ACS Publications. Most Trusted. Most Cited. Most Read
Solid-Supported Block Copolymer Membranes through Interfacial Adsorption of Charged Block Copolymer Vesicles
My Activity
    Research Article

    Solid-Supported Block Copolymer Membranes through Interfacial Adsorption of Charged Block Copolymer Vesicles
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
    * To whom correspondence should be addressed. Fax: 0041(0)61 2673855. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2008, 24, 12, 6254–6261
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la8003068
    Published May 16, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly(n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5 ± 0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    AFM images of the polymer material on the HOPG surface six days after sample preparation, AFM measurements of the polymer vesicles deposited onto SiO2 substrate in liquid, images and analysis of the samples prepared by deposition of the vesicles onto HOPG and mica substrates from acidic dispersion (pH = 5, 0.1 wt %), images and analysis of the samples obtained by deposition of the polymer vesicles onto SiO2 substrates from acidic (pH = 5, 0.1 wt %) and basic (pH = 9, 0.1 wt %) dispersions, estimation of the average thickness of the polymer rims on the HOPG surface, and estimation of the average height of the polymer vesicles on the SiO2 substrate. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 49 publications.

    1. Rachel J. Goodband, Colin D. Bain, Margarita Staykova. Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion. Langmuir 2022, 38 (18) , 5674-5681. https://doi.org/10.1021/acs.langmuir.2c00266
    2. Aoon Rizvi, Justin T. Mulvey, Joseph P. Patterson. Observation of Liquid–Liquid-Phase Separation and Vesicle Spreading during Supported Bilayer Formation via Liquid-Phase Transmission Electron Microscopy. Nano Letters 2021, 21 (24) , 10325-10332. https://doi.org/10.1021/acs.nanolett.1c03556
    3. JianGuo Zhang, Zi-Hao Zhou, Lin Li, Yan-Ling Luo, Feng Xu, Yashao Chen. Dual Stimuli-Responsive Supramolecular Self-Assemblies Based on the Host–Guest Interaction between β-Cyclodextrin and Azobenzene for Cellular Drug Release. Molecular Pharmaceutics 2020, 17 (4) , 1100-1113. https://doi.org/10.1021/acs.molpharmaceut.9b01142
    4. Justyna Kowal, Xiaoyan Zhang, Ionel Adrian Dinu, Cornelia G. Palivan, and Wolfgang Meier . Planar Biomimetic Membranes Based on Amphiphilic Block Copolymers. ACS Macro Letters 2014, 3 (1) , 59-63. https://doi.org/10.1021/mz400590c
    5. Matthew P. Goertz, Lauryn E. Marks, and Gabriel A. Montaño . Biomimetic Monolayer and Bilayer Membranes Made From Amphiphilic Block Copolymer Micelles. ACS Nano 2012, 6 (2) , 1532-1540. https://doi.org/10.1021/nn204491q
    6. Mirjam Andreasson-Ochsner, Zhikang Fu, Sylvia May, Low Ying Xiu, Madhavan Nallani, and Eva-Kathrin Sinner . Selective Deposition and Self-Assembly of Triblock Copolymers into Matrix Arrays for Membrane Protein Production. Langmuir 2012, 28 (4) , 2044-2048. https://doi.org/10.1021/la2038087
    7. H. Tarik Baytekin, Bilge Baytekin, Andrea Schulz, Andreas Springer, Thomas Gross, Wolfgang Unger, Marina Artamonova, Sabine Schlecht, Dieter Lentz and Christoph A. Schalley . Metallo-Supramolecular Nanospheres via Hierarchical Self-Assembly. Chemistry of Materials 2009, 21 (13) , 2980-2992. https://doi.org/10.1021/cm900642p
