Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch Article

Influence of Surface Roughness on Wetting Dynamics

View Author Information
Centre de Recherche en Modélisation Moléculaire, Université de Mons-Hainaut, 20, Place du Parc, 7000 Mons, Belgium; Kodak European R & D, Kodak Limited, Harrow HA1 4TY, U.K.; and Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, 20, Place du Parc, 7000 Mons, Belgium
Cite this: Langmuir 1999, 15, 25, 8765–8770
Publication Date (Web):October 28, 1999
https://doi.org/10.1021/la980539z
Copyright © 1999 American Chemical Society

    Article Views

    1513

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Using the molecular-kinetic theory of wetting, we analyze the dynamic contact angle of a sessile drop of squalane spreading spontaneously on Langmuir−Blodgett multilayer substrates (behenic acid on glass). This allows the effect of microscale roughness on the parameters appearing in the theory to be determined. In particular, it is shown that the jump frequency of liquid molecules at the wetting line decreases with microroughness, supporting the idea that surface defects induce additional pining potentials. The increase in pinning potential can be explained in terms of a linear increase in the activation free energy of wetting with increasing RMS microroughness.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Centre de Recherche en Modélization Moleculaire, Université de Mons-Hainaut.

     Kodak Ltd.

    §

     Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut.

    *

     Corresponding author.

    Cited By

    This article is cited by 80 publications.

