials Science and Engineering 2020, 782 (5) , 052033. https://doi.org/10.1088/1757-899X/782/5/052033
    52. Li-Chong Xu, Christopher A. Siedlecki. Bacterial cell–biomaterials interactions. 2020, 11-42. https://doi.org/10.1016/B978-0-08-102967-1.00002-5
    53. Hangil Ko, Hyun-Ha Park, Hyeokjun Byeon, Minsu Kang, Jaeha Ryu, Hyung Jin Sung, Sang Joon Lee, Hoon Eui Jeong. Undulatory topographical waves for flow-induced foulant sweeping. Science Advances 2019, 5 (11) https://doi.org/10.1126/sciadv.aax8935
    54. Sarah M. Elsayed, Vania Tanda Widyaya, Yasir Shafi, Alice Eickenscheidt, Karen Lienkamp. Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules 2019, 24 (18) , 3371. https://doi.org/10.3390/molecules24183371
    55. Megan Carve, Andrew Scardino, Jeff Shimeta. Effects of surface texture and interrelated properties on marine biofouling: a systematic review. Biofouling 2019, 35 (6) , 597-617. https://doi.org/10.1080/08927014.2019.1636036
    56. H. Pelling, J. Nzakizwanayo, S. Milo, E.L. Denham, W.M. MacFarlane, L.J. Bock, J.M. Sutton, B.V. Jones. Bacterial biofilm formation on indwelling urethral catheters. Letters in Applied Microbiology 2019, 68 (4) , 277-293. https://doi.org/10.1111/lam.13144
    57. Sriharitha Rowthu, Patrik Hoffmann. Versatile micro- and nanotexturing techniques for antibacterial applications. 2019, 27-62. https://doi.org/10.1016/B978-0-12-814401-5.00003-7
    58. Yongmei Zheng. Devices for promising applications. 2019, 247-314. https://doi.org/10.1016/B978-0-12-814843-3.00005-3
    59. Hitesh Pingle, Peng‐Yuan Wang, Helmut Thissen, Peter Kingshott. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal‐Based Topographies. Small 2018, 14 (14) https://doi.org/10.1002/smll.201703574
    60. Linlin Xiao, John A. Finlay, Michael Röhrig, Sophie Mieszkin, Matthias Worgull, Hendrik Hölscher, James A. Callow, Maureen E. Callow, Michael Grunze, Axel Rosenhahn. Topographic cues guide the attachment of diatom cells and algal zoospores. Biofouling 2018, 34 (1) , 86-97. https://doi.org/10.1080/08927014.2017.1408801
    61. Jiang Li, Zhuolin Xie, Guoqing Wang, Chunhua Ding, Hong Jiang, Peiqing Wang. Preparation and evaluation of amphiphilic polymer as fouling-release coating in marine environment. Journal of Coatings Technology and Research 2017, 14 (6) , 1237-1245. https://doi.org/10.1007/s11998-017-9935-4
    62. Sunil Kumar Boda, Bikramjit Basu. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2017, 105 (7) , 2174-2190. https://doi.org/10.1002/jbm.b.33740
    63. T. Sullivan, F. Regan. Marine diatom settlement on microtextured materials in static field trials. Journal of Materials Science 2017, 52 (10) , 5846-5856. https://doi.org/10.1007/s10853-017-0821-3
    64. Gregory G Smith, Andrew J Poole, Peter C King, Stephen Battaglene, Quinn Fitzgibbon, Rocky de Nys. The release and uptake of metals from potential biofilm inhibition products during spiny lobster ( Sagmariasus verreauxi , H. Milne Edwards 1851 ) culture. Aquaculture Research 2017, 48 (2) , 608-617. https://doi.org/10.1111/are.12907
    65. Erin S. Gloag, Christopher Elbadawi, Cameron J. Zachreson, Igor Aharonovich, Milos Toth, Ian G. Charles, Lynne Turnbull, Cynthia B. Whitchurch. Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion. Frontiers in Microbiology 2017, 7 https://doi.org/10.3389/fmicb.2016.02157
    66. Jun Li, Matthew Taylor, Zheng Zhang. Anti-fouling Medical Coatings. 2017, 189-214. https://doi.org/10.1007/978-3-319-57494-3_8
    67. L-C Xu, C.A. Siedlecki. 4.18 Surface Texturing and Control of Bacterial Adhesion. 2017, 303-320. https://doi.org/10.1016/B978-0-12-803581-8.09295-X
    68. Jinxia Zhang, Mingxi Pan, Chuanbao Luo, Xiangping Chen, Jiangrong Kong, Tao Zhou. A novel composite paint (TiO2/fluorinated acrylic nanocomposite) for antifouling application in marine environments. Journal of Environmental Chemical Engineering 2016, 4 (2) , 2545-2555. https://doi.org/10.1016/j.jece.2016.05.002