    8. David L. Roberts, Yaning Ma, Steven E. Bowles, Colleen M. Janczak, Jeffrey Pyun, S. Scott Saavedra and Craig A. Aspinwall. Polymer-Stabilized Phospholipid Vesicles with a Controllable, pH-Dependent Disassembly Mechanism. Langmuir 2009, 25 (4) , 1908-1910. https://doi.org/10.1021/la803358m
    9. Ferzane Valioglu, Fereshteh Valipour, Shadi Atazadeh, Maryam Hasansadeh, Nafiseh Didar Khosrowshahi, Fereshteh Vaziri Nezamdoust, Parisa Mohammad-Jafarieh, Reza Rahbarghazi, Mahdi Mahdipour. Recent advances in shape memory scaffolds and regenerative outcomes. Biomedical Engineering Letters 2024, 14 (6) , 1279-1301. https://doi.org/10.1007/s13534-024-00417-9
    10. Viktoriia Nikolaeva, Marat Kamalov, Timur I. Abdullin, Diana Salakhieva, Vitaly Chasov, Alexey Rogov, Mohamed Zoughaib. Evaluation of GHK peptide–heparin interactions in multifunctional liposomal covering. Journal of Liposome Research 2024, 34 (1) , 18-30. https://doi.org/10.1080/08982104.2023.2206894
    11. Olivia M. Eggenberger, Piotr Jaśko, Shabnam Tarvirdipour, Cora‐Ann Schoenenberger, Cornelia G. Palivan. Advances in Biohybridized Planar Polymer Membranes and Membrane‐Like Matrices. Helvetica Chimica Acta 2023, 106 (4) https://doi.org/10.1002/hlca.202200164
    12. Xinmo Zhang, Claudia Contini, Anna P. Constantinou, James J. Doutch, Theoni K. Georgiou. How does the hydrophobic content of methacrylate ABA triblock copolymers affect polymersome formation?. Journal of Polymer Science 2021, 59 (15) , 1724-1731. https://doi.org/10.1002/pol.20210371
    13. David H. Cho, Tian Xie, Johnson Truong, Andrew C. Stoner, Jong-in Hahm. Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations. Nano Research 2020, 13 (5) , 1295-1317. https://doi.org/10.1007/s12274-020-2735-7
    14. Agata Krywko-Cendrowska, Stefano di Leone, Maryame Bina, Saziye Yorulmaz-Avsar, Cornelia G. Palivan, Wolfgang Meier. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers 2020, 12 (5) , 1003. https://doi.org/10.3390/polym12051003
    15. Keith L. Willes, Jasmyn R. Genchev, Walter F. Paxton. Hybrid Lipid-Polymer Bilayers: pH-Mediated Interactions between Hybrid Vesicles and Glass. Polymers 2020, 12 (4) , 745. https://doi.org/10.3390/polym12040745
    16. Vittoria Chimisso, Viviana Maffeis, Dimitri Hürlimann, Cornelia G. Palivan, Wolfgang Meier. Self‐Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromolecular Bioscience 2020, 20 (1) https://doi.org/10.1002/mabi.201900257
    17. Ahmed Fuwad, Hyunil Ryu, Noah Malmstadt, Sun Min Kim, Tae-Joon Jeon. Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination 2019, 458 , 97-115. https://doi.org/10.1016/j.desal.2019.02.003
    18. Martina Garni, Riccardo Wehr, Saziye Yorulmaz Avsar, Christoph John, Cornelia Palivan, Wolfgang Meier. Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. European Polymer Journal 2019, 112 , 346-364. https://doi.org/10.1016/j.eurpolymj.2018.12.047
    19. Saziye Yorulmaz Avsar, Myrto Kyropoulou, Stefano Di Leone, Cora-Ann Schoenenberger, Wolfgang P. Meier, Cornelia G. Palivan. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Frontiers in Chemistry 2019, 6 https://doi.org/10.3389/fchem.2018.00645
    20. Yue-xiao Shen, Woochul Song, D. Ryan Barden, Tingwei Ren, Chao Lang, Hasin Feroz, Codey B. Henderson, Patrick O. Saboe, Daniel Tsai, Hengjing Yan, Peter J. Butler, Guillermo C. Bazan, William A. Phillip, Robert J. Hickey, Paul S. Cremer, Harish Vashisth, Manish Kumar. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04604-y
