ACS Publications. Most Trusted. Most Cited. Most Read
Buried, Covalently Attached RGD Peptide Motifs in Poly(methacrylic acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion
My Activity
    Article

    Buried, Covalently Attached RGD Peptide Motifs in Poly(methacrylic acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion
    Click to copy article linkArticle link copied!

    View Author Information
    Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, NL-7500 AE Enschede, The Netherlands, Faculty of Chemistry, Jagiellonian University, Ingardena 3, PL-30-060 Cracow, Poland, and Institute for Bioengineering of Catalonia (IBEC), c/Baldiri Reixac 13, 08028 Barcelona, Spain
    * To whom correspondence should be addressed. E-mail: [email protected]. Telephone: +31 (0)53 489 2974. Fax: +31 (0)53 489 3823.
    †University of Twente.
    ‡Jagiellonian University.
    §Institute for Bioengineering of Catalonia (IBEC).
    ∥On leave to Institute for Bioengineering of Catalonia (IBEC), c/Baldiri Reixac 13, 08028 Barcelona, Spain.
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2008, 24, 19, 10996–11002
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la800999y
    Published September 4, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e., UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    List of all the relevant ionic fragments by TOF-SIMS analysis with the corresponding mass/u values. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 79 publications.

    1. Marc Martínez-Miguel, Miquel Castellote-Borrell, Mariana Köber, Adriana R. Kyvik, Judit Tomsen-Melero, Guillem Vargas-Nadal, Jose Muñoz, Daniel Pulido, Edgar Cristóbal-Lecina, Solène Passemard, Miriam Royo, Marta Mas-Torrent, Jaume Veciana, Marina I. Giannotti, Judith Guasch, Nora Ventosa, Imma Ratera. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS Applied Materials & Interfaces 2022, 14 (42) , 48179-48193. https://doi.org/10.1021/acsami.2c10497
    2. Hongsuh Choi, Ertan Yildirim, Anna Schulte, Holger Schönherr. Carboxylic Acid End-Capped Brushes on Titanium via Interface-Mediated RAFT Polymerization and Cell–Surface Interactions. ACS Applied Polymer Materials 2022, 4 (1) , 755-765. https://doi.org/10.1021/acsapm.1c01722
    3. Wenqing Yan, Shivaprakash N. Ramakrishna, Matteo Romio, Edmondo M. Benetti. Bioinert and Lubricious Surfaces by Macromolecular Design. Langmuir 2019, 35 (42) , 13521-13535. https://doi.org/10.1021/acs.langmuir.9b02316
    4. Yeping Wu, Muhammad Naeem Nizam, Xiaokang Ding, Fu-Jian Xu. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomaterials Science & Engineering 2018, 4 (6) , 2018-2025. https://doi.org/10.1021/acsbiomaterials.7b00584
    5. Burcu Colak, Stefania Di Cio, Julien E. Gautrot. Biofunctionalized Patterned Polymer Brushes via Thiol–Ene Coupling for the Control of Cell Adhesion and the Formation of Cell Arrays. Biomacromolecules 2018, 19 (5) , 1445-1455. https://doi.org/10.1021/acs.biomac.7b01436
    6. Bethany Aden, Dayton P. Street, Benjamin W. Hopkins, Bradley S. Lokitz, S. Michael Kilbey, II. Tailoring Surface Properties through in Situ Functionality Gradients in Reactively Modified Poly(2-vinyl-4,4-dimethyl azlactone) Thin Films. Langmuir 2018, 34 (18) , 5204-5213. https://doi.org/10.1021/acs.langmuir.8b00195
    7. Yuuki Inoue, Yuya Onodera, Kazuhiko Ishihara. Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide. ACS Applied Materials & Interfaces 2018, 10 (17) , 15250-15257. https://doi.org/10.1021/acsami.8b01906
    8. Wei Guo, Cassandra M. Reese, Li Xiong, Phillip K. Logan, Brittany J. Thompson, Christopher M. Stafford, Anton V. Ievlev, Bradley S. Lokitz, Olga S. Ovchinnikova, and Derek L. Patton . Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification. Macromolecules 2017, 50 (21) , 8670-8677. https://doi.org/10.1021/acs.macromol.7b01888
    9. Shivaprakash N. Ramakrishna, Marco Cirelli, Mohammad Divandari, and Edmondo M. Benetti . Effects of Lateral Deformation by Thermoresponsive Polymer Brushes on the Measured Friction Forces. Langmuir 2017, 33 (17) , 4164-4171. https://doi.org/10.1021/acs.langmuir.7b00217
    10. Evmorfia Psarra, Ulla König, Martin Müller, Eva Bittrich, Klaus-Jochen Eichhorn, Petra B. Welzel, Manfred Stamm, and Petra Uhlmann . In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes. ACS Omega 2017, 2 (3) , 946-958. https://doi.org/10.1021/acsomega.6b00450
    11. Ella S. Dehghani, Vikrant V. Naik, Joydeb Mandal, Nicholas D. Spencer, and Edmondo M. Benetti . Physical Networks of Metal-Ion-Containing Polymer Brushes Show Fully Tunable Swelling, Nanomechanical and Nanotribological Properties. Macromolecules 2017, 50 (6) , 2495-2503. https://doi.org/10.1021/acs.macromol.6b02673
    12. Justin O. Zoppe, Nariye Cavusoglu Ataman, Piotr Mocny, Jian Wang, John Moraes, and Harm-Anton Klok . Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews 2017, 117 (3) , 1105-1318. https://doi.org/10.1021/acs.chemrev.6b00314
    13. Mao Chen, Mingjiang Zhong, and Jeremiah A. Johnson . Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chemical Reviews 2016, 116 (17) , 10167-10211. https://doi.org/10.1021/acs.chemrev.5b00671
    14. Solenne Desseaux, Juan Pablo Hinestrosa, Nicolas Schüwer, Bradley S. Lokitz, John F. Ankner, S. Michael Kilbey, II, Kislon Voitchovsky, and Harm-Anton Klok . Swelling Behavior and Nanomechanical Properties of (Peptide-Modified) Poly(2-hydroxyethyl methacrylate) and Poly(poly(ethylene glycol) methacrylate) Brushes. Macromolecules 2016, 49 (12) , 4609-4618. https://doi.org/10.1021/acs.macromol.6b00881
    15. Zhenyuan Qu, Hong Xu, and Hongchen Gu . Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. ACS Applied Materials & Interfaces 2015, 7 (27) , 14537-14551. https://doi.org/10.1021/acsami.5b02912
    16. Yong Shen, Solenne Desseaux, Bethany Aden, Bradley S. Lokitz, S. Michael Kilbey, II, Zhibo Li, and Harm-Anton Klok . Shape-Persistent, Thermoresponsive Polypeptide Brushes Prepared by Vapor Deposition Surface-Initiated Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Macromolecules 2015, 48 (8) , 2399-2406. https://doi.org/10.1021/acs.macromol.5b00017
    17. Mahentha Krishnamoorthy, Shoghik Hakobyan, Madeleine Ramstedt, and Julien E. Gautrot . Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. Chemical Reviews 2014, 114 (21) , 10976-11026. https://doi.org/10.1021/cr500252u
    18. Michel Klein Gunnewiek, Edmondo M. Benetti, Andrea Di Luca, Clemens A. van Blitterswijk, Lorenzo Moroni, and G. Julius Vancso . Thin Polymer Brush Decouples Biomaterial’s Micro-/Nanotopology and Stem Cell Adhesion. Langmuir 2013, 29 (45) , 13843-13852. https://doi.org/10.1021/la403360r
    19. Raphael Barbey, Vincent Laporte, Saad Alnabulsi, and Harm-Anton Klok . Postpolymerization Modification of Poly(glycidyl methacrylate) Brushes: An XPS Depth-Profiling Study. Macromolecules 2013, 46 (15) , 6151-6158. https://doi.org/10.1021/ma400819a
    20. Avraham Halperin and Martin Kröger . Thermoresponsive Cell Culture Substrates Based on PNIPAM Brushes Functionalized with Adhesion Peptides: Theoretical Considerations of Mechanism and Design. Langmuir 2012, 28 (48) , 16623-16637. https://doi.org/10.1021/la303443t
    21. Guangzheng Gao, Kai Yu, Jason Kindrachuk, Donald E. Brooks, Robert E. W. Hancock, and Jayachandran N. Kizhakkedathu . Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity. Biomacromolecules 2011, 12 (10) , 3715-3727. https://doi.org/10.1021/bm2009697
    22. Cuie Wang, Qin Yan, Hong-Bo Liu, Xiao-Hui Zhou, and Shou-Jun Xiao . Different EDC/NHS Activation Mechanisms between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir 2011, 27 (19) , 12058-12068. https://doi.org/10.1021/la202267p
    23. Nicolas Schüwer and Harm-Anton Klok . Tuning the pH Sensitivity of Poly(methacrylic acid) Brushes. Langmuir 2011, 27 (8) , 4789-4796. https://doi.org/10.1021/la200347u
    24. Raphael Barbey and Harm-Anton Klok. Room Temperature, Aqueous Post-Polymerization Modification of Glycidyl Methacrylate-Containing Polymer Brushes Prepared via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir 2010, 26 (23) , 18219-18230. https://doi.org/10.1021/la102400z
    25. Raphael Barbey, Laurent Lavanant, Dusko Paripovic, Nicolas Schüwer, Caroline Sugnaux, Stefano Tugulu, and Harm-Anton Klok. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chemical Reviews 2009, 109 (11) , 5437-5527. https://doi.org/10.1021/cr900045a
    26. Simon J. Todd, David J. Scurr, Julie E. Gough, Morgan R. Alexander and Rein V. Ulijn . Enzyme-Activated RGD Ligands on Functionalized Poly(ethylene glycol) Monolayers: Surface Analysis and Cellular Response. Langmuir 2009, 25 (13) , 7533-7539. https://doi.org/10.1021/la900376h
    27. Carlos Eduardo Neri-Cruz, Franciane Mouradian Emidio Teixeira, Julien E. Gautrot. A guide to functionalisation and bioconjugation strategies to surface-initiated polymer brushes. Chemical Communications 2023, 59 (49) , 7534-7558. https://doi.org/10.1039/D3CC01082A
    28. Cong Feng, Yonghao Wu, Qipeng Li, Tinghan He, Quanle Cao, Xiangfeng Li, Yumei Xiao, Jiangli Lin, Xiangdong Zhu, Xingdong Zhang. A Novel Hollow‐Tube‐Biphasic‐Whisker‐Modified Calcium Phosphate Ceramics with Simultaneously Enhanced Mechanical Strength and Osteogenic Activity. Advanced Functional Materials 2022, 32 (44) https://doi.org/10.1002/adfm.202204974
    29. Adnan Murad Bhayo, Yang Yang, Xiangming He. Polymer brushes: Synthesis, characterization, properties and applications. Progress in Materials Science 2022, 130 , 101000. https://doi.org/10.1016/j.pmatsci.2022.101000
    30. Matthias Mueller, Christine Bandl, Wolfgang Kern. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers 2022, 14 (3) , 608. https://doi.org/10.3390/polym14030608
    31. F. Qu, A. M. Raynold, J. E. Gautrot. Recent Advances in the Design of Surface-initiated Polymer Brushes for Biomedical Applications. 2021, 264-300. https://doi.org/10.1039/9781839161124-00264
    32. Ertan Yildirim, Hongsuh Choi, Anna Schulte, Holger Schönherr. Synthesis of end group-functionalized PGMA-peptide brush platforms for specific cell attachment by interface-mediated dissociative electron transfer reversible addition-fragmentation chain transfer radical (DET-RAFT) polymerization. European Polymer Journal 2021, 148 , 110370. https://doi.org/10.1016/j.eurpolymj.2021.110370
    33. Zoe M. Wright, Avanti M. Pandit, Michelle M. Karpinsky, Brian D. Holt, Edward P. Zovinka, Stefanie A. Sydlik. Bioactive, Ion‐Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Advanced Healthcare Materials 2021, 10 (2) https://doi.org/10.1002/adhm.202001189
    34. Weronika Górka-Kumik, Paula Garbacz, Dorota Lachowicz, Paweł Dąbczyński, Szczepan Zapotoczny, Michał Szuwarzyński. Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. Journal of Materials Chemistry B 2020, 8 (44) , 10172-10181. https://doi.org/10.1039/D0TB01853H
    35. Rafał Poręba, Andres de los Santos Pereira, Robert Pola, Siyu Jiang, Ognen Pop‐Georgievski, Zdeňka Sedláková, Holger Schönherr. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment. Macromolecular Bioscience 2020, 20 (4) https://doi.org/10.1002/mabi.201900354
    36. Linzheng Ma, Silambarasan Jayachandran, Zimeng Li, Zhen Song, Wei Wang, Xiliang Luo. Antifouling and conducting PEDOT derivative grafted with polyglycerol for highly sensitive electrochemical protein detection in complex biological media. Journal of Electroanalytical Chemistry 2019, 840 , 272-278. https://doi.org/10.1016/j.jelechem.2019.04.002
    37. Agata Pomorska, Karol Wolski, Magdalena Wytrwal-Sarna, Andrzej Bernasik, Szczepan Zapotoczny. Polymer brushes grafted from nanostructured zinc oxide layers – Spatially controlled decoration of nanorods. European Polymer Journal 2019, 112 , 186-194. https://doi.org/10.1016/j.eurpolymj.2019.01.012
    38. Rui Zhao, Siyu Chen, Bo Yuan, Xuening Chen, Xi Yang, Yueming Song, Hai Tang, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale 2019, 11 (6) , 2721-2732. https://doi.org/10.1039/C8NR09417A
    39. Purva Kodlekere, Andrij Pich. Functional Microgels for the Decoration of Biointerfaces. ChemNanoMat 2018, 4 (9) , 889-896. https://doi.org/10.1002/cnma.201800041
    40. Edmondo M. Benetti. Quasi‐3D‐Structured Interfaces by Polymer Brushes. Macromolecular Rapid Communications 2018, 39 (14) https://doi.org/10.1002/marc.201800189
    41. Sai Wu, Wang Du, Yiyuan Duan, Deteng Zhang, Yixiao Liu, Bingbing Wu, Xiaohui Zou, Hongwei Ouyang, Changyou Gao. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomaterialia 2018, 75 , 75-92. https://doi.org/10.1016/j.actbio.2018.05.046
    42. Danyang Li, Julien E. Gautrot. Design of Polymer Brushes for Cell Culture and Cellular Delivery. 2017, 557-603. https://doi.org/10.1002/9781119455042.ch20
    43. Lindy K Jang, Semin Kim, Jiwon Seo, Jae Young Lee. Facile and controllable electrochemical fabrication of cell-adhesive polypyrrole electrodes using pyrrole-RGD peptides. Biofabrication 2017, 9 (4) , 045007. https://doi.org/10.1088/1758-5090/aa92a2
    44. Giulia Morgese, Edmondo M. Benetti. Surface Functionalization of Biomaterials by Poly(2‐oxazoline)s. 2017, 457-485. https://doi.org/10.1002/9781118967904.ch15
    45. Giulia Morgese, Edmondo M. Benetti. Polyoxazoline biointerfaces by surface grafting. European Polymer Journal 2017, 88 , 470-485. https://doi.org/10.1016/j.eurpolymj.2016.11.003
    46. Juyi Li, Yingjie Yu, Kim Myungwoong, Kao Li, John Mikhail, Linxi Zhang, Chung-Chueh Chang, Dilip Gersappe, Marcia Simon, Christopher Ober, Miriam Rafailovich. Manipulation of cell adhesion and dynamics using RGD functionalized polymers. Journal of Materials Chemistry B 2017, 5 (31) , 6307-6316. https://doi.org/10.1039/C7TB01209H
    47. Inga Lilge, Holger Schönherr. Block Copolymer Brushes for Completely Decoupled Control of Determinants of Cell–Surface Interactions. Angewandte Chemie 2016, 128 (42) , 13308-13311. https://doi.org/10.1002/ange.201607078
    48. Inga Lilge, Holger Schönherr. Block Copolymer Brushes for Completely Decoupled Control of Determinants of Cell–Surface Interactions. Angewandte Chemie International Edition 2016, 55 (42) , 13114-13117. https://doi.org/10.1002/anie.201607078
    49. Qin Tu, Chang Tian, Tongtong Ma, Long Pang, Jinyi Wang. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids and Surfaces B: Biointerfaces 2016, 141 , 196-205. https://doi.org/10.1016/j.colsurfb.2016.01.046
    50. Khooi Y. Tan, Madeleine Ramstedt, Burcu Colak, Wilhelm T. S. Huck, Julien E. Gautrot. Study of thiol–ene chemistry on polymer brushes and application to surface patterning and protein adsorption. Polymer Chemistry 2016, 7 (4) , 979-990. https://doi.org/10.1039/C5PY01687H
    51. Qin Tu, Chao Ma, Chang Tian, Maosen Yuan, Xiang Han, Dong-En Wang, Chenyu Cao, Jinyi Wang. Quantum dots modified with quaternized poly(dimethylaminoethyl methacrylate) for selective recognition and killing of bacteria over mammalian cells. The Analyst 2016, 141 (11) , 3328-3336. https://doi.org/10.1039/C6AN00725B
    52. Michel Klein Gunnewiek, Andrea Di Luca, Hermannes Z. Bollemaat, Clemens A. van Blitterswijk, G. Julius Vancso, Lorenzo Moroni, Edmondo M. Benetti. Creeping Proteins in Microporous Structures: Polymer Brush‐Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials 2015, 4 (8) , 1169-1174. https://doi.org/10.1002/adhm.201400797
    53. Karol Wolski, Michał Szuwarzyński, Maciej Kopeć, Szczepan Zapotoczny. Ordered photo- and electroactive thin polymer layers. European Polymer Journal 2015, 65 , 155-170. https://doi.org/10.1016/j.eurpolymj.2015.01.031
    54. Solenne Desseaux, Harm-Anton Klok. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: Ligand co-presentation and 3D-localization. Biomaterials 2015, 44 , 24-35. https://doi.org/10.1016/j.biomaterials.2014.12.011
    55. Mónica Pérez-Perrino, Serena Molina, Rodrigo Navarro. Polymer Brushes with Precise Architectures for Molecular Biorecognition. 2015, 273-303. https://doi.org/10.1007/978-3-319-17061-9_10
    56. Maxime Boulet-Audet, Fritz Vollrath, Chris Holland. Identification and classification of silks using infrared spectroscopy. Journal of Experimental Biology 2015, 5 https://doi.org/10.1242/jeb.128306
    57. Y. Delaviz, J.P. Santerre, D.G. Cvitkovitch. Infection resistant biomaterials. 2015, 223-254. https://doi.org/10.1533/9780857097224.2.223
    58. Lorenzo Moroni, Michel Klein Gunnewiek, Edmondo M. Benetti. Polymer brush coatings regulating cell behavior: Passive interfaces turn into active. Acta Biomaterialia 2014, 10 (6) , 2367-2378. https://doi.org/10.1016/j.actbio.2014.02.048
    59. Szczepan Zapotoczny. Surface‐Grafted Polymer Brushes. 2013, 27-43. https://doi.org/10.1002/9783527649600.ch2
    60. Qin Tu, Jian-Chun Wang, Rui Liu, Yun Chen, Yanrong Zhang, Dong-En Wang, Mao-Sen Yuan, Juan Xu, Jinyi Wang. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials. Colloids and Surfaces B: Biointerfaces 2013, 108 , 34-43. https://doi.org/10.1016/j.colsurfb.2013.02.006
    61. Qin Tu, Jian-Chun Wang, Rui Liu, Yanrong Zhang, Juan Xu, Jianjun Liu, Mao-Sen Yuan, Wenming Liu, Jinyi Wang. Synthesis of polyethylene glycol- and sulfobetaine-conjugated zwitterionic poly(l-lactide) and assay of its antifouling properties. Colloids and Surfaces B: Biointerfaces 2013, 102 , 331-340. https://doi.org/10.1016/j.colsurfb.2012.08.025
    62. Qin Tu, Jian-Chun Wang, Rui Liu, Juan He, Yanrong Zhang, Shaofei Shen, Juan Xu, Jianjun Liu, Mao-Sen Yuan, Jinyi Wang. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Colloids and Surfaces B: Biointerfaces 2013, 102 , 361-370. https://doi.org/10.1016/j.colsurfb.2012.08.033
    63. Peter Schön, Edit Kutnyanszky, Bas ten Donkelaar, M. Gabriella Santonicola, Tugba Tecim, Nick Aldred, Anthony S. Clare, G. Julius Vancso. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy. Colloids and Surfaces B: Biointerfaces 2013, 102 , 923-930. https://doi.org/10.1016/j.colsurfb.2012.09.021
    64. Hui Jiang, Fu-Jian Xu. Biomolecule-functionalized polymer brushes. Chemical Society Reviews 2013, 42 (8) , 3394. https://doi.org/10.1039/c2cs35453e
    65. Melba Navarro, Josep A. Planell. Composite Scaffolds for Bone Tissue Regeneration. 2012, 1-14. https://doi.org/10.1002/9781118097298.weoc050
    66. Casey J. Galvin, Jan Genzer. Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Progress in Polymer Science 2012, 37 (7) , 871-906. https://doi.org/10.1016/j.progpolymsci.2011.12.001
    67. Michel Klein Gunnewiek, Andrea Di Luca, Xiaofeng Sui, Clemens A. van Blitterswijk, Lorenzo Moroni, G. Julius Vancso. Controlled Surface Initiated Polymerization of N ‐Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment. Israel Journal of Chemistry 2012, 52 (3-4) , 339-346. https://doi.org/10.1002/ijch.201100118
    68. Szczepan Zapotoczny. Stimuli Responsive Polymers for Nanoengineering of Biointerfaces. 2012, 51-78. https://doi.org/10.1007/978-1-61779-388-2_4
    69. Edit Kutnyanszky, G. Julius Vancso. Nanomechanical properties of polymer brushes by colloidal AFM probes. European Polymer Journal 2012, 48 (1) , 8-15. https://doi.org/10.1016/j.eurpolymj.2011.09.008
    70. Morten Meldal , Boqian Wu, Frederik Diness, Roice Michael, Grith Hagel . Metabolically Stable Cellular Adhesion to Inert Surfaces. ChemBioChem 2011, 12 (16) , 2463-2470. https://doi.org/10.1002/cbic.201100382
    71. Zhiyun Zhang, Jianchun Wang, Qin Tu, Nan Nie, Jun Sha, Wenming Liu, Rui Liu, Yanrong Zhang, Jinyi Wang. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Colloids and Surfaces B: Biointerfaces 2011, 88 (1) , 85-92. https://doi.org/10.1016/j.colsurfb.2011.06.019
    72. Yuhong Ma, Lianying Liu, Wantai Yang. Photo-induced living/controlled surface radical grafting polymerization and its application in fabricating 3-D micro-architectures on the surface of flat/particulate organic substrates. Polymer 2011, 52 (19) , 4159-4173. https://doi.org/10.1016/j.polymer.2011.07.027
    73. Qian Yu, Yanxia Zhang, Hongwei Wang, John Brash, Hong Chen. Anti-fouling bioactive surfaces. Acta Biomaterialia 2011, 7 (4) , 1550-1557. https://doi.org/10.1016/j.actbio.2010.12.021
    74. A. Heiskanen, J. Emnéus. Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. 2011, 1-104. https://doi.org/10.1007/978-1-4614-0347-0_1
    75. Xiaofeng Sui, Szczepan Zapotoczny, Edmondo M. Benetti, Mine Memesa, Mark A. Hempenius, G. Julius Vancso. Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polymer Chemistry 2011, 2 (4) , 879. https://doi.org/10.1039/c0py00393j
    76. Neil Ayres. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1 (6) , 769-777. https://doi.org/10.1039/B9PY00246D
    77. Xiaofeng Sui, Szczepan Zapotoczny, Edmondo M. Benetti, Peter Schön, G. Julius Vancso. Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. Journal of Materials Chemistry 2010, 20 (24) , 4981. https://doi.org/10.1039/b924392e
    78. Edmondo Benetti, Melba Navarro, Szczepan Zapotoczny, G. Julius Vancso. Stimuli‐Responsive Polymer Brushes. 2009, 125-144. https://doi.org/10.1002/9783527628599.ch6
    79. Lucia Battistini, Paola Burreddu, Paola Carta, Gloria Rassu, Luciana Auzzas, Claudio Curti, Franca Zanardi, Leonardo Manzoni, Elena M. V. Araldi, Carlo Scolastico, Giovanni Casiraghi. 4-Aminoproline-based arginine-glycine-aspartate integrin binders with exposed ligation points: practical in-solution synthesis, conjugation and binding affinity evaluation. Organic & Biomolecular Chemistry 2009, 7 (23) , 4924. https://doi.org/10.1039/b914836a

    Langmuir

    Cite this: Langmuir 2008, 24, 19, 10996–11002
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la800999y
    Published September 4, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1749

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.