    69. Li Qun Xu, Dicky Pranantyo, Koon-Gee Neoh, En-Tang Kang, Serena Lay-Ming Teo, Guo Dong Fu. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition. Colloids and Surfaces B: Biointerfaces 2016, 141 , 65-73. https://doi.org/10.1016/j.colsurfb.2016.01.024
    70. Katharina Doll, Elena Fadeeva, Nico S. Stumpp, Sebastian Grade, Boris N. Chichkov, Meike Stiesch. Reduced bacterial adhesion on titanium surfaces micro-structured by ultra-short pulsed laser ablation. BioNanoMaterials 2016, 17 (1-2) , 53-57. https://doi.org/10.1515/bnm-2015-0024
    71. Tianzhi Wang, Yunkai Li, Tingwu Xu, Naiyang Wu, Mingchao Liang, Paul Hynds. Biofilm microbial community structure in an urban lake utilizing reclaimed water. Environmental Earth Sciences 2016, 75 (4) https://doi.org/10.1007/s12665-015-5197-6
    72. Alyssa Y. Stark, Amanda M. Palecek, Clayton W. Argenbright, Craig Bernard, Anthony B. Brennan, Peter H. Niewiarowski, Ali Dhinojwala, . Gecko Adhesion on Wet and Dry Patterned Substrates. PLOS ONE 2015, 10 (12) , e0145756. https://doi.org/10.1371/journal.pone.0145756
    73. Rhea M May, Chelsea M Magin, Ethan E Mann, Michael C Drinker, John C Fraser, Christopher A Siedlecki, Anthony B Brennan, Shravanthi T Reddy. An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters. Clinical and Translational Medicine 2015, 4 (1) https://doi.org/10.1186/s40169-015-0050-9
    74. Jaione Valle, Saioa Burgui, Denise Langheinrich, Carmen Gil, Cristina Solano, Alejandro Toledo-Arana, Ralf Helbig, Andrés Lasagni, Iñigo Lasa. Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromolecular Bioscience 2015, 15 (8) , 1060-1069. https://doi.org/10.1002/mabi.201500107
    75. Yunjiao Gu, Shuxue Zhou. Novel Marine Antifouling Coatings. 2015, 296-337. https://doi.org/10.1002/9781118883051.ch11
    76. Hakan Başağaoğlu, John T. Carrola, Christopher J. Freitas, Berkay Başağaoğlu, Sauro Succi. Lattice Boltzmann simulations of vortex entrapment of particles in a microchannel with curved or flat edges. Microfluidics and Nanofluidics 2015, 18 (5-6) , 1165-1175. https://doi.org/10.1007/s10404-014-1509-5
    77. Javeed Shaikh Mohammed. Micro- and nanotechnologies in plankton research. Progress in Oceanography 2015, 134 , 451-473. https://doi.org/10.1016/j.pocean.2015.03.010
    78. André R. Studart, Randall M. Erb, Rafael Libanori. Bioinspired Hierarchical Composites. 2015, 287-318. https://doi.org/10.1007/978-3-319-12868-9_8
    79. Fei Wan, Qian Ye, Feng Zhou. Antifouling of Micro-/Nanostructural Surfaces. 2015, 83-103. https://doi.org/10.1007/978-3-662-45204-2_4
    80. Y. Delaviz, J.P. Santerre, D.G. Cvitkovitch. Infection resistant biomaterials. 2015, 223-254. https://doi.org/10.1533/9780857097224.2.223
    81. Akihiko Sakamoto, Yusuke Terui, Chihiro Horie, Takashi Fukui, Toshiyuki Masuzawa, Shintaro Sugawara, Kaku Shigeta, Tatsuo Shigeta, Kazuei Igarashi, Keiko Kashiwagi. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove. FEMS Microbiology Letters 2014, 361 (1) , 10-16. https://doi.org/10.1111/1574-6968.12604
    82. Rhea M May, Matthew G Hoffman, Melinda J Sogo, Albert E Parker, George A O’Toole, Anthony B Brennan, Shravanthi T Reddy. Micro‐patterned surfaces reduce bacterial colonization and biofilm formation in vitro : Potential for enhancing endotracheal tube designs. Clinical and Translational Medicine 2014, 3 (1) https://doi.org/10.1186/2001-1326-3-8
    83. Ethan E Mann, Dipankar Manna, Michael R Mettetal, Rhea M May, Elisa M Dannemiller, Kenneth K Chung, Anthony B Brennan, Shravanthi T Reddy. Surface micropattern limits bacterial contamination. Antimicrobial Resistance and Infection Control 2014, 3 (1) https://doi.org/10.1186/2047-2994-3-28
    84. Rıdvan Demiryürek, Mariamu Kassim Ali, Gozde Ozaydin Ince. A facile method for fabrication of responsive micropatterned surfaces. Smart Materials and Structures 2014, 23 (9) , 095020. https://doi.org/10.1088/0964-1726/23/9/095020