    21. Pallabi Samaddar, Akash Deep, Ki-Hyun Kim. An engineering insight into block copolymer self-assembly: Contemporary application from biomedical research to nanotechnology. Chemical Engineering Journal 2018, 342 , 71-89. https://doi.org/10.1016/j.cej.2018.01.062
    22. Daniel Ryan Barden, Harish Vashisth. Parameterization and atomistic simulations of biomimetic membranes. Faraday Discussions 2018, 209 , 161-178. https://doi.org/10.1039/C8FD00047F
    23. Appa Rao Sapala, Sameer Dhawan, V. Haridas. Vesicles: self-assembly beyond biological lipids. RSC Advances 2017, 7 (43) , 26608-26624. https://doi.org/10.1039/C7RA02746J
    24. Viktoria Mikhalevich, Christina Zelmer, Anja Car, Cornelia Palivan, Wolfgang Meier. Bio-inspired Polymer Membranes. 2016, 221-258. https://doi.org/10.1039/9781782626664-00221
    25. Yan-Ling Yang, Heng-Kwong Tsao, Yu-Jane Sheng. Solid-supported polymer bilayers formed by coil–coil block copolymers. Soft Matter 2016, 12 (30) , 6442-6450. https://doi.org/10.1039/C6SM00741D
    26. Mihai Lomora, Ionel Adrian Dinu, Fabian Itel, Serena Rigo, Mariana Spulber, Cornelia G. Palivan. Does Membrane Thickness Affect the Transport of Selective Ions Mediated by Ionophores in Synthetic Membranes?. Macromolecular Rapid Communications 2015, 36 (21) , 1929-1934. https://doi.org/10.1002/marc.201500289
    27. Sui Zhang, Rui Chin Ong, Honglei Wang, Panu Sukitpaneenit, Duong Hoang Hanh Phuoc, Tai-Shung Chung. Forward Osmosis Membranes: Synthesis and Characterization. 2015, 151-180. https://doi.org/10.1061/9780784414071.ch08
    28. Jinming Hu, Guoying Zhang, Zhishen Ge, Shiyong Liu. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Progress in Polymer Science 2014, 39 (6) , 1096-1143. https://doi.org/10.1016/j.progpolymsci.2013.10.006
    29. Yiping Ni, Frédéric Becquart, Mohamed Taha, Jean-Charles Majeste, Jianding Chen. Poly(butyl methacrylate-co-methacrylic acid) Copolymers with Calcium Carbonate Supramolecular Networks. International Journal of Polymeric Materials and Polymeric Biomaterials 2014, 63 (8) , 405-415. https://doi.org/10.1080/00914037.2013.854209
    30. Christophe Schatz. Two Non‐covalent Methods to Decorate Nanoparticles with Block Copolymers. Macromolecular Chemistry and Physics 2014, 215 (10) , 945-957. https://doi.org/10.1002/macp.201300756
    31. Yue-xiao Shen, Patrick O. Saboe, Ian T. Sines, Mustafa Erbakan, Manish Kumar. Biomimetic membranes: A review. Journal of Membrane Science 2014, 454 , 359-381. https://doi.org/10.1016/j.memsci.2013.12.019
    32. Karolina Langowska, Justyna Kowal, Cornelia G. Palivan, Wolfgang Meier. A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. Journal of Materials Chemistry B 2014, 2 (29) , 4684. https://doi.org/10.1039/c4tb00277f
    33. Xiaoyan Zhang, Wangyang Fu, Cornelia G. Palivan, Wolfgang Meier. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02196
    34. Agnieszka Jagoda, Justyna Kowal, Mihaela Delcea, Cornelia G. Palivan, Wolfgang Meier. Polymer Vesicles on Surfaces. 2013, 159-203. https://doi.org/10.1002/9783527649600.ch6
    35. Katri S. Kontturi, Arja-Helena Vesterinen, Jukka Seppälä, Janne Laine. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces. Applied Surface Science 2012, 261 , 375-384. https://doi.org/10.1016/j.apsusc.2012.08.018
