ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Double Stacking Faults in Convectively Assembled Crystals of Colloidal Spheres

View Author Information
Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
Department of Materials Science, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
§ Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia
Petersburg Nuclear Physics Institute, Gatchina, 188350 Saint-Petersburg, Russia
Department RRR, Faculty of Applied Sciences, TU-Delft, 2629 JB Delft, The Netherlands
# DUBBLE Beamline BM26, ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex 9, France
ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex 9, France
*To whom correspondence should be addressed. E-mail: [email protected]
¶Present address: Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005
Cite this: Langmuir 2009, 25, 17, 10408–10412
Publication Date (Web):May 4, 2009
https://doi.org/10.1021/la900983v
Copyright © 2009 American Chemical Society

    Article Views

    1117

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Using microradian X-ray diffraction, we investigated the crystal structure of convectively assembled colloidal photonic crystals over macroscopic (0.5 mm) distances. Through adaptation of Wilson's theory for X-ray diffraction, we show that certain types of line defects that are often observed in scanning electron microscopy images of the surface of these crystals are actually planar defects at 70.5° angles with the substrate. The defects consist of two parallel hexagonal close-packed planes in otherwise face-centered cubic crystals. Our measurements indicate that these stacking faults cause at least 10% of stacking disorder, which has to be reduced to fabricate high-quality colloidal photonic crystals.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Extensive peak assignment of the X-ray diffractograms in the main text and a mathematical derivation of the modification of Wilson's theory. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 48 publications.

    1. Marco Hildebrandt, Sergey Lazarev, Javier Pérez, Ivan A. Vartanyants, Janne-Mieke Meijer, Matthias Karg. SAXS Investigation of Core–Shell Microgels with High Scattering Contrast Cores: Access to Structure Factor and Volume Fraction. Macromolecules 2022, 55 (7) , 2959-2969. https://doi.org/10.1021/acs.macromol.2c00100
    2. Nicolas Vogel, Markus Retsch, Charles-André Fustin, Aranzazu del Campo, and Ulrich Jonas . Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chemical Reviews 2015, 115 (13) , 6265-6311. https://doi.org/10.1021/cr400081d
    3. Elena A. Sulyanova, Anatoly Shabalin, Alexey V. Zozulya, Janne-Mieke Meijer, Dmitry Dzhigaev, Oleg Gorobtsov, Ruslan P. Kurta, Sergey Lazarev, Ulf Lorenz, Andrej Singer, Oleksandr Yefanov, Ivan Zaluzhnyy, Ilya Besedin, Michael Sprung, Andrei V. Petukhov, and Ivan A. Vartanyants . Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis. Langmuir 2015, 31 (19) , 5274-5283. https://doi.org/10.1021/la504652z
    4. Jan Hilhorst, D. A. Matthijs de Winter, Joost R. Wolters, Jan Andries Post, and Andrei V. Petukhov . Defect Engineering in Sedimentary Colloidal Photonic Crystals. Langmuir 2013, 29 (32) , 10011-10018. https://doi.org/10.1021/la4011168
    5. Janne-Mieke Meijer, Fabian Hagemans, Laura Rossi, Dmytro V. Byelov, Sonja I.R. Castillo, Anatoly Snigirev, Irina Snigireva, Albert P. Philipse, and Andrei V. Petukhov . Self-Assembly of Colloidal Cubes via Vertical Deposition. Langmuir 2012, 28 (20) , 7631-7638. https://doi.org/10.1021/la3007052
    6. Jan Hilhorst, Matti M. van Schooneveld, Jian Wang, Emiel de Smit, Tolek Tyliszczak, Jörg Raabe, Adam P. Hitchcock, Martin Obst, Frank M. F. de Groot, and Andrei V. Petukhov . Three-Dimensional Structure and Defects in Colloidal Photonic Crystals Revealed by Tomographic Scanning Transmission X-ray Microscopy. Langmuir 2012, 28 (7) , 3614-3620. https://doi.org/10.1021/la204580y
    7. Philip Born, Susanne Blum, Andres Munoz, and Tobias Kraus . Role of the Meniscus Shape in Large-Area Convective Particle Assembly. Langmuir 2011, 27 (14) , 8621-8633. https://doi.org/10.1021/la2006138
    8. Kirill S. Napolskii, Nina A. Sapoletova, Dmitriy F. Gorozhankin, Andrey A. Eliseev, Dmitry Yu. Chernyshov, Dmytro V. Byelov, Natalia A. Grigoryeva, Alexander A. Mistonov, Wim G. Bouwman, Kristina O. Kvashnina, Alexey V. Lukashin, Anatoly A. Snigirev, Alexandra V. Vassilieva, Sergey V. Grigoriev and Andrei V. Petukhov . Fabrication of Artificial Opals by Electric-Field-Assisted Vertical Deposition. Langmuir 2010, 26 (4) , 2346-2351. https://doi.org/10.1021/la902793b
    9. N. A. Grigoryeva, A. A. Mistonov, S. V. Grigoriev. Small-Angle Neutron Diffraction for Studying Ferromagnetic Inverse Opal-Like Structures. Crystallography Reports 2022, 67 (1) , 93-117. https://doi.org/10.1134/S1063774522010060
    10. Zhang Jiang, Byeongdu Lee. Recent advances in small angle x-ray scattering for superlattice study. Applied Physics Reviews 2021, 8 (1) https://doi.org/10.1063/5.0031692
    11. Byung Hak Choe, Sang Woo Lee, Jong Kee Ahn, Jinhee Lee. Analysis of Stress Corrosion Cracking Propagation of SS304 Stainless Steel Using Crack Shape and Etch Pits. Korean Journal of Metals and Materials 2020, 58 (9) , 583-589. https://doi.org/10.3365/KJMM.2020.58.9.583
    12. Katherine R. Phillips, Cathy T. Zhang, Ting Yang, Theresa Kay, Chao Gao, Soeren Brandt, Lei Liu, Haizhao Yang, Yaning Li, Joanna Aizenberg, Ling Li. Fabrication of Photonic Microbricks via Crack Engineering of Colloidal Crystals. Advanced Functional Materials 2020, 30 (26) https://doi.org/10.1002/adfm.201908242
    13. Alexey V. Zozulya, Ivan A. Zaluzhnyy, Nastasia Mukharamova, Sergey Lazarev, Janne-Mieke Meijer, Ruslan P. Kurta, Anatoly Shabalin, Michael Sprung, Andrei V. Petukhov, Ivan A. Vartanyants. Unravelling the structural rearrangement of polymer colloidal crystals under dry sintering conditions. Soft Matter 2018, 14 (33) , 6849-6856. https://doi.org/10.1039/C8SM01412D
    14. Sergey Lazarev, Ilya Besedin, Alexey V. Zozulya, Janne‐Mieke Meijer, Dmitry Dzhigaev, Oleg Yu. Gorobtsov, Ruslan P. Kurta, Max Rose, Anatoly G. Shabalin, Elena A. Sulyanova, IvanA. Zaluzhnyy, Alexey P. Menushenkov, Michael Sprung, Andrei V. Petukhov, Ivan A. Vartanyants. Ptychographic X‐Ray Imaging of Colloidal Crystals. Small 2018, 14 (3) https://doi.org/10.1002/smll.201702575
    15. M. Ličen, I. Drevenšek-Olenik, L. Čoga, S. Gyergyek, S. Kralj, M. Fally, C. Pruner, P. Geltenbort, U. Gasser, G. Nagy, J. Klepp. Neutron diffraction from superparamagnetic colloidal crystals. Journal of Physics and Chemistry of Solids 2017, 110 , 234-240. https://doi.org/10.1016/j.jpcs.2017.05.002