    85. Partha Halder, Mahyar Nasabi, Niranjali Jayasuriya, Jeff Shimeta, Margaret Deighton, Satinath Bhattacharya, Arnan Mitchell, Muhammed Ali Bhuiyan. An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. Biofouling 2014, 30 (6) , 695-707. https://doi.org/10.1080/08927014.2014.914177
    86. Li-Chong Xu, Christopher A Siedlecki. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Biomedical Materials 2014, 9 (3) , 035003. https://doi.org/10.1088/1748-6041/9/3/035003
    87. Wen Jing Yang, Koon-Gee Neoh, En-Tang Kang, Serena Lay-Ming Teo, Daniel Rittschof. Polymer brush coatings for combating marine biofouling. Progress in Polymer Science 2014, 39 (5) , 1017-1042. https://doi.org/10.1016/j.progpolymsci.2014.02.002
    88. Ravindra Pal Singh, C.R.K. Reddy. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology 2014, 88 (2) , 213-230. https://doi.org/10.1111/1574-6941.12297
    89. Mary Graham, Nathaniel Cady. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling. Coatings 2014, 4 (1) , 37-59. https://doi.org/10.3390/coatings4010037
    90. Erik N. Taylor, Kim M. Kummer, Deepti Dyondi, Thomas J. Webster, Rinti Banerjee. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale 2014, 6 (2) , 825-832. https://doi.org/10.1039/C3NR04270G
    91. Mehdi Kargar, Amy Pruden, William A. Ducker. Preventing bacterial colonization using colloidal crystals. J. Mater. Chem. B 2014, 2 (36) , 5962-5971. https://doi.org/10.1039/C4TB00835A
    92. Felicia Wong Yen Myan, James Walker, Odette Paramor. The interaction of marine fouling organisms with topography of varied scale and geometry: a review. Biointerphases 2013, 8 (1) https://doi.org/10.1186/1559-4106-8-30
    93. Alex H-F Wu, Kenichi Nakanishi, KL Cho, Robert Lamb. Diatom attachment inhibition: limiting surface accessibility through air entrapment. Biointerphases 2013, 8 (1) https://doi.org/10.1186/1559-4106-8-5
    94. C. Desrousseaux, V. Sautou, S. Descamps, O. Traoré. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. Journal of Hospital Infection 2013, 85 (2) , 87-93. https://doi.org/10.1016/j.jhin.2013.06.015
    95. G. Greco, T. Svaldo Lanero, S. Torrassa, R. Young, M. Vassalli, A. Cavaliere, R. Rolandi, E. Pelucchi, M. Faimali, J. Davenport. Microtopography of the eye surface of the crab Carcinus maenas : an atomic force microscope study suggesting a possible antifouling potential. Journal of The Royal Society Interface 2013, 10 (84) , 20130122. https://doi.org/10.1098/rsif.2013.0122
    96. Partha Halder, Mahyar Nasabi, Francisco Javier Tovar Lopez, Niranjali Jayasuriya, Satinath Bhattacharya, Margaret Deighton, Arnan Mitchell, Muhammed Ali Bhuiyan. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment. Biofouling 2013, 29 (6) , 697-713. https://doi.org/10.1080/08927014.2013.800192
    97. Aneissha Chebolu, Bhakti Laha, Monidipa Ghosh, Nagahanumaiah. Investigation on bacterial adhesion and colonisation resistance over laser‐machined micro patterned surfaces. Micro & Nano Letters 2013, 8 (6) , 280-283. https://doi.org/10.1049/mnl.2013.0109
    98. Ravindra Pal Singh, Mahendra K. Shukla, Avinash Mishra, C.R.K. Reddy, Bhavanath Jha. Bacterial extracellular polymeric substances and their effect on settlement of zoospore of Ulva fasciata. Colloids and Surfaces B: Biointerfaces 2013, 103 , 223-230. https://doi.org/10.1016/j.colsurfb.2012.10.037
    99. Mary V. Graham, Aaron P. Mosier, Thomas R. Kiehl, Alain E. Kaloyeros, Nathaniel C. Cady. Development of antifouling surfaces to reduce bacterial attachment. Soft Matter 2013, 9 (27) , 6235. https://doi.org/10.1039/c3sm50584g
    100. JOHN F. LING, MARY V. GRAHAM, NATHANIEL C. CADY. EFFECT OF TOPOGRAPHICALLY PATTERNED POLY(DIMETHYLSILOXANE) SURFACES ON Pseudomonas aeruginosa ADHESION AND BIOFILM FORMATION. Nano LIFE 2012, 02 (04) , 1242004. https://doi.org/10.1142/S1793984412420044
    Load all citations

    Langmuir

    Cite this: Langmuir 2008, 24, 9, 4931–4937
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la703421v
    Published March 25, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1989

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.