    1. Bastian Sauerer, Mohammed Al-Hamad, Shouxiang Mark Ma, Wael Abdallah. Effect of Oil-Based-Mud Filtrate on the Wettability of Rock Surfaces with Different Mineralogy and Topology. Energy & Fuels 2020, 34 (7) , 8250-8259. https://doi.org/10.1021/acs.energyfuels.0c01335
    2. Binjian Ma, Li Shan, Baris Dogruoz, Damena Agonafer. Evolution of Microdroplet Morphology Confined on Asymmetric Micropillar Structures. Langmuir 2019, 35 (37) , 12264-12275. https://doi.org/10.1021/acs.langmuir.9b01410
    3. Joonsik Park and Satish Kumar . Droplet Sliding on an Inclined Substrate with a Topographical Defect. Langmuir 2017, 33 (29) , 7352-7363. https://doi.org/10.1021/acs.langmuir.7b01716
    4. Damien Duvivier, Terence D. Blake, and Joël De Coninck . Toward a Predictive Theory of Wetting Dynamics. Langmuir 2013, 29 (32) , 10132-10140. https://doi.org/10.1021/la4017917
    5. Kristina Davitt, Michael S. Pettersen, and Etienne Rolley . Thermally Activated Wetting Dynamics in the Presence of Surface Roughness. Langmuir 2013, 29 (23) , 6884-6894. https://doi.org/10.1021/la400649h
    6. Melanie Ramiasa, John Ralston, Renate Fetzer, Rossen Sedev, Doris M. Fopp-Spori, Christoph Morhard, Claudia Pacholski, and Joachim P. Spatz . Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. Journal of the American Chemical Society 2013, 135 (19) , 7159-7171. https://doi.org/10.1021/ja3104846
    7. Jeongin Han and Chongyoup Kim . Spreading of a Suspension Drop on a Horizontal Surface. Langmuir 2012, 28 (5) , 2680-2689. https://doi.org/10.1021/la204256z
    8. Salvatore Girardo, Silvia Palpacelli, Alessandro De Maio, Roberto Cingolani, Sauro Succi, and Dario Pisignano . Interplay between Shape and Roughness in Early-Stage Microcapillary Imbibition. Langmuir 2012, 28 (5) , 2596-2603. https://doi.org/10.1021/la2045724
    9. Arash Zarrine-Afsar, Christina Müller, Francis O. Talbot, and R. J. Dwayne Miller . Self-Localizing Stabilized Mega-Pixel Picoliter Arrays with Size-Exclusion Sorting Capabilities. Analytical Chemistry 2011, 83 (3) , 767-773. https://doi.org/10.1021/ac1021024
    10. Xiangxuan Zeng, Guohua Xu, Yuan Gao, and Yue An. Surface Wettability of (3-Aminopropyl)triethoxysilane Self-Assembled Monolayers. The Journal of Physical Chemistry B 2011, 115 (3) , 450-454. https://doi.org/10.1021/jp109259b
    11. Lee San Puah, Rossen Sedev, Daniel Fornasiero, and John Ralston, Terry Blake. Influence of Surface Charge on Wetting Kinetics. Langmuir 2010, 26 (22) , 17218-17224. https://doi.org/10.1021/la103351t
    12. Mikhail R. Stukan, Patrice Ligneul, John P. Crawshaw and Edo S. Boek . Spontaneous Imbibition in Nanopores of Different Roughness and Wettability. Langmuir 2010, 26 (16) , 13342-13352. https://doi.org/10.1021/la101995t
    13. Romain Rioboo, Michel Voué, Helena Adão, Joséphine Conti, Alexandre Vaillant, David Seveno and Joël De Coninck. Drop Impact on Soft Surfaces: Beyond the Static Contact Angles. Langmuir 2010, 26 (7) , 4873-4879. https://doi.org/10.1021/la9036953
    14. Audrey Beaussart, Luke Parkinson, Agnieszka Mierczynska-Vasilev, John Ralston and David A. Beattie. Effect of Adsorbed Polymers on Bubble−Particle Attachment. Langmuir 2009, 25 (23) , 13290-13294. https://doi.org/10.1021/la903145h
    15. Roman S. Voronov and, Dimitrios V. Papavassiliou, , Lloyd L. Lee. Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle. Industrial & Engineering Chemistry Research 2008, 47 (8) , 2455-2477. https://doi.org/10.1021/ie0712941
    16. Dmitri Chvedov and, Alison Arnold. Effect of Surface Topography of a Rolled Sheet on Contact Angle. Industrial & Engineering Chemistry Research 2004, 43 (6) , 1451-1459. https://doi.org/10.1021/ie0307131
    17. Hedieh Modaressi and, Gil Garnier. Mechanism of Wetting and Absorption of Water Droplets on Sized Paper:  Effects of Chemical and Physical Heterogeneity. Langmuir 2002, 18 (3) , 642-649. https://doi.org/10.1021/la0104931
    18. Qiao Liu, Jia-Chen Huang, Hao Wang, Ya-Jun Deng, , , . Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica 2024, 73 (1) , 016801. https://doi.org/10.7498/aps.73.20231296
    19. Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Vicente Garibay-Febles, Yara C. Almanza-Arjona, Roberto Y. Sato-Berrú, Esther Mata-Zamora, Phaedra S. Silva-Bermúdez, Alejandro Vega-Jiménez. Antibacterial and Cytotoxic Study of Hybrid Films Based on Polypropylene and NiO or NiFe2O4 Nanoparticles. International Journal of Molecular Sciences 2023, 24 (23) , 17052. https://doi.org/10.3390/ijms242317052
    20. Zilong Lu, Zhe Qi, Jinhua Yang, Hu Liu, Jian Jiao. The wetting‐to‐nonwetting transition of CVD BN coatings deposited at different temperatures. International Journal of Applied Ceramic Technology 2023, 20 (6) , 3470-3478. https://doi.org/10.1111/ijac.14478
    21. Liang Zhao, Joe Zhou, Zhi-jun Zhang, Qing-xia Liu. Fundamental role of surface roughness in bubble-particle interaction in flotation: A review. Journal of Central South University 2023, 30 (9) , 3021-3043. https://doi.org/10.1007/s11771-023-5426-1
    22. Pavel V. Maryin, Tuan-Hoang Tran, Anastasia A. Frolova, Mikhail A. Buldakov, Evgeny L. Choinzonov, Anna I. Kozelskaya, Sven Rutkowski, Sergei I. Tverdokhlebov. Electrospun Poly-L-Lactic Acid Scaffolds Surface-Modified via Reactive Magnetron Sputtering Using Different Mixing Ratios of Nitrogen and Xenon. Polymers 2023, 15 (13) , 2969. https://doi.org/10.3390/polym15132969
    23. Chunjian Shen, Zengwei Zhu. Chemical bond formed between electrodeposits and substrate at room temperature with a novel in situ electrochemical treatment. Materials Today Communications 2022, 33 , 104728. https://doi.org/10.1016/j.mtcomm.2022.104728
    24. Liwang Wang, Weihui Yang, Yulong Chang, Bo Yang, Lingyu Xiao, Jiwei Wu, Shijun Huang, Yangfan Li, Hualin Wang, Liang Ma. Experimental study on the microscopic characteristics of gas-liquid coalescence growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652 , 129722. https://doi.org/10.1016/j.colsurfa.2022.129722
    25. Y. Aleeva, V. Ferrara, A. Bonasera, D. Chillura Martino, B. Pignataro. Superhydrophobic TiO2/fluorinated polysiloxane hybrid coatings with controlled morphology for solar photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 631 , 127633. https://doi.org/10.1016/j.colsurfa.2021.127633
    26. Anna Antonova, Marika Eik, Ville Jokinen, Jari Puttonen. Effect of the roughness of steel fibre surface on its wettability and the cement paste close to fibre surface. Construction and Building Materials 2021, 289 , 123139. https://doi.org/10.1016/j.conbuildmat.2021.123139
    27. Linyang Zhang, Xinran Yu, Zhangxin Chen, Jing Li, Gang Hui, Min Yang, Rui Yu. Capillary dynamics of confined water in nanopores: The impact of precursor films. Chemical Engineering Journal 2021, 409 , 128113. https://doi.org/10.1016/j.cej.2020.128113
    28. Viveksheel Rajput, Mudimallana Goud, Narendra Mohan Suri. Review on Recent Advances, Research Trends, and Gas Film in Electrochemical Discharge-Based Micromachining. Journal of Micro and Nano-Manufacturing 2021, 9 (1) https://doi.org/10.1115/1.4049418
    29. S.Y. Misyura. The dependence of drop evaporation rate and wettability on corrosion kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 610 , 125735. https://doi.org/10.1016/j.colsurfa.2020.125735
    30. Viveksheel Rajput, Mudimallana Goud, Narendra Mohan Suri. Review—Electrochemical Discharge Machining: Gas Film Electrochemical Aspects, Stability Parameters, and Research Work. Journal of The Electrochemical Society 2021, 168 (1) , 013503. https://doi.org/10.1149/1945-7111/abd516
    31. Qiao Liu, Jiapeng Yu, Hao Wang. The role of the substrate roughness in contact angle hysteresis and dynamic deviation. International Journal of Heat and Mass Transfer 2020, 148 , 118985. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118985
    32. Kleber Gustavo da Silva Souza, Fernando Cotting, Idalina Vieira Aoki, Franco Dani Rico Amado, Vera Rosa Capelossi. Study of the wettability and the corrosion protection of the hybrid silane (3-aminopropyl) triethoxysilane (APTES) and (3-glycidyloxypropyl) trimethoxysilane (GPTMS) film on galvannealed steel. Matéria (Rio de Janeiro) 2020, 25 (2) https://doi.org/10.1590/s1517-707620200002.1063
    33. S.Y. Misyura, P.A. Strizhak, R.S. Volkov, V.S. Morozov. The influence of the wall microtexture on functional properties and heat transfer. Journal of Molecular Liquids 2019, 294 , 111670. https://doi.org/10.1016/j.molliq.2019.111670
    34. S.Y. Misyura, G.V. Kuznetsov, D.V. Feoktistov, R.S. Volkov, V.S. Morozov, E.G. Orlova. The influence of the surface microtexture on wettability properties and drop evaporation. Surface and Coatings Technology 2019, 375 , 458-467. https://doi.org/10.1016/j.surfcoat.2019.07.058
    35. Geniy V. Kuznetsov, Dmitry V. Feoktistov, Evgeniya G. Orlova, Kseniya Batishcheva, Sergey S. Ilenok. Unification of the textures formed on aluminum after laser treatment. Applied Surface Science 2019, 469 , 974-982. https://doi.org/10.1016/j.apsusc.2018.11.046
    36. Romain Lhermerout, Kristina Davitt. Controlled defects to link wetting properties to surface heterogeneity. Soft Matter 2018, 14 (42) , 8643-8650. https://doi.org/10.1039/C8SM01715H
    37. King Yuk Chan, Rodica Ramer, Roberto Sorrentino. Low-Cost Ku-Band Waveguide Devices Using 3-D Printing and Liquid Metal Filling. IEEE Transactions on Microwave Theory and Techniques 2018, 66 (9) , 3993-4001. https://doi.org/10.1109/TMTT.2018.2851573
    38. Bharat Bhushan. Strategies for Micropatterned, Nanopatterned, and Hierarchically Structured Lotus-like Surfaces. 2018, 121-197. https://doi.org/10.1007/978-3-319-71676-3_6
    39. Nina Forsman, Alina Lozhechnikova, Alexey Khakalo, Leena-Sisko Johansson, Jari Vartiainen, Monika Österberg. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydrate Polymers 2017, 173 , 392-402. https://doi.org/10.1016/j.carbpol.2017.06.007
    40. Vahid Mortazavi, M.M. Khonsari. On the degradation of superhydrophobic surfaces: A review. Wear 2017, 372-373 , 145-157. https://doi.org/10.1016/j.wear.2016.11.009
    41. Mariana Kok, Edmond F. Tobin, Pavel Zikmund, Dominik Raps, Trevor M. Young. Laboratory Investigation into Anti-contamination Coatings for Mitigating Insect Contamination with Application to Laminar Flow Technologies. 2017, 291-313. https://doi.org/10.1007/12_2017_31
    42. Oindrila Manna, Sarit K. Das, Raghunandan Sharma, Kamal K. Kar. Superhydrophobic and Superoleophobic Surfaces in Composite Materials. 2017, 647-686. https://doi.org/10.1007/978-3-662-49514-8_19
    43. Hongrok Shin, Ki Wan Bong, Chongyoup Kim. Depletion of λ-DNA near moving contact line. Journal of Non-Newtonian Fluid Mechanics 2016, 236 , 50-62. https://doi.org/10.1016/j.jnnfm.2016.08.009
    44. Carlos E. Colosqui, Jason S. Wexler, Ying Liu, Howard A. Stone. Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries. Physical Review Fluids 2016, 1 (6) https://doi.org/10.1103/PhysRevFluids.1.064101
    45. Bharat Bhushan. Fabrication and Characterization of Micro-, Nano- and Hierarchically Structured Lotus-Like Surfaces. 2016, 97-203. https://doi.org/10.1007/978-3-319-28284-8_6