    16. A. G. Shabalin, J.-M. Meijer, R. Dronyak, O. M. Yefanov, A. Singer, R. P. Kurta, U. Lorenz, O. Y. Gorobtsov, D. Dzhigaev, S. Kalbfleisch, J. Gulden, A. V. Zozulya, M. Sprung, A. V. Petukhov, I. A. Vartanyants. Revealing Three-Dimensional Structure of an Individual Colloidal Crystal Grain by Coherent X-Ray Diffractive Imaging. Physical Review Letters 2016, 117 (13) https://doi.org/10.1103/PhysRevLett.117.138002
    17. Qibin Zhao, Chris E. Finlayson, David R. E. Snoswell, Andrew Haines, Christian Schäfer, Peter Spahn, Goetz P. Hellmann, Andrei V. Petukhov, Lars Herrmann, Pierre Burdet, Paul A. Midgley, Simon Butler, Malcolm Mackley, Qixin Guo, Jeremy J. Baumberg. Large-scale ordering of nanoparticles using viscoelastic shear processing. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11661
    18. N. Goubet, P. A. Albouy, A. Thompson, M. P. Pileni. Polymorphism in nanoparticle-based crystals depending upon their single or polycrystalline character. CrystEngComm 2016, 18 (33) , 6166-6175. https://doi.org/10.1039/C6CE01006G
    19. Andrei V. Petukhov, Janne-Mieke Meijer, Gert Jan Vroege. Particle shape effects in colloidal crystals and colloidal liquid crystals: Small-angle X-ray scattering studies with microradian resolution. Current Opinion in Colloid & Interface Science 2015, 20 (4) , 272-281. https://doi.org/10.1016/j.cocis.2015.09.003
    20. Ivan Vartanyants, Oleksandr Yefanov. Coherent X-Ray Diffraction Imaging of Nanostructures. 2015, 341-384. https://doi.org/10.1201/b15674-13
    21. Antara Pal, Janne-Mieke Meijer, Joost R. Wolters, Willem K. Kegel, Andrei V. Petukhov. Structure and stacking order in crystals of asymmetric dumbbell-like colloids. Journal of Applied Crystallography 2015, 48 (1) , 238-243. https://doi.org/10.1107/S1600576714028222
    22. Janne-Mieke Meijer. General Introduction. 2015, 1-21. https://doi.org/10.1007/978-3-319-14809-0_1
    23. Janne-Mieke Meijer. Double Hexagonal Close Packed Structure Revealed in a Single Colloidal Crystal Grain by Bragg Rod Analysis. 2015, 41-54. https://doi.org/10.1007/978-3-319-14809-0_3
    24. A. V. Chumakova, G. A. Valkovskiy, A. A. Mistonov, V. A. Dyadkin, N. A. Grigoryeva, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. V. Petukhov, S. V. Grigoriev. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale. Physical Review B 2014, 90 (14) https://doi.org/10.1103/PhysRevB.90.144103
    25. J.-M. Meijer, A. Shabalin, R. Dronyak, O. M. Yefanov, A. Singer, R. P. Kurta, U. Lorenz, O. Gorobstov, D. Dzhigaev, J. Gulden, D. V. Byelov, A. V. Zozulya, M. Sprung, I. A. Vartanyants, A. V. Petukhov. Double hexagonal close-packed structure revealed in a single colloidal crystal grain by Bragg rod analysis. Journal of Applied Crystallography 2014, 47 (4) , 1199-1204. https://doi.org/10.1107/S1600576714010346
    26. Mitja Stimulak, Miha Ravnik. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases. Soft Matter 2014, 10 (33) , 6339-6346. https://doi.org/10.1039/C4SM00419A
    27. Peter M. Wilson, Gilbert N. Mbah, Thomas G. Smith, Daniel Schmidt, Rebecca Y. Lai, Tino Hofmann, Alexander Sinitskii. Three-dimensional periodic graphene nanostructures. Journal of Materials Chemistry C 2014, 2 (10) , 1879. https://doi.org/10.1039/c3tc32277g
