ACS Publications. Most Trusted. Most Cited. Most Read
Vimentin Intermediate Filament Formation: In Vitro Measurement and Mathematical Modeling of the Filament Length Distribution during Assembly
My Activity
    Article

    Vimentin Intermediate Filament Formation: In Vitro Measurement and Mathematical Modeling of the Filament Length Distribution during Assembly
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Mathematics, 342 Machray Hall, University of Manitoba, Winnipeg, MB, Canada R3L 2N2
    § Division of Biophysics of Macromolecules
    Division of Molecular Genetics
    German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
    Department of Internal Medicine I, University Hospital Ulm, D-89070 Ulm, Germany
    *Corresponding authors. E-mail: [email protected]; [email protected]
    #These authors contributed equally to this work
    ▽Current address: Research Group Microenvironment of Tumor Cell Invasion, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany.
    Other Access Options

    Langmuir

    Cite this: Langmuir 2009, 25, 15, 8817–8823
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la900509r
    Published May 13, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The salt-induced in vitro assembly of cytoplasmic intermediate filament (IF) proteins such as vimentin is characterized by a very rapid lateral association of soluble tetrameric subunits into 60-nm-long full-width “unit-length” filaments (ULFs). We have demonstrated for this prototype IF protein that filament elongation occurs by the longitudinal annealing of ULFs into short IFs. These IFs further longitudinally anneal and thus constitute a progressively elongating filament population that over time yields filaments of several μm in length. Previously, we provided a mathematical model for the kinetics of the assembly process based on the average length distribution of filaments as determined by time-lapse electron and atomic force microscopy. Thereby, we were able to substantiate the concept that end-to-end-annealing of both ULFs and short filaments is obligatory for the formation of long IFs (Kirmse, R.; Portet, S.; Mücke, N. Aebi, U.; Herrmann, H.; Langowski, J. J. Biol. Chem.2007, 282, 18563−18572). As the next step in understanding the mechanics of IF formation, we have expanded our mathematical model to describe the quantitative aspects of IF assembly by taking into account geometry constraints as well as the diffusion properties of rodlike linear aggregates. Thereby, we have developed a robust model for the time-dependent filament length distribution of IFs under standard conditions.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Part of the Molecular and Polymer Gels; Materials with Self-Assembled Fibrillar Networks special issue.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 45 publications.

    1. Monika Wasilewska, Paulina Żeliszewska, Katarzyna Pogoda, Piotr Deptuła, Robert Bucki, Zbigniew Adamczyk. Human Vimentin Layers on Solid Substrates: Adsorption Kinetics and Corona Formation Investigations. Biomacromolecules 2022, 23 (8) , 3308-3317. https://doi.org/10.1021/acs.biomac.2c00415
    2. Gen Li, Behnam Pourdeyhimi, Alexander L. Yarin. Mutual Sliding Motion of Wrapped Filaments for Biomedical and Engineering Applications. Langmuir 2020, 36 (16) , 4357-4369. https://doi.org/10.1021/acs.langmuir.0c00446
    3. Seyed Meysam Hashemnejad, Md Masrul Huda, Neeraj Rai, and Santanu Kundu . Molecular Insights into Gelation of Di-Fmoc-l-Lysine in Organic Solvent–Water Mixtures. ACS Omega 2017, 2 (5) , 1864-1874. https://doi.org/10.1021/acsomega.7b00108
    4. Jack F. Douglas. Theoretical Issues Relating to Thermally Reversible Gelation by Supermolecular Fiber Formation. Langmuir 2009, 25 (15) , 8386-8391. https://doi.org/10.1021/la9016245
    5. Pieter-Jan Vermeire, Anastasia V. Lilina, Hani M. Hashim, Lada Dlabolová, Jan Fiala, Steven Beelen, Zdeněk Kukačka, Jeremy N. Harvey, Petr Novák, Sergei V. Strelkov. Molecular structure of soluble vimentin tetramers. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-34814-4
    6. Valerio Sorichetti, Martin Lenz. Transverse Fluctuations Control the Assembly of Semiflexible Filaments. Physical Review Letters 2023, 131 (22) https://doi.org/10.1103/PhysRevLett.131.228401
    7. Youngmin Park, Cécile Leduc, Sandrine Etienne-Manneville, Stéphanie Portet. Models of vimentin organization under actin-driven transport. Physical Review E 2023, 107 (5) https://doi.org/10.1103/PhysRevE.107.054408
    8. Quang D. Tran, Valerio Sorichetti, Gerard Pehau-Arnaudet, Martin Lenz, Cécile Leduc. Fragmentation and Entanglement Limit Vimentin Intermediate Filament Assembly. Physical Review X 2023, 13 (1) https://doi.org/10.1103/PhysRevX.13.011014
    9. Lovis Schween, Norbert Mücke, Stéphanie Portet, Wolfgang H. Goldmann, Harald Herrmann, Ben Fabry. Dual-wavelength stopped-flow analysis of the lateral and longitudinal assembly kinetics of vimentin. Biophysical Journal 2022, 121 (20) , 3850-3861. https://doi.org/10.1016/j.bpj.2022.09.008
    10. C. Lorenz, S. Köster. Multiscale architecture: Mechanics of composite cytoskeletal networks. Biophysics Reviews 2022, 3 (3) https://doi.org/10.1063/5.0099405
    11. Masashi Sato, Takumi Ishizaka, Jun-ichi Hotta, Kuniyuki Hatori. Fluorescence microscopic imaging of single desmin intermediate filaments elongated by the presence of divalent cations in vitro. Biophysical Chemistry 2022, 287 , 106839. https://doi.org/10.1016/j.bpc.2022.106839
    12. Norbert Mücke, Tomasz Wocjan, Marine Jacquier, Harald Herrmann, Stéphanie Portet. A general mathematical model for the in vitro assembly dynamics of intermediate filament proteins. Biophysical Journal 2022, 121 (6) , 1094-1104. https://doi.org/10.1016/j.bpj.2022.02.001
    13. Pieter-Jan Vermeire, Giel Stalmans, Anastasia V. Lilina, Jan Fiala, Petr Novak, Harald Herrmann, Sergei V. Strelkov. Molecular Interactions Driving Intermediate Filament Assembly. Cells 2021, 10 (9) , 2457. https://doi.org/10.3390/cells10092457
    14. Eleonora Perego, Sarah Köster. Exploring early time points of vimentin assembly in flow by fluorescence fluctuation spectroscopy. Lab on a Chip 2021, 21 (4) , 735-745. https://doi.org/10.1039/D0LC00985G
    15. Ala Javadi, Niklas Söderholm, Annelie Olofsson, Klas Flärdh, Linda Sandblad. Assembly mechanisms of the bacterial cytoskeletal protein FilP. Life Science Alliance 2019, 2 (3) , e201800290. https://doi.org/10.26508/lsa.201800290
    16. Stéphanie Portet, Cécile Leduc, Sandrine Etienne-Manneville, John Dallon. Deciphering the transport of elastic filaments by antagonistic motor proteins. Physical Review E 2019, 99 (4) https://doi.org/10.1103/PhysRevE.99.042414
    17. Carlos G. Lopez, Oliva Saldanha, Anders Aufderhorst-Roberts, Cristina Martinez-Torres, Merel Kuijs, Gijsje H. Koenderink, Sarah Köster, Klaus Huber. Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. Soft Matter 2018, 14 (42) , 8445-8454. https://doi.org/10.1039/C8SM01007B
    18. Norbert Mücke, Lara Kämmerer, Stefan Winheim, Robert Kirmse, Jan Krieger, Maria Mildenberger, Jochen Baßler, Ed Hurt, Wolfgang H. Goldmann, Ueli Aebi, Katalin Toth, Jörg Langowski, Harald Herrmann. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophysical Journal 2018, 114 (10) , 2408-2418. https://doi.org/10.1016/j.bpj.2018.04.032
    19. Duane P. Harland, A. John McKinnon. Macrofibril Formation. 2018, 155-169. https://doi.org/10.1007/978-981-10-8195-8_11
    20. Chengjun Sun, Julien Arino, Stéphanie Portet. Intermediate filament dynamics: Disassembly regulation. International Journal of Biomathematics 2017, 10 (01) , 1750015. https://doi.org/10.1142/S1793524517500152
    21. Harald Herrmann, Ueli Aebi. Intermediate Filaments: Structure and Assembly. Cold Spring Harbor Perspectives in Biology 2016, 8 (11) , a018242. https://doi.org/10.1101/cshperspect.a018242
    22. Carlos G. Lopez, Oliva Saldanha, Klaus Huber, Sarah Köster. Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study. Proceedings of the National Academy of Sciences 2016, 113 (40) , 11152-11157. https://doi.org/10.1073/pnas.1606372113
    23. Norbert Mücke, Stefan Winheim, Holger Merlitz, Jan Buchholz, Jörg Langowski, Harald Herrmann, . In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLOS ONE 2016, 11 (6) , e0157451. https://doi.org/10.1371/journal.pone.0157451
    24. Soufi Nafeey, Ines Martin, Tatiana Felder, Paul Walther, Edward Felder. Branching of keratin intermediate filaments. Journal of Structural Biology 2016, 194 (3) , 415-422. https://doi.org/10.1016/j.jsb.2016.03.023
    25. Oliva Saldanha, Martha E. Brennich, Manfred Burghammer, Harald Herrmann, Sarah Köster. The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. Biomicrofluidics 2016, 10 (2) https://doi.org/10.1063/1.4943916
    26. Karen M. Ridge, Dale Shumaker, Amélie Robert, Caroline Hookway, Vladimir I. Gelfand, Paul A. Janmey, Jason Lowery, Ming Guo, David A. Weitz, Edward Kuczmarski, Robert D. Goldman. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. 2016, 389-426. https://doi.org/10.1016/bs.mie.2015.09.036
    27. I. Martin, M. Moch, T. Neckernuss, S. Paschke, H. Herrmann, O. Marti. Both monovalent cations and plectin are potent modulators of mechanical properties of keratin K8/K18 networks. Soft Matter 2016, 12 (33) , 6964-6974. https://doi.org/10.1039/C6SM00977H
    28. Johanna Block, Viktor Schroeder, Paul Pawelzyk, Norbert Willenbacher, Sarah Köster. Physical properties of cytoplasmic intermediate filaments. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015, 1853 (11) , 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009
    29. Ines Martin, Anke Leitner, Paul Walther, Harald Herrmann, Othmar Marti. Model-based analysis of keratin intermediate filament assembly. Journal of Physics D: Applied Physics 2015, 48 (37) , 375401. https://doi.org/10.1088/0022-3727/48/37/375401
    30. Gimena dos Santos, Micah R. Rogel, Margaret A. Baker, James R. Troken, Daniela Urich, Luisa Morales-Nebreda, Joseph A. Sennello, Mikhail A. Kutuzov, Albert Sitikov, Jennifer M. Davis, Anna P. Lam, Paul Cheresh, David Kamp, Dale K. Shumaker, G. R. Scott Budinger, Karen M. Ridge. Vimentin regulates activation of the NLRP3 inflammasome. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms7574
    31. Bernd Nöding, Harald Herrmann, Sarah Köster. Direct Observation of Subunit Exchange along Mature Vimentin Intermediate Filaments. Biophysical Journal 2014, 107 (12) , 2923-2931. https://doi.org/10.1016/j.bpj.2014.09.050
    32. Christian Dammann, Sarah Köster. Dynamics of counterion-induced attraction between vimentin filaments followed in microfluidic drops. Lab Chip 2014, 14 (15) , 2681-2687. https://doi.org/10.1039/C3LC51418H
    33. Martha E. Brennich, Susanne Bauch, Ulla Vainio, Tatjana Wedig, Harald Herrmann, Sarah Köster. Impact of ion valency on the assembly of vimentin studied by quantitative small angle X-ray scattering. Soft Matter 2014, 10 (12) , 2059-2068. https://doi.org/10.1039/C3SM52532E
    34. Stéphanie Portet. Dynamics of in vitro intermediate filament length distributions. Journal of Theoretical Biology 2013, 332 , 20-29. https://doi.org/10.1016/j.jtbi.2013.04.004
    35. Atsuko Uchida, Gülsen Çolakoğlu, Lina Wang, Paula C. Monsma, Anthony Brown. Severing and end-to-end annealing of neurofilaments in neurons. Proceedings of the National Academy of Sciences 2013, 110 (29) https://doi.org/10.1073/pnas.1221835110
    36. Jayne L. Elliott, Ming Der Perng, Alan R. Prescott, Karin A. Jansen, Gijsje H. Koenderink, Roy A. Quinlan. The specificity of the interaction between α B-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philosophical Transactions of the Royal Society B: Biological Sciences 2013, 368 (1617) , 20120375. https://doi.org/10.1098/rstb.2012.0375
    37. Christian Dammann, Bernd Nöding, Sarah Köster. Vimentin networks at tunable ion-concentration in microfluidic drops. Biomicrofluidics 2012, 6 (2) https://doi.org/10.1063/1.4705103
    38. Bernd Nöding, Sarah Köster. Intermediate Filaments in Small Configuration Spaces. Physical Review Letters 2012, 108 (8) https://doi.org/10.1103/PhysRevLett.108.088101
    39. P.A. Janmey, F.C. MacKintosh. Polymers of the Cytoskeleton. 2012, 183-200. https://doi.org/10.1016/B978-0-444-53349-4.00249-1
    40. Tanja Lichtenstern, Norbert Mücke, Ueli Aebi, Monika Mauermann, Harald Herrmann. Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. Journal of Structural Biology 2012, 177 (1) , 54-62. https://doi.org/10.1016/j.jsb.2011.11.003
    41. Robert D. Goldman, Megan M. Cleland, S.N. Prasanna Murthy, Saleemulla Mahammad, Edward R. Kuczmarski. Inroads into the structure and function of intermediate filament networks. Journal of Structural Biology 2012, 177 (1) , 14-23. https://doi.org/10.1016/j.jsb.2011.11.017
    42. Stefan Winheim, Aaron R. Hieb, Marleen Silbermann, Eva-Maria Surmann, Tatjana Wedig, Harald Herrmann, Jörg Langowski, Norbert Mücke, . Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM). PLoS ONE 2011, 6 (4) , e19202. https://doi.org/10.1371/journal.pone.0019202
    43. A. John McKinnon, Duane P. Harland. A concerted polymerization-mesophase separation model for formation of trichocyte intermediate filaments and macrofibril templates. 1: Relating phase separation to structural development. Journal of Structural Biology 2011, 173 (2) , 229-240. https://doi.org/10.1016/j.jsb.2010.11.019
    44. Martha Elisabeth Brennich, Jens-Friedrich Nolting, Christian Dammann, Bernd Nöding, Susanne Bauch, Harald Herrmann, Thomas Pfohl, Sarah Köster. Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab on a Chip 2011, 11 (4) , 708. https://doi.org/10.1039/c0lc00319k
    45. Yi-Chia Lin, Chase P. Broedersz, Amy C. Rowat, Tatjana Wedig, Harald Herrmann, Frederick C. MacKintosh, David A. Weitz. Divalent Cations Crosslink Vimentin Intermediate Filament Tail Domains to Regulate Network Mechanics. Journal of Molecular Biology 2010, 399 (4) , 637-644. https://doi.org/10.1016/j.jmb.2010.04.054

    Langmuir

    Cite this: Langmuir 2009, 25, 15, 8817–8823
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la900509r
    Published May 13, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    955

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.