    46. Meng-Hua Zhao, Xiao-Peng Chen, Qing Wang. Wetting failure of hydrophilic surfaces promoted by surface roughness. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05376
    47. Ryan Mead-Hunter, Andrew J.C. King, Benjamin J. Mullins. Aerosol-mist coalescing filters – A review. Separation and Purification Technology 2014, 133 , 484-506. https://doi.org/10.1016/j.seppur.2014.06.057
    48. Melanie Ramiasa, John Ralston, Renate Fetzer, Rossen Sedev. The influence of topography on dynamic wetting. Advances in Colloid and Interface Science 2014, 206 , 275-293. https://doi.org/10.1016/j.cis.2013.04.005
    49. Daniel H. Builes, Jalel Labidi, Arantxa Eceiza, Iñaki Mondragon, Agnieszka Tercjak. Unsaturated Polyester Nanocomposites modified with fibrillated cellulose and PEO-b-PPO-b-PEO block copolymer. Composites Science and Technology 2013, 89 , 120-126. https://doi.org/10.1016/j.compscitech.2013.09.015
    50. Jeongin Han, Chongyoup Kim. Spreading of Boger fluid on horizontal surface. Journal of Non-Newtonian Fluid Mechanics 2013, 202 , 120-130. https://doi.org/10.1016/j.jnnfm.2013.10.002
    51. H Alla, S Freifer, B A Talha, T Roques-Carmes. New insight into the spreading dynamics of liquids on rough surfaces using computational fluid dynamics. Russian Chemical Reviews 2013, 82 (11) , 1066-1080. https://doi.org/10.1070/RC2013v082n11ABEH004373
    52. Yuk Yu Law, Donald L. Feke, Ica Manas-Zloczower. Method for probing the microstructure of particle beds using infiltration behavior. Powder Technology 2013, 237 , 427-431. https://doi.org/10.1016/j.powtec.2012.12.034
    53. T. Jinkarn, S. Thawornwiriyanan, D. Boonyawan, P. Rachtanapun, S. Sane. Effects of Treatment Time by Sulfur Hexafluoride (SF 6 ) Plasma on Barrier and Mechanical Properties of Paperboard. Packaging Technology and Science 2012, 25 (1) , 19-30. https://doi.org/10.1002/pts.953
    54. Bharat Bhushan. Fabrication and Characterization of Micro-, Nano-, and Hierarchical Structured Surfaces. 2012, 79-175. https://doi.org/10.1007/978-3-642-25408-6_6
    55. Gustavo C. Buscaglia, Roberto F. Ausas. Variational formulations for surface tension, capillarity and wetting. Computer Methods in Applied Mechanics and Engineering 2011, 200 (45-46) , 3011-3025. https://doi.org/10.1016/j.cma.2011.06.002
    56. Xiao Gong, Lulu Han, Yanan Yue, Jianrong Gao, Changyou Gao. Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers. Journal of Colloid and Interface Science 2011, 355 (2) , 368-373. https://doi.org/10.1016/j.jcis.2010.12.054
    57. Michael Nosonovsky, Pradeep K. Rohatgi. Lotus Effect and Self-Cleaning. 2011, 319-341. https://doi.org/10.1007/978-1-4614-0926-7_11
    58. Bharat Bhushan, Yong Chae Jung. Biomimetics Inspired Surfaces for Superhydrophobicity, Self-cleaning, Low Adhesion, and Drag Reduction. 2011, 533-699. https://doi.org/10.1007/978-3-642-15263-4_20
    59. Bharat Bhushan, Yong Chae Jung. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science 2011, 56 (1) , 1-108. https://doi.org/10.1016/j.pmatsci.2010.04.003
    60. J. Järnström, M. Järn, C.-M. Tåg, J. Peltonen, J.B. Rosenholm. Liquid Spreading on Ink-Jet Paper Evaluated by the Hydrodynamic and Molecular-Kinetic Models. Journal of Adhesion Science and Technology 2011, 25 (6-7) , 761-779. https://doi.org/10.1163/016942410X525993
    61. Thibault Roques-Carmes, Vincent Mathieu, Alexandra Gigante. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: Effect of volume, viscosity and surfactant. Journal of Colloid and Interface Science 2010, 344 (1) , 180-197. https://doi.org/10.1016/j.jcis.2009.12.039
    62. Nikos Savva, Serafim Kalliadasis. Influence of spatial heterogeneities on spreading dynamics. Journal of Physics: Conference Series 2010, 216 , 012017. https://doi.org/10.1088/1742-6596/216/1/012017
    63. Michael Nosonovsky, Bharat Bhushan. Lotus Effect: Roughness-Induced Superhydrophobicity. 2010, 741-780. https://doi.org/10.1007/978-3-642-02405-4_26
    64. Bharat Bhushan, Yong Chae Jung, Michael Nosonovsky. Lotus Effect: Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion. 2010, 1437-1524. https://doi.org/10.1007/978-3-642-02525-9_42
    65. Mikael Järn, Carl-Mikael Tåg, Joakim Järnström, Jarl B. Rosenholm. Dynamic Spreading of Polar Liquids on Offset Papers. Journal of Adhesion Science and Technology 2010, 24 (3) , 567-581. https://doi.org/10.1163/016942409X12561252292422
    66. Nikos Savva, Serafim Kalliadasis. Two-dimensional droplet spreading over topographical substrates. Physics of Fluids 2009, 21 (9) https://doi.org/10.1063/1.3223628
    67. Michael Nosonovsky, Bharat Bhushan. Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces. Journal of Physics: Condensed Matter 2008, 20 (22) , 225009. https://doi.org/10.1088/0953-8984/20/22/225009
    68. P.J. Ramón-Torregrosa, M.A. Rodríguez-Valverde, A. Amirfazli, M.A. Cabrerizo-Vílchez. Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 323 (1-3) , 83-93. https://doi.org/10.1016/j.colsurfa.2007.10.032
    69. L. Románszki, J. Telegdi, E. Kálmán. Comparative study of Langmuir- and Langmuir–Blodgett layers of amphiphilic carboxylic- and hydroxamic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 321 (1-3) , 20-28. https://doi.org/10.1016/j.colsurfa.2008.02.046
    70. Michael Nosonovsky, Bharat Bhushan. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 2007, 107 (10-11) , 969-979. https://doi.org/10.1016/j.ultramic.2007.04.011
    71. Vincent Dupres, Dominique Langevin, Patrick Guenoun, Antonio Checco, Gustavo Luengo, Frédéric Leroy. Wetting and electrical properties of the human hair surface: Delipidation observed at the nanoscale. Journal of Colloid and Interface Science 2007, 306 (1) , 34-40. https://doi.org/10.1016/j.jcis.2006.10.030
    72. Michael Nosonovsky, Bharat Bhushan. Lotus Effect: Roughness-Induced Superhydrophobicity. 2007, 1-40. https://doi.org/10.1007/978-3-540-37321-6_1
    73. W. Zhong. Surface tension, wetting and wicking. 2006, 136-155. https://doi.org/10.1533/9781845692261.1.136
    74. David R. Heine, Gary S. Grest, Edmund B. Webb. Spreading dynamics of polymer nanodroplets. Physical Review E 2003, 68 (6) https://doi.org/10.1103/PhysRevE.68.061603
    75. B. K. Kim, K. S. Kim, C. E. Park, C. M. Ryu. Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures. Journal of Adhesion Science and Technology 2002, 16 (5) , 509-521. https://doi.org/10.1163/156856102760070349
    76. J. Ralston, D. Fornasiero, N. Mishchuk. The hydrophobic force in flotation-a critique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 192 (1-3) , 39-51. https://doi.org/10.1016/S0927-7757(01)00715-4
    77. J Verran, R D Boyd. The relationship between substratum surface roughness and microbiological and organic soiling: A review. Biofouling 2001, 17 (1) , 59-71. https://doi.org/10.1080/08927010109378465
    78. Søren Barsberg, Lisbeth G. Thygesen. Nonequilibrium Phenomena Influencing the Wetting Behavior of Plant Fibers. Journal of Colloid and Interface Science 2001, 234 (1) , 59-67. https://doi.org/10.1006/jcis.2000.7216
    79. B. K. Kim, K. S. Kim, K. Cho, C. E. Park. Retardation of the surface rearrangement of O2 plasma-treated LDPE by a two-step temperature control. Journal of Adhesion Science and Technology 2001, 15 (14) , 1805-1816. https://doi.org/10.1163/15685610152715791
    80. Bharat Bhushan, Michael Nosonovsky, Yong Chae Jung. Lotus Effect: Roughness-Induced Superhydrophobic Surfaces. , 995-1072. https://doi.org/10.1007/978-3-540-77608-6_19