    36. Phuoc H.H. Duong, Tai-Shung Chung, Kandiah Jeyaseelan, Arunmozhiarasi Armugam, Zaichun Chen, Jing Yang, Minghui Hong. Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. Journal of Membrane Science 2012, 409-410 , 34-43. https://doi.org/10.1016/j.memsci.2012.03.004
    37. Shao Hua Shen, Ying Xiang Duan, Qing Quan Liu, Qiu Guao Xiao. Preparation and Characterization of Poly (vinylbenzyl chloride)-b-poly (lactide) Copolymers via Nitroxide-Mediated Controlled Radical and Ring-Opening Polymerization. Advanced Materials Research 2012, 554-556 , 295-298. https://doi.org/10.4028/www.scientific.net/AMR.554-556.295
    38. Xiaoyan Zhang, Pascal Tanner, Alexandra Graff, Cornelia G. Palivan, Wolfgang Meier. Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (12) , 2293-2318. https://doi.org/10.1002/pola.26000
    39. Xuesong Li, Rong Wang, Chuyang Tang, Ardcharaporn Vararattanavech, Yang Zhao, Jaume Torres, Tony Fane. Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids and Surfaces B: Biointerfaces 2012, 94 , 333-340. https://doi.org/10.1016/j.colsurfb.2012.02.013
    40. Kongchang Wei, Jun Li, Jianghua Liu, Guosong Chen, Ming Jiang. Reversible vesicles of supramolecular hybrid nanoparticles. Soft Matter 2012, 8 (12) , 3300. https://doi.org/10.1039/c2sm25178g
    41. Jan Dorn, Serena Belegrinou, Max Kreiter, Eva‐Kathrin Sinner, Wolfgang Meier. Planar Block Copolymer Membranes by Vesicle Spreading. Macromolecular Bioscience 2011, 11 (4) , 514-525. https://doi.org/10.1002/mabi.201000396
    42. Guo-Dong Fu, Guo Liang Li, K.G. Neoh, E.T. Kang. Hollow polymeric nanostructures—Synthesis, morphology and function. Progress in Polymer Science 2011, 36 (1) , 127-167. https://doi.org/10.1016/j.progpolymsci.2010.07.011
    43. Alfredo González-Pérez, Valeria Castelletto, Ian W. Hamley, Pablo Taboada. Biomimetic triblock copolymer membranes: from aqueous solutions to solid supports. Soft Matter 2011, 7 (3) , 1129-1138. https://doi.org/10.1039/C0SM00711K
    44. Serena Belegrinou, Sindhu Menon, Dominik Dobrunz, Wolfgang Meier. Solid-supported polymeric membranes. Soft Matter 2011, 7 (6) , 2202-2210. https://doi.org/10.1039/C0SM01163K
    45. Katarzyna Kita-Tokarczyk, Mathias Junginger, Serena Belegrinou, Andreas Taubert. Amphiphilic Polymers at Interfaces. 2010, 151-201. https://doi.org/10.1007/12_2010_58
    46. Serena Belegrinou, Jan Dorn, Max Kreiter, Katarzyna Kita-Tokarczyk, Eva-Kathrin Sinner, Wolfgang Meier. Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter 2010, 6 (1) , 179-186. https://doi.org/10.1039/B917318H
    47. Ekaterina Rakhmatullina, Alexandre Mantion, Thomas Bürgi, Violeta Malinova, Wolfgang Meier. Solid‐supported amphiphilic triblock copolymer membranes grafted from gold surface. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (1) , 1-13. https://doi.org/10.1002/pola.23116
    48. Violeta Malinova, Serena Belegrinou, Dirk de Bruyn Ouboter, Wolfgang Peter Meier. Biomimetic Block Copolymer Membranes. 2009, 87-111. https://doi.org/10.1007/978-3-642-10479-4_10
    49. Murali Krishna Ghatkesar, Hans-Peter Lang, Christoph Gerber, Martin Hegner, Thomas Braun, . Comprehensive Characterization of Molecular Interactions Based on Nanomechanics. PLoS ONE 2008, 3 (11) , e3610. https://doi.org/10.1371/journal.pone.0003610

    Langmuir

    Cite this: Langmuir 2008, 24, 12, 6254–6261
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la8003068
    Published May 16, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1365

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.