    28. Jens Küchenmeister, Christian Wolff, Kurt Busch, Ulf Peschel, Sergei G. Romanov. Abandoned Functionality of Thin‐Film Opal Photonic Crystals. Advanced Optical Materials 2013, 1 (12) , 952-962. https://doi.org/10.1002/adom.201300311
    29. A. V. Zozulya, J.-M. Meijer, A. Shabalin, A. Ricci, F. Westermeier, R. P. Kurta, U. Lorenz, A. Singer, O. Yefanov, A. V. Petukhov, M. Sprung, I. A. Vartanyants. In situ X-ray crystallographic study of the structural evolution of colloidal crystals upon heating. Journal of Applied Crystallography 2013, 46 (4) , 903-907. https://doi.org/10.1107/S0021889813003725
    30. Sabrina Disch, Erik Wetterskog, Raphaël P. Hermann, Denis Korolkov, Peter Busch, Peter Boesecke, Olivier Lyon, Ulla Vainio, German Salazar-Alvarez, Lennart Bergström, Thomas Brückel. Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. Nanoscale 2013, 5 (9) , 3969. https://doi.org/10.1039/c3nr33282a
    31. Vera V. Abramova, Alexander Slesarev, Alexander Sinitskii. Synthesis of high-quality inverse opals based on magnetic complex oxides: yttrium iron garnet (Y3Fe5O12) and bismuth ferrite (BiFeO3). Journal of Materials Chemistry C 2013, 1 (17) , 2975. https://doi.org/10.1039/c3tc30335g
    32. Philip G Born. Role of Meniscus Shape in Large-Area Convective Particle Assembly. 2013, 23-50. https://doi.org/10.1007/978-3-319-00230-9_2
    33. M. Kostylev, A. A. Stashkevich, Y. Roussigné, N. A. Grigoryeva, A. A. Mistonov, D. Menzel, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. V. Lukashin, S. V. Grigoriev, S. N. Samarin. Microwave properties of Ni-based ferromagnetic inverse opals. Physical Review B 2012, 86 (18) https://doi.org/10.1103/PhysRevB.86.184431
    34. A. K. Samusev, I. S. Sinev, K. B. Samusev, M. V. Rybin, A. A. Mistonov, N. A. Grigoryeva, S. V. Grigoriev, A. V. Petukhov, D. V. Byelov, E. Yu. Trofimova, D. A. Kurdyukov, V. G. Golubev, M. F. Limonov. Small-angle X-ray diffraction investigation of twinned opal-like structures. Physics of the Solid State 2012, 54 (10) , 2073-2082. https://doi.org/10.1134/S1063783412100307
    35. A. V. Zozulya, S. Bondarenko, A. Schavkan, F. Westermeier, G. Grübel, M. Sprung. Microfocusing transfocator for 1D and 2D compound refractive lenses. Optics Express 2012, 20 (17) , 18967. https://doi.org/10.1364/OE.20.018967
    36. R. Dronyak, J. Gulden, O. M. Yefanov, A. Singer, T. Gorniak, T. Senkbeil, J.-M. Meijer, A. Al-Shemmary, J. Hallmann, D. D. Mai, T. Reusch, D. Dzhigaev, R. P. Kurta, U. Lorenz, A. V. Petukhov, S. Düsterer, R. Treusch, M. N. Strikhanov, E. Weckert, A. P. Mancuso, T. Salditt, A. Rosenhahn, I. A. Vartanyants. Dynamics of colloidal crystals studied by pump-probe experiments at FLASH. Physical Review B 2012, 86 (6) https://doi.org/10.1103/PhysRevB.86.064303
    37. J. Gulden, O. M. Yefanov, A. P. Mancuso, R. Dronyak, A. Singer, V. Bernátová, A. Burkhardt, O. Polozhentsev, A. Soldatov, M. Sprung, I. A. Vartanyants. Three-dimensional structure of a single colloidal crystal grain studied by coherent x-ray diffraction. Optics Express 2012, 20 (4) , 4039. https://doi.org/10.1364/OE.20.004039
    38. P. Sharifi, H. Eckerlebe, F. Marlow. SANS analysis of opal structures made by the capillary deposition method. Physical Chemistry Chemical Physics 2012, 14 (29) , 10324. https://doi.org/10.1039/c2cp40825b
    39. Andrea Chiappini, Alessandro Chiasera, Simone Berneschi, Cristina Armellini, Alessandro Carpentiero, Maurizio Mazzola, Enrico Moser, Stefano Varas, Giancarlo C. Righini, Maurizio Ferrari. Sol–gel-derived photonic structures: fabrication, assessment, and application. Journal of Sol-Gel Science and Technology 2011, 60 (3) , 408-425. https://doi.org/10.1007/s10971-011-2556-y
    40. N. A. Grigoryeva, A. A. Mistonov, K. S. Napolskii, N. A. Sapoletova, A. A. Eliseev, W. Bouwman, D. V. Byelov, A. V. Petukhov, D. Yu. Chernyshov, H. Eckerlebe, A. V. Vasilieva, S. V. Grigoriev. Magnetic topology of Co-based inverse opal-like structures. Physical Review B 2011, 84 (6) https://doi.org/10.1103/PhysRevB.84.064405
    41. I. S. Sinev, A. K. Samusev, K. B. Samusev, N. A. Grigoryeva, A. A. Mistonov, D. Byelov, A. V. Petoukhov, S. V. Grigoriev. Optical and microradian x-ray diffraction from opal-like films: Transition from 2D to 3D regimes. 2011, 2122-2124. https://doi.org/10.1109/IQEC-CLEO.2011.6194064
    42. Matti M. van Schooneveld, Jan Hilhorst, Andrei V. Petukhov, Tolek Tyliszczak, Jian Wang, Bert M. Weckhuysen, Frank M. F. de Groot, Emiel de Smit. Scanning Transmission X‐Ray Microscopy as a Novel Tool to Probe Colloidal and Photonic Crystals. Small 2011, 7 (6) , 804-811. https://doi.org/10.1002/smll.201001745
    43. A V Vasilieva, N A Grigoryeva, A A Mistonov, N A Sapoletova, K S Napolskii, A A Eliseev, A V Lukashin, Yu D Tretyakov, A V Petukhov, D Byelov, D Chernyshov, A I Okorokov, W G Bouwman, S V Grigoriev. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction. Journal of Physics: Conference Series 2010, 247 , 012029. https://doi.org/10.1088/1742-6596/247/1/012029
    44. J. Gulden, O. M. Yefanov, A. P. Mancuso, V. V. Abramova, J. Hilhorst, D. Byelov, I. Snigireva, A. Snigirev, A. V. Petukhov, I. A. Vartanyants. Coherent x-ray imaging of defects in colloidal crystals. Physical Review B 2010, 81 (22) https://doi.org/10.1103/PhysRevB.81.224105
    45. Dmytro V. Byelov, Jan Hilhorst, Anke B.G.M. Leferink op Reinink, Irina Snigireva, Anatoly Snigirev, Gavin B.M. Vaughan, Giuseppe Portale, Andrei V. Petukhov. Diffuse scattering in random-stacking hexagonal close-packed crystals of colloidal hard spheres. Phase Transitions 2010, 83 (2) , 107-114. https://doi.org/10.1080/01411590903586452
    46. Jan Hilhorst, Joost R. Wolters, Andrei V. Petukhov. Slanted stacking faults and persistent face centered cubic crystal growth in sedimentary colloidal hard sphere crystals. CrystEngComm 2010, 12 (11) , 3820. https://doi.org/10.1039/c0ce00022a
    47. A. Sinitskii, V. Abramova, N. Grigorieva, S. Grigoriev, A. Snigirev, D. V. Byelov, A. V. Petukhov. Revealing stacking sequences in inverse opals by microradian X-ray diffraction. EPL (Europhysics Letters) 2010, 89 (1) , 14002. https://doi.org/10.1209/0295-5075/89/14002
    48. A. A. Eliseev, D. F. Gorozhankin, K. S. Napolskii, A. V. Petukhov, N. A. Sapoletova, A. V. Vasilieva, N. A. Grigoryeva, A. A. Mistonov, D. V. Byelov, W. G. Bouwman, K. O. Kvashnina, D. Yu. Chernyshov, A. A. Bosak, S. V. Grigoriev. Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space. JETP Letters 2009, 90 (4) , 272-277. https://doi.org/10.1134/S0021364009160103

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect