Reversible Electrochemical Switching of Polyelectrolyte Brush Surface Energy Using Electroactive CounterionsClick to copy article linkArticle link copied!
Abstract

Polyelectrolyte brushes with electroactive counterions provide an effective platform for surfaces with electrochemically switchable wetting properties. Polycationic poly(2-(methacryloyloxy)-ethyl-trimethyl-ammonium chloride) (PMETAC) brushes with ferricyanide ions ([Fe(CN)6]3−) were used as the electrochemically addressable surface. After a negative potential of −0.5 V was applied to the [Fe(CN)6]3−-coordinated PMETAC brushes, the [Fe(CN)6]3− species were reduced to [Fe(CN)6]4−, and the surface became more hydrophilic. By application of alternating negative and positive potentials, PMETAC brushes were switched reversibly between the reduced state ([Fe(CN)6]4−) and oxidized state ([Fe(CN)6]3−), resulting in reversible changes in water contact angles. The time required for a complete contact angle change can be tuned from 1 to 20 s, by changing the brush thickness and the concentration of supporting electrolyte. We present an electrochemical brush transport model that includes the electrochemical reaction at the charged electrode and describes ion transport through the brush phase covering the electrode. The model quantitatively describes the response of the contact angle (hydrophilicity) to the applied voltage as a function of background ionic strength and brush thickness, supporting the proposed mechanism of ion transport through the brush and electrochemical reaction at the electrode. A typical diffusion constant for ferricyanide in a PMETAC brush of any thickness in 5 mM KCl supporting electrolyte was found to be 2 × 10−15 m2 s−1, 5 to 6 orders of magnitude smaller than its bulk solution value.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 64 publications.
- Shohei Shiomoto, Kazuo Yamaguchi, Motoyasu Kobayashi. Time Evolution of Precursor Thin Film of Water on Polyelectrolyte Brush. Langmuir 2018, 34
(35)
, 10276-10286. https://doi.org/10.1021/acs.langmuir.8b02070
- Justin O. Zoppe, Nariye Cavusoglu Ataman, Piotr Mocny, Jian Wang, John Moraes, and Harm-Anton Klok . Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews 2017, 117
(3)
, 1105-1318. https://doi.org/10.1021/acs.chemrev.6b00314
- Daiki Murakami, Yuki Norizoe, Yuji Higaki, Atsushi Takahara, and Hiroshi Jinnai . Direct Characterization of In-Plane Phase Separation in Polystyrene Brush/Cyclohexane System. Macromolecules 2016, 49
(13)
, 4862-4866. https://doi.org/10.1021/acs.macromol.6b00151
- Simona Maccarrone, Olga Mergel, Felix A. Plamper, Olaf Holderer, and Dieter Richter . Electrostatic Effects on the Internal Dynamics of Redox-Sensitive Microgel Systems. Macromolecules 2016, 49
(5)
, 1911-1917. https://doi.org/10.1021/acs.macromol.5b02544
- Olga Mergel, Patrick Wünnemann, Ulrich Simon, Alexander Böker, and Felix A. Plamper . Microgel Size Modulation by Electrochemical Switching. Chemistry of Materials 2015, 27
(21)
, 7306-7312. https://doi.org/10.1021/acs.chemmater.5b02740
- Olga Mergel, Arjan P. H. Gelissen, Patrick Wünnemann, Alexander Böker, Ulrich Simon, and Felix A. Plamper . Selective Packaging of Ferricyanide within Thermoresponsive Microgels. The Journal of Physical Chemistry C 2014, 118
(45)
, 26199-26211. https://doi.org/10.1021/jp508711k
- Daiki Murakami, Ai Takenaka, Motoyasu Kobayashi, Hiroshi Jinnai, and Atsushi Takahara . Measurement of the Electrostatic Interaction between Polyelectrolyte Brush Surfaces by Optical Tweezers. Langmuir 2013, 29
(52)
, 16093-16097. https://doi.org/10.1021/la404133e
- Teodoro Alonso-García, Claudio A. Gervasi, María José Rodríguez-Presa, Eduart Gutiérrez-Pineda, Sergio E. Moya, and Omar Azzaroni . Temperature-Dependent Transport Properties of Poly[2-(methacryloyloxy)ethyl]trimethylammonium Chloride Brushes Resulting from Ion Specific Effects. The Journal of Physical Chemistry C 2013, 117
(50)
, 26680-26688. https://doi.org/10.1021/jp410123d
- Teodoro Alonso-García, María José Rodríguez-Presa, Claudio Gervasi, Sergio Moya, and Omar Azzaroni . Electrochemical Determination of the Glass Transition Temperature of Thin Polyelectrolyte Brushes at Solid–Liquid Interfaces by Impedance Spectroscopy. Analytical Chemistry 2013, 85
(14)
, 6561-6565. https://doi.org/10.1021/ac4007655
- Daiki Murakami, Motoyasu Kobayashi, Taro Moriwaki, Yuka Ikemoto, Hiroshi Jinnai, and Atsushi Takahara . Spreading and Structuring of Water on Superhydrophilic Polyelectrolyte Brush Surfaces. Langmuir 2013, 29
(4)
, 1148-1151. https://doi.org/10.1021/la304697q
- Carmen Reznik and Christy F. Landes . Transport in Supported Polyelectrolyte Brushes. Accounts of Chemical Research 2012, 45
(11)
, 1927-1935. https://doi.org/10.1021/ar3001537
- Yiwen Pei, Jadranka Travas-Sedjic, and David E. Williams . Electrochemical Switching of Conformation of Random Polyampholyte Brushes Grafted onto Polypyrrole. Langmuir 2012, 28
(37)
, 13241-13248. https://doi.org/10.1021/la302202k
- Motoyasu Kobayashi, Yuki Terayama, Hiroki Yamaguchi, Masami Terada, Daiki Murakami, Kazuhiko Ishihara, and Atsushi Takahara . Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir 2012, 28
(18)
, 7212-7222. https://doi.org/10.1021/la301033h
- Percy Calvo-Marzal, Mark P. Delaney, Jeffrey T. Auletta, Tianqi Pan, Nicholas M. Perri, Lisa M. Weiland, David H. Waldeck, William W. Clark, and Tara Y. Meyer . Manipulating Mechanical Properties with Electricity: Electroplastic Elastomer Hydrogels. ACS Macro Letters 2012, 1
(1)
, 204-208. https://doi.org/10.1021/mz2001548
- Johanna Bünsow, Tim S. Kelby and Wilhelm T. S. Huck. Polymer Brushes: Routes toward Mechanosensitive Surfaces. Accounts of Chemical Research 2010, 43
(3)
, 466-474. https://doi.org/10.1021/ar900237r
- Tsz Kin Tam, Marcos Pita, Oleksandr Trotsenko, Mikhail Motornov, Ihor Tokarev, Jan Halámek, Sergiy Minko and Evgeny Katz. Reversible “Closing” of an Electrode Interface Functionalized with a Polymer Brush by an Electrochemical Signal. Langmuir 2010, 26
(6)
, 4506-4513. https://doi.org/10.1021/la903527p
- Stefanie Kessel, Stephan Schmidt, Renate Müller, Erik Wischerhoff, André Laschewsky, Jean-François Lutz, Katja Uhlig, Andreas Lankenau, Claus Duschl and Andreas Fery . Thermoresponsive PEG-Based Polymer Layers: Surface Characterization with AFM Force Measurements. Langmuir 2010, 26
(5)
, 3462-3467. https://doi.org/10.1021/la903007v
- Evan Spruijt, Martien A. Cohen Stuart and Jasper van der Gucht. Dynamic Force Spectroscopy of Oppositely Charged Polyelectrolyte Brushes. Macromolecules 2010, 43
(3)
, 1543-1550. https://doi.org/10.1021/ma902403a
- Raphael Barbey, Laurent Lavanant, Dusko Paripovic, Nicolas Schüwer, Caroline Sugnaux, Stefano Tugulu, and Harm-Anton Klok. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chemical Reviews 2009, 109
(11)
, 5437-5527. https://doi.org/10.1021/cr900045a
- Felix A. Plamper, Lasse Murtomäki, Andreas Walther, Kyösti Kontturi and Heikki Tenhu . e-Micellization: Electrochemical, Reversible Switching of Polymer Aggregation. Macromolecules 2009, 42
(19)
, 7254-7257. https://doi.org/10.1021/ma901389d
- M. J. Rodríguez Presa, L. M. Gassa, O. Azzaroni and C. A. Gervasi . Estimating Diffusion Coefficients of Probe Molecules into Polyelectrolyte Brushes by Electrochemical Impedance Spectroscopy. Analytical Chemistry 2009, 81
(19)
, 7936-7943. https://doi.org/10.1021/ac9009808
- C. Combellas, F. Kanoufi, S. Sanjuan, C. Slim and Y. Tran . Electrochemical and Spectroscopic Investigation of Counterions Exchange in Polyelectrolyte Brushes. Langmuir 2009, 25
(9)
, 5360-5370. https://doi.org/10.1021/la8034177
- Jian Wang, Fei Hu, Sabrina Sant, Kanghyun Chu, Lukas Riemer, Dragan Damjanovic, S. Michael Kilbey, Harm‐Anton Klok. Pyroelectric Polyelectrolyte Brushes. Advanced Materials 2024, 36
(14)
https://doi.org/10.1002/adma.202307038
- Adnan Murad Bhayo, Yang Yang, Xiangming He. Polymer brushes: Synthesis, characterization, properties and applications. Progress in Materials Science 2022, 130 , 101000. https://doi.org/10.1016/j.pmatsci.2022.101000
- Elza Chu, Alexander Sidorenko. Polymer Brushes with Chemical Responses. 2022, 413-450. https://doi.org/10.1039/9781839166136-00413
- Santiago E. Herrera, Maximiliano L. Agazzi, M. Lorena Cortez, Waldemar A. Marmisollé, Mario Tagliazucchi, Omar Azzaroni. Redox-active polyamine-salt aggregates as multistimuli-responsive soft nanoparticles. Physical Chemistry Chemical Physics 2020, 22
(14)
, 7440-7450. https://doi.org/10.1039/D0CP00077A
- Rosica Mincheva, Jean‐Marie Raquez. The Surface of Polymers. 2019, 1-30. https://doi.org/10.1002/9783527819249.ch1
- Yuxing Ji, Xiankun Lin, Daolin Wang, Chang Zhou, Yingjie Wu, Qiang He. Continuously Variable Regulation of the Speed of Bubble‐Propelled Janus Microcapsule Motors Based on Salt‐Responsive Polyelectrolyte Brushes. Chemistry – An Asian Journal 2019, 14
(14)
, 2450-2455. https://doi.org/10.1002/asia.201801716
- Nikolay V Ryzhkov, Nadzeya Brezhneva, Ekaterina V Skorb. Feedback mechanisms at inorganic–polyelectrolyte interfaces for applied materials. Surface Innovations 2019, 7
(3-4)
, 145-167. https://doi.org/10.1680/jsuin.19.00006
- Nikolay V. Ryzhkov, Pavel Nesterov, Natalia A. Mamchik, Stanislav O. Yurchenko, Ekaterina V. Skorb. Localization of Ion Concentration Gradients for Logic Operation. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00419
- Vincent Ball, Jérôme F.L. Duval. Ultra-slow diffusion of hexacyanoferrate anions in poly(diallyldimethyl ammonium chloride)-poly(acrylic acid sodium salt) multilayer films. Journal of Colloid and Interface Science 2019, 539 , 306-314. https://doi.org/10.1016/j.jcis.2018.12.073
- Krishnamoorthy Silambarasan, James Joseph. Electrochemical Diagnosis of Chemical Switch: Impact of Structural Changes on Charge Transport Mechanism of “Redox Anion Bound Polysilsesquioxane” Film. ChemElectroChem 2018, 5
(19)
, 2808-2815. https://doi.org/10.1002/celc.201800799
- Sabine Schneider, Corinna Janssen, Elisabeth Klindtworth, Olga Mergel, Martin Möller, Felix Plamper. Influence of Polycation Composition on Electrochemical Film Formation. Polymers 2018, 10
(4)
, 429. https://doi.org/10.3390/polym10040429
- Sabri Taleb, Thierry Darmanin, Frédéric Guittard. Switchable and Reversible Superhydrophobic Surfaces: Part One. 2018https://doi.org/10.5772/intechopen.73022
- A R Hall, M Geoghegan. Polymers and biopolymers at interfaces. Reports on Progress in Physics 2018, 81
(3)
, 036601. https://doi.org/10.1088/1361-6633/aa9e9c
- Xianyong Lu, Zhuang Kong, Guozheng Xiao, Chao Teng, Yunan Li, Guangyuan Ren, Shuangbao Wang, Ying Zhu, Lei Jiang. Polypyrrole Whelk‐Like Arrays toward Robust Controlling Manipulation of Organic Droplets Underwater. Small 2017, 13
(40)
https://doi.org/10.1002/smll.201701938
- Olga Mergel, Philipp T. Kühn, Sabine Schneider, Ulrich Simon, Felix A. Plamper. Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes. Electrochimica Acta 2017, 232 , 98-105. https://doi.org/10.1016/j.electacta.2017.02.102
- Narendra Pal Singh Chauhan, Sangeeta Kalal, Priya Juneja, Pinki B. Punjabi. Functionalized Surfaces: Bacterial Adhesion. 2016, 3509-3525. https://doi.org/10.1081/E-EBPP-120050553
- G. Panzarasa, G. Soliveri, V. Pifferi. Tuning the electrochemical properties of silicon wafer by grafted-from micropatterned polymer brushes. Journal of Materials Chemistry C 2016, 4
(2)
, 340-347. https://doi.org/10.1039/C5TC03367E
- Karol Wolski, Michał Szuwarzyński, Maciej Kopeć, Szczepan Zapotoczny. Ordered photo- and electroactive thin polymer layers. European Polymer Journal 2015, 65 , 155-170. https://doi.org/10.1016/j.eurpolymj.2015.01.031
- Natalie Wagner, Patrick Theato. Light-induced wettability changes on polymer surfaces. Polymer 2014, 55
(16)
, 3436-3453. https://doi.org/10.1016/j.polymer.2014.05.033
- Felix A. Plamper. Changing Polymer Solvation by Electrochemical Means: Basics and Applications. 2014, 125-212. https://doi.org/10.1007/12_2014_284
- Javier Casado-Montenegro, Marta Mas-Torrent, Francisco Otón, Núria Crivillers, Jaume Veciana, Concepció Rovira. Electrochemical and chemical tuning of the surface wettability of tetrathiafulvalene self-assembled monolayers. Chemical Communications 2013, 49
(73)
, 8084. https://doi.org/10.1039/c3cc44081h
- Casey J. Galvin, Jan Genzer. Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Progress in Polymer Science 2012, 37
(7)
, 871-906. https://doi.org/10.1016/j.progpolymsci.2011.12.001
- Sergio Enrique Moya, Jagoba Jon Iturri Ramos, Irantzu Llarena. Templation, Water Content, and Zeta Potential of Polyelectrolyte Nanoassemblies: a Comparison Between Polyelectrolyte Multilayers and Brushes. Macromolecular Rapid Communications 2012, 33
(12)
, 1022-1035. https://doi.org/10.1002/marc.201100874
- Xinjie Liu, Yongmin Liang, Feng Zhou, Weimin Liu. Extreme wettability and tunable adhesion: biomimicking beyond nature?. Soft Matter 2012, 8
(7)
, 2070-2086. https://doi.org/10.1039/C1SM07003G
- Michael P. Weir, Andrew J. Parnell. Water Soluble Responsive Polymer Brushes. Polymers 2011, 3
(4)
, 2107-2132. https://doi.org/10.3390/polym3042107
- Crispin Amiri Naini, Steffen Franzka, Sven Frost, Mathias Ulbricht, Nils Hartmann. Untersuchungen zur intrinsischen Schaltkinetik ultradünner thermoresponsiver Polymerbürsten. Angewandte Chemie 2011, 123
(19)
, 4606-4609. https://doi.org/10.1002/ange.201100140
- Crispin Amiri Naini, Steffen Franzka, Sven Frost, Mathias Ulbricht, Nils Hartmann. Probing the Intrinsic Switching Kinetics of Ultrathin Thermoresponsive Polymer Brushes. Angewandte Chemie International Edition 2011, 50
(19)
, 4513-4516. https://doi.org/10.1002/anie.201100140
- Omar Azzaroni, Claudio Gervasi. Characterization of Responsive Polymer Brushes at Solid/Liquid Interfaces by Electrochemical Impedance Spectroscopy. 2011, 809-830. https://doi.org/10.1002/9783527638482.ch26
- Sara V. Orski, Kristen H. Fries, S. Kyle Sontag, Jason Locklin. Fabrication of nanostructures using polymer brushes. Journal of Materials Chemistry 2011, 21
(37)
, 14135. https://doi.org/10.1039/c1jm11039j
- Lei Wang, Hongwei Wang, Lin Yuan, Weikang Yang, Zhaoqiang Wu, Hong Chen. Step-wise control of protein adsorption and bacterial attachment on a nanowire array surface: tuning surface wettability by salt concentration. Journal of Materials Chemistry 2011, 21
(36)
, 13920. https://doi.org/10.1039/c1jm12148k
- Feng Zhou, Bo Yu. Polymer Brushes on Surfaces. 2010, 175-207. https://doi.org/10.1201/b10479-6
- Shuying He, Biye Ren, Xinxing Liu, Zhen Tong. Reversible Electrogelation in Poly(acrylic acid) Aqueous Solutions Triggered by Redox Reactions of Counterions. Macromolecular Chemistry and Physics 2010, 211
(23)
, 2497-2502. https://doi.org/10.1002/macp.201000429
- Tsz Kin Tam, Marcos Pita, Mikhail Motornov, Ihor Tokarev, Sergiy Minko, Evgeny Katz. Electrochemical Nanotransistor from Mixed‐Polymer Brushes. Advanced Materials 2010, 22
(16)
, 1863-1866. https://doi.org/10.1002/adma.200903610
- Tarik Matrab, Fanny Hauquier, Catherine Combellas, Frédéric Kanoufi. Scanning Electron Microscopy Investigation of Molecular Transport and Reactivity within Polymer Brushes. ChemPhysChem 2010, 11
(3)
, 670-682. https://doi.org/10.1002/cphc.200900766
- Gloria K. Olivier, Donghoon Shin, Joelle Frechette. Factors governing the reversible change in ionic permeability of a low-density monolayer. Journal of Electroanalytical Chemistry 2010, 639
(1-2)
, 50-58. https://doi.org/10.1016/j.jelechem.2009.11.013
- Tsz Kin Tam, Marcos Pita, Mikhail Motornov, Ihor Tokarev, Sergiy Minko, Evgeny Katz. Modified Electrodes with Switchable Selectivity for Cationic and Anionic Redox Species. Electroanalysis 2010, 22
(1)
, 35-40. https://doi.org/10.1002/elan.200900442
- Erik Wischerhoff, Nezha Badi, Jean-François Lutz, André Laschewsky. Smart bioactive surfaces. Soft Matter 2010, 6
(4)
, 705-713. https://doi.org/10.1039/B913594D
- Bingwei Xin, Jingcheng Hao. Reversibly switchable wettability. Chem. Soc. Rev. 2010, 39
(2)
, 769-782. https://doi.org/10.1039/B913622C
- Neil Ayres. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1
(6)
, 769-777. https://doi.org/10.1039/B9PY00246D
- Weijie Jia, Yiguang Wu, Jing Huang, Qi An, Dan Xu, Yinan Wu, Fengting Li, Guangtao Li. Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. Journal of Materials Chemistry 2010, 20
(39)
, 8617. https://doi.org/10.1039/c0jm01179g
- Ihor Tokarev, Mikhail Motornov, Sergiy Minko. Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. Journal of Materials Chemistry 2009, 19
(38)
, 6932. https://doi.org/10.1039/b906765e
- Bo Yu, Haiyuan Hu, Daoai Wang, Wilhelm T. S. Huck, Feng Zhou, Weimin Liu. Electrolyte-modulated electrochemistry and electrocatalysis on ferrocene-terminated polyelectrolyte brushes. Journal of Materials Chemistry 2009, 19
(43)
, 8129. https://doi.org/10.1039/b910279e
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.