ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Epifluorescence Imaging of Electrochemically Switchable Langmuir−Blodgett Films of Nafion

View Author Information
Department of Physical Chemistry, University of Venice, Santa Marta 2137, 30123 — Venice, Italy, and Groupe NanoSystèmes Analytiques, Institut des Sciences Moléculaires, UMR 5255 CNRS, Université Bordeaux 1, ENSCPB, France
* To whom correspondence should be addressed. E-mail: [email protected] (N.S.); [email protected] (P.U.).
†University of Venice.
‡Université Bordeaux 1.
Cite this: Langmuir 2008, 24, 12, 6367–6374
Publication Date (Web):May 13, 2008
https://doi.org/10.1021/la703998e
Copyright © 2008 American Chemical Society

    Article Views

    405

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (849 KB)

    Abstract

    Abstract Image

    A combination of electrochemistry and luminescence methods was exploited to obtain information on the electrochemical activity and homogeneity of Nafion Langmuir−Blodgett films. The redox behavior of the Ru(bpy)32+ probe incorporated in the Nafion film was monitored by epifluorescence microscopy. The photoluminescent images, recorded by a charge-coupled device (CCD) camera, reflect the distribution of the probe in the film, which resulted as very uniform, particularly in comparison with spin-coated films. Apparent diffusion coefficients (Dapp) determined by cyclic voltammetry for films of less than 10 layers are in the range of 1 × 10−12 to 8 × 10−12 cm2 s−1, that is, 2 orders of magnitude lower than values reported in the literature for spin-coated Nafion films. The application to the electrode of a potential able to oxidize the luminescent Ru(bpy)32+ to the nonluminescent Ru(bpy)33+ switched off the photoluminescence with a response time that for the LB films was much shorter than that for the spin-coated ones. Experimental evidence and calculations indicate that lowering of the film thickness down to the nanometric level is very effective in shortening the switching time, notwithstanding the lowering of the Dapp value in LB films.

    Cited By

    This article is cited by 32 publications.

    1. Sushant P. Sahu, Subarna Kole, Christopher G. Arges, Manas Ranjan Gartia. Rapid and Direct Perfluorooctanoic Acid Sensing with Selective Ionomer Coatings on Screen-Printed Electrodes under Environmentally Relevant Concentrations. ACS Omega 2022, 7 (6) , 5001-5007. https://doi.org/10.1021/acsomega.1c05847
    2. Daniel Martín-Yerga, Alejandro Pérez-Junquera, David Hernández-Santos, and Pablo Fanjul-Bolado . Time-Resolved Luminescence Spectroelectrochemistry at Screen-Printed Electrodes: Following the Redox-Dependent Fluorescence of [Ru(bpy)3]2+. Analytical Chemistry 2017, 89 (20) , 10649-10654. https://doi.org/10.1021/acs.analchem.7b01734
    3. Fabien Miomandre, Stefka Stancheva, Jean-Frédéric Audibert, Arnaud Brosseau, Robert B. Pansu, Marc Lepeltier, and Cédric R. Mayer . Gold and Silver Nanoparticles Functionalized by Luminescent Iridium Complexes: Synthesis and Photophysical and Electrofluorochromic Properties. The Journal of Physical Chemistry C 2013, 117 (24) , 12806-12814. https://doi.org/10.1021/jp312625x
    4. Martin A. Edwards, Paolo Bertoncello and Patrick R. Unwin . Slow Diffusion Reveals the Intrinsic Electrochemical Activity of Basal Plane Highly Oriented Pyrolytic Graphite Electrodes. The Journal of Physical Chemistry C 2009, 113 (21) , 9218-9223. https://doi.org/10.1021/jp8092918
    5. Xiaojing Cheng, Guanghua Wei, Liuxuan Luo, Jiewei Yin, Shuiyun Shen, Junliang Zhang. Application of Solid Catalysts with an Ionic Liquid Layer (SCILL) in PEMFCs: From Half-Cell to Full-Cell. Electrochemical Energy Reviews 2023, 6 (1) https://doi.org/10.1007/s41918-023-00195-5
    6. Mathavan Sornambigai, Laurent Bouffier, Neso Sojic, Shanmugam Senthil Kumar. Tris(2,2’-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. Analytical and Bioanalytical Chemistry 2023, 44 https://doi.org/10.1007/s00216-023-04876-4
    7. Dejan Segan, George Stanley, Pierluca Messina, Jean‐Marie Swiecicki, Kieu Ngo, Vincent Vivier, Olivier Buriez, Eric Labbé. Interaction of Redox Probes and Ferrocene‐labelled Peptides with Lipid Bilayers Observed at Lipid Bilayer‐Modified Electrodes. ChemElectroChem 2021, 8 (13) , 2556-2563. https://doi.org/10.1002/celc.202100501
    8. Jing Yu, Hiba Saada, Neso Sojic, Gabriel Loget. Photoinduced electrochemiluminescence at nanostructured hematite electrodes. Electrochimica Acta 2021, 381 , 138238. https://doi.org/10.1016/j.electacta.2021.138238
    9. Fabien Miomandre. How molecular electrochemistry may shine light by designing electrofluorochromic compounds. Current Opinion in Electrochemistry 2020, 24 , 56-62. https://doi.org/10.1016/j.coelec.2020.07.003
    10. Silvia Voci, Abdulghani Ismail, Pascale Pham, Jing Yu, Ali Maziz, Fabien Mesnilgrente, Lucile Reynaud, Thierry Livache, Pascal Mailley, Arnaud Buhot, Thierry Leichle, Alexander Kuhn, Loic Leroy, Aurélie Bouchet-Spinelli, Neso Sojic. Wireless Enhanced Electrochemiluminescence at a Bipolar Microelectrode in a Solid-State Micropore. Journal of The Electrochemical Society 2020, 167 (13) , 137509. https://doi.org/10.1149/1945-7111/abbbc1
    11. Tatsuya Ayabe, Aicheng Chen, Takamasa Sagara. Electrochemical and spectroelectrochemical probing of the ionic channel in Nafion films using the redox of perfluoroalkyl viologen. Journal of Electroanalytical Chemistry 2020, 873 , 114442. https://doi.org/10.1016/j.jelechem.2020.114442
    12. Farzad Seidi, Weifeng Zhao, Huining Xiao, Yongcan Jin, Mohammad Reza Saeb, Changsheng Zhao. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry 2020, 11 (27) , 4355-4381. https://doi.org/10.1039/D0PY00787K
    13. Haidong Li, Valérie Ravaine, Neso Sojic. Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. Journal of Analysis and Testing 2020, 4 (2) , 107-113. https://doi.org/10.1007/s41664-020-00131-2
    14. Jesus Garoz‐Ruiz, Juan V. Perales‐Rondon, Aranzazu Heras, Alvaro Colina. Spectroelectrochemistry of Quantum Dots. Israel Journal of Chemistry 2019, 59 (8) , 679-694. https://doi.org/10.1002/ijch.201900028
    15. Оlga А. Pyshkina, Оlga А. Novoskoltseva, Julia A. Zakharova. Modification of Nafion membrane by polyaniline providing uniform polymer distribution throughout the membrane. Colloid and Polymer Science 2019, 297 (3) , 423-432. https://doi.org/10.1007/s00396-018-4431-7
    16. Alexey Stepanov, Vitaly Yanilkin, Asiya Mustafina, Svetlana Solovieva. Electrochemical properties of outer-sphere associates of bipyridyl and sepulchrate metal complexes with (thia)calix[4]arenes. Journal of the Iranian Chemical Society 2018, 15 (10) , 2251-2258. https://doi.org/10.1007/s13738-018-1414-z
    17. Daniel Martín-Yerga, Alejandro Pérez-Junquera, David Hernández-Santos, Pablo Fanjul-Bolado. Electroluminescence of [Ru(bpy) 3 ] 2+ at gold and silver screen-printed electrodes followed by real-time spectroelectrochemistry. Physical Chemistry Chemical Physics 2017, 19 (34) , 22633-22637. https://doi.org/10.1039/C7CP04568A
    18. Jingwei Sun, Yani Chen, Ziqi Liang. Electroluminochromic Materials and Devices. Advanced Functional Materials 2016, 26 (17) , 2783-2799. https://doi.org/10.1002/adfm.201505013
    19. P. Audebert, F. Miomandre. Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 2013, 4 (2) , 575-584. https://doi.org/10.1039/C2SC21503A
    20. Michael E. Snowden, Martin A. Edwards, Nicola C. Rudd, Julie. V. Macpherson, Patrick R. Unwin. Intrinsic electrochemical activity of single walled carbon nanotube–Nafion assemblies. Physical Chemistry Chemical Physics 2013, 15 (14) , 5030. https://doi.org/10.1039/c3cp44538k
    21. F. Miomandre, R.B. Pansu, J.F. Audibert, A. Guerlin, C.R. Mayer. Electrofluorochromism of a ruthenium complex investigated by time resolved TIRF microscopy coupled to an electrochemical cell. Electrochemistry Communications 2012, 20 , 83-87. https://doi.org/10.1016/j.elecom.2012.03.030
    22. Paolo Ugo, Ligia M. Moretto. Ion Exchange Voltammetry. 2012, 403-435. https://doi.org/10.1007/978-94-007-1700-8_11
    23. V. V. Yanilkin, A. R. Mustafina, A. S. Stepanov, N. V. Nastapova, G. R. Nasybullina, A. Yu. Ziganshina, S. E. Solovieva, A. I. Konovalov. Electricoswitchable bonding of metal ions and complexes by calixarenes. Russian Journal of Electrochemistry 2011, 47 (10) , 1082-1090. https://doi.org/10.1134/S1023193511100259
    24. Milena Milutinovic, Sébastien Sallard, Dragan Manojlovic, Nicolas Mano, Neso Sojic. Glucose sensing by electrogenerated chemiluminescence of glucose-dehydrogenase produced NADH on electrodeposited redox hydrogel. Bioelectrochemistry 2011, 82 (1) , 63-68. https://doi.org/10.1016/j.bioelechem.2011.05.005
    25. Fabien Miomandre, Clémence Allain, Gilles Clavier, Jean-Frédéric Audibert, Robert B. Pansu, Pierre Audebert, František Hartl. Coupling thin layer electrochemistry with epifluorescence microscopy: An expedient way of investigating electrofluorochromism of organic dyes. Electrochemistry Communications 2011, 13 (6) , 574-577. https://doi.org/10.1016/j.elecom.2011.03.013
    26. Birgit Schwenzer, Soowhan Kim, M. Vijayakumar, Zhenguo Yang, Jun Liu. Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties. Journal of Membrane Science 2011, 372 (1-2) , 11-19. https://doi.org/10.1016/j.memsci.2011.01.025
    27. Mary Welch, Abhinav Rastogi, Christopher Ober. Polymer brushes for electrochemical biosensors. Soft Matter 2011, 7 (2) , 297-302. https://doi.org/10.1039/C0SM00035C
    28. Milena Milutinovic, Emmanuel Suraniti, Vincent Studer, Nicolas Mano, Dragan Manojlovic, Neso Sojic. Photopatterning of ultrathin electrochemiluminescent redox hydrogel films. Chemical Communications 2011, 47 (32) , 9125. https://doi.org/10.1039/c1cc12724a
    29. A. S. Stepanov, V. V. Yanilkin, A. R. Mustafina, V. A. Burilov, S. E. Solov’eva, I. S. Antipin, A. I. Konovalov. Reversible electrochemical pH-switching of luminescence in a p- sulfonatothiacalix[4]arene— terbium(3+) system. Russian Chemical Bulletin 2010, 59 (8) , 1538-1542. https://doi.org/10.1007/s11172-010-0275-0
    30. Alexey S. Stepanov, Vitaly V. Yanilkin, Asiya R. Mustafina, Vladimir A. Burilov, Svetlana S. Solovieva, Igor S. Antipin, Alexander I. Konovalov. Redox induced pH-switch of Tb(III) centered luminescence of Tb(III) complex with p-sulfonatothiacalix[4]arene. Electrochemistry Communications 2010, 12 (5) , 703-705. https://doi.org/10.1016/j.elecom.2010.03.011
    31. Ligia M. Moretto, Thiago Kohls, Denis Badocco, Paolo Pastore, Neso Sojic, Paolo Ugo. Electrochemiluminescence of loaded in Nafion Langmuir–Blodgett films: Role of the interfacial ultrathin film. Journal of Electroanalytical Chemistry 2010, 640 (1-2) , 35-41. https://doi.org/10.1016/j.jelechem.2009.12.029
    32. Takuya Masuda, Hideo Naohara, Satoru Takakusagi, Pankaj R. Singh, Kohei Uosaki. Formation and Structure of Perfluorosulfonated Ionomer Thin Film on a Graphite Surface. Chemistry Letters 2009, 38 (9) , 884-885. https://doi.org/10.1246/cl.2009.884

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect