Micellization in Model Surfactant SystemsClick to copy article linkArticle link copied!
Abstract
Formation of micelles in model lattice surfactant systems was studied by a novel methodology based on grand-canonical Monte Carlo simulations. The methodology involves combining free-energy information from a series of simulations in small systems by histogram reweighting. The solution osmotic pressure as a function of overall volume fraction of surfactant shows a sharp break at the critical micelle concentration (cmc) at sufficiently low temperatures. Studies in larger systems at appropriate values of the surfactant chemical potential are used to investigate the size distribution of micellar aggregates. The methodology allows for a clear distiction between micellization and macroscopic phase separation. Two symmetric diblock surfactants have been considered in the present work. The cmc was found to increase with increasing temperature. The enthalpy change on micellization was determined to be proportional to the chain length of the surfactant. The mean micelle aggregation numbers were found to decrease at higher temperatures and increase with overall surfactant volume fraction for temperatures near the upper limit for micellar aggregation. These observations indicate that simple geometric packing concepts for micelle formation do not adequately describe temperature and composition effects in nonionic surfactant solutions.
†
Current address: Department of Chemistry, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
*
To whom correspondence should be addressed. E-mail: thanos@ ipst.umd.edu.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 185 publications.
- Athanassios Z. Panagiotopoulos. Solvent Selectivity Controls Micro- Versus Macrophase Separation in Multiblock Chains. Macromolecules 2024, 57
(16)
, 8253-8261. https://doi.org/10.1021/acs.macromol.4c01214
- Wengang Zhang, Yuanchi Ma, Nicholas D. Posey, Michael J. Lueckheide, Vivek M. Prabhu, Jack F. Douglas. Combined Simulation and Experimental Study of Polyampholyte Solution Properties: Effects of Charge Ratio, Hydrophobic Groups, and Polymer Concentration. Macromolecules 2022, 55
(15)
, 6750-6761. https://doi.org/10.1021/acs.macromol.2c00977
- Mona S. Minkara, Tyler R. Josephson, Connor L. Venteicher, Benjamin R. Greenvall, Rebecca K. Lindsey, Peter H. Koenig, J. Ilja Siepmann. Nonane and Hexanol Adsorption in the Lamellar Phase of a Nonionic Surfactant: Molecular Simulations and Comparison to Ideal Adsorbed Solution Theory. The Journal of Physical Chemistry B 2022, 126
(21)
, 3940-3949. https://doi.org/10.1021/acs.jpcb.2c02871
- Santosh
L. Gawali, Mingming Zhang, Sugam Kumar, Debes Ray, Manidipa Basu, Vinod K. Aswal, Dganit Danino, Puthusserickal A. Hassan. Discerning the Structure Factor of Charged Micelles in Water and Supercooled Solvent by Contrast Variation X-ray Scattering. Langmuir 2019, 35
(30)
, 9867-9877. https://doi.org/10.1021/acs.langmuir.9b00912
- Hassan Alasiri. Determining Critical Micelle Concentrations of Surfactants Based on Viscosity Calculations from Coarse-Grained Molecular Dynamics Simulations. Energy & Fuels 2019, 33
(3)
, 2408-2412. https://doi.org/10.1021/acs.energyfuels.8b04228
- Hsieh Chen, Athanassios Z. Panagiotopoulos. Molecular Modeling of Surfactant Micellization Using Solvent-Accessible Surface Area. Langmuir 2019, 35
(6)
, 2443-2450. https://doi.org/10.1021/acs.langmuir.8b03440
- Mona S. Minkara, Rebecca K. Lindsey, Celeste O. Noether, Connor L. Venteicher, Sumanth N. Jamadagni, David M. Eike, Ahmad F. Ghobadi, Peter H. Koenig, J. Ilja Siepmann. Probing Additive Loading in the Lamellar Phase of a Nonionic Surfactant: Gibbs Ensemble Monte Carlo Simulations Using the SDK Force Field. Langmuir 2018, 34
(28)
, 8245-8254. https://doi.org/10.1021/acs.langmuir.8b00687
- Richard L. Anderson, David J. Bray, Annalaura Del Regno, Michael A. Seaton, Andrea S. Ferrante, Patrick B. Warren. Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle Dynamics. Journal of Chemical Theory and Computation 2018, 14
(5)
, 2633-2643. https://doi.org/10.1021/acs.jctc.8b00075
- Michael A. Johnston, William C. Swope, Kirk E. Jordan, Patrick B. Warren, Massimo G. Noro, David J. Bray, and Richard L. Anderson . Toward a Standard Protocol for Micelle Simulation. The Journal of Physical Chemistry B 2016, 120
(26)
, 6337-6351. https://doi.org/10.1021/acs.jpcb.6b03075
- Arben Jusufi and Athanassios Z. Panagiotopoulos . Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions. Langmuir 2015, 31
(11)
, 3283-3292. https://doi.org/10.1021/la502227v
- Andrew G. Hsieh, Christian Punckt, Sibel Korkut, and Ilhan A. Aksay . Adsorption of Sodium Dodecyl Sulfate on Functionalized Graphene Measured by Conductometric Titration. The Journal of Physical Chemistry B 2013, 117
(26)
, 7950-7958. https://doi.org/10.1021/jp403876t
- Lin Jin, Scott M. Auerbach, and Peter A. Monson . Simulating the Formation of Surfactant-Templated Mesoporous Silica Materials: A Model with Both Surfactant Self-Assembly and Silica Polymerization. Langmuir 2013, 29
(2)
, 766-780. https://doi.org/10.1021/la304475j
- Arben Jusufi, Axel Kohlmeyer, Michael Sztucki, Theyencheri Narayanan, and Matthias Ballauff . Self-Assembly of Charged Surfactants: Full Comparison of Molecular Simulations and Scattering Experiments. Langmuir 2012, 28
(51)
, 17632-17641. https://doi.org/10.1021/la304084a
- Samantha A. Sanders, Maria Sammalkorpi, and Athanassios Z. Panagiotopoulos . Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates. The Journal of Physical Chemistry B 2012, 116
(8)
, 2430-2437. https://doi.org/10.1021/jp209207p
- Asfaw Gezae Daful, Josep Bonet Avalos, and Allan D. Mackie . Model Shape Transitions of Micelles: Spheres to Cylinders and Disks. Langmuir 2012, 28
(8)
, 3730-3743. https://doi.org/10.1021/la204132c
- Jeffrey L. Woodhead and Carol K. Hall . Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles. Macromolecules 2011, 44
(13)
, 5443-5451. https://doi.org/10.1021/ma102938g
- Ashish V. Sangwai and Radhakrishna Sureshkumar . Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles. Langmuir 2011, 27
(11)
, 6628-6638. https://doi.org/10.1021/la2006315
- Asfaw Gezae Daful, Vladimir A. Baulin, Josep Bonet Avalos, and Allan D. Mackie . Accurate Critical Micelle Concentrations from a Microscopic Surfactant Model. The Journal of Physical Chemistry B 2011, 115
(13)
, 3434-3443. https://doi.org/10.1021/jp1102302
- M. Sammalkorpi, S. Sanders, A. Z. Panagiotopoulos, M. Karttunen, and M. Haataja . Simulations of Micellization of Sodium Hexyl Sulfate. The Journal of Physical Chemistry B 2011, 115
(6)
, 1403-1410. https://doi.org/10.1021/jp109882r
- Arben Jusufi, Samantha Sanders, Michael L. Klein, and Athanassios Z. Panagiotopoulos . Implicit-Solvent Models for Micellization: Nonionic Surfactants and Temperature-Dependent Properties. The Journal of Physical Chemistry B 2011, 115
(5)
, 990-1001. https://doi.org/10.1021/jp108107f
- Jeffrey L. Woodhead and Carol K. Hall. Simulation of Micelle Formation in the Presence of Solutes. Langmuir 2010, 26
(19)
, 15135-15141. https://doi.org/10.1021/la1024444
- Niaz Poorgholami-Bejarpasi, Majid Hashemianzadeh, S. Morteza Mousavi-khoshdel and Beheshteh Sohrabi . Role of Interaction Energies in the Behavior of Mixed Surfactant Systems: A Lattice Monte Carlo Simulation. Langmuir 2010, 26
(17)
, 13786-13796. https://doi.org/10.1021/la100330c
- Zhenlong Li and Elena E. Dormidontova. Kinetics of Diblock Copolymer Micellization by Dissipative Particle Dynamics. Macromolecules 2010, 43
(7)
, 3521-3531. https://doi.org/10.1021/ma902860j
- Suman K. Samanta, Santanu Bhattacharya and Prabal K. Maiti . Coarse-Grained Molecular Dynamics Simulation of the Aggregation Properties of Multiheaded Cationic Surfactants in Water. The Journal of Physical Chemistry B 2009, 113
(41)
, 13545-13550. https://doi.org/10.1021/jp902376y
- Fengxian Zheng, Xianren Zhang and Wenchuan Wang. Comment on Monte Carlo Simulation of Surfactant Adsorption on Hydrophilic Surfaces. Langmuir 2009, 25
(13)
, 7766-7767. https://doi.org/10.1021/la901283k
- Arben Jusufi, Antti-Pekka Hynninen, Mikko Haataja and Athanassios Z. Panagiotopoulos. Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants. The Journal of Physical Chemistry B 2009, 113
(18)
, 6314-6320. https://doi.org/10.1021/jp901032g
- Zheng Li, Xianren Zhang and Biaohua Chen. Computer Simulation of the Epitaxy of Surfactant-Templated Inorganic Nanomaterials on Patterned Surfaces. Langmuir 2009, 25
(4)
, 1998-2006. https://doi.org/10.1021/la803325c
- Ting Chen, Antti-Pekka Hynninen, Robert K. Prud’homme, Ioannis G. Kevrekidis and Athanassios Z. Panagiotopoulos. Coarse-Grained Simulations of Rapid Assembly Kinetics for Polystyrene-b-poly(ethylene oxide) Copolymers in Aqueous Solutions. The Journal of Physical Chemistry B 2008, 112
(51)
, 16357-16366. https://doi.org/10.1021/jp805826a
- Arben Jusufi, Antti-Pekka Hynninen and Athanassios Z. Panagiotopoulos. Implicit Solvent Models for Micellization of Ionic Surfactants. The Journal of Physical Chemistry B 2008, 112
(44)
, 13783-13792. https://doi.org/10.1021/jp8043225
- Shuangyang Li, Xianren Zhang, Wei Dong and Wenchuan Wang . Computer Simulations of Solute Exchange Using Micelles by a Collision-Driven Fusion Process. Langmuir 2008, 24
(17)
, 9344-9353. https://doi.org/10.1021/la801521b
- Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang. Macrophase and Microphase Separations for Surfactants Adsorbed on Solid Surfaces: A Gauge Cell Monte Carlo Study in the Lattice Model. Langmuir 2008, 24
(9)
, 4661-4669. https://doi.org/10.1021/la800046s
- Xianren Zhang,, Dapeng Cao, and, Wenchuan Wang. Formation of New Morphologies of Surfactant−Inorganic−Water Systems under Spherical Confinements. The Journal of Physical Chemistry C 2008, 112
(8)
, 2943-2948. https://doi.org/10.1021/jp710840b
- A. Patti,, F. R. Siperstein, and, A. D. Mackie. Phase Behavior of Model Surfactants in the Presence of Hybrid Particles. The Journal of Physical Chemistry C 2007, 111
(43)
, 16035-16044. https://doi.org/10.1021/jp074486i
- Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang. Bridge Structure: An Intermediate State for a Morphological Transition in Confined Amphiphile/Water Systems. The Journal of Physical Chemistry C 2007, 111
(19)
, 7144-7151. https://doi.org/10.1021/jp070124z
- Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang, , Wei Dong. Adsorption and Morphology Transition of Surfactants on Hydrophobic Surfaces: A Lattice Monte Carlo Study. Langmuir 2006, 22
(26)
, 11214-11223. https://doi.org/10.1021/la0622424
- A. Cavallo,, M. Müller, and, K. Binder. Formation of Micelles in Homopolymer-Copolymer Mixtures: Quantitative Comparison between Simulations of Long Chains and Self-Consistent Field Calculations. Macromolecules 2006, 39
(26)
, 9539-9550. https://doi.org/10.1021/ma061493g
- Jurij Lah,, Marija Bešter-Rogač,, Tine-Martin Perger, and, Gorazd Vesnaver. Energetics in Correlation with Structural Features: The Case of Micellization. The Journal of Physical Chemistry B 2006, 110
(46)
, 23279-23291. https://doi.org/10.1021/jp062796f
- Hussein Gharibi,, Reza Behjatmanesh-Ardakani,, Majid Hashemianzadeh, and, Morteza Mousavi-Khoshdel. Complexation between a Macromolecule and an Amphiphile by Monte Carlo Technique. The Journal of Physical Chemistry B 2006, 110
(27)
, 13547-13553. https://doi.org/10.1021/jp061622v
- Vanessa Firetto and, Michele A. Floriano, , Athanassios Z. Panagiotopoulos. Effect of Stiffness on the Micellization Behavior of Model H4T4 Surfactant Chains. Langmuir 2006, 22
(15)
, 6514-6522. https://doi.org/10.1021/la060386c
- Daniel W. Cheong and, Athanassios Z. Panagiotopoulos. Monte Carlo Simulations of Micellization in Model Ionic Surfactants: Application to Sodium Dodecyl Sulfate. Langmuir 2006, 22
(9)
, 4076-4083. https://doi.org/10.1021/la053511d
- Brian C. Stephenson,, Kenneth Beers, and, Daniel Blankschtein. Complementary Use of Simulations and Molecular-Thermodynamic Theory to Model Micellization. Langmuir 2006, 22
(4)
, 1500-1513. https://doi.org/10.1021/la052042c
- Themis Lazaridis,, Buddhadeb Mallik, and, Yong Chen. Implicit Solvent Simulations of DPC Micelle Formation. The Journal of Physical Chemistry B 2005, 109
(31)
, 15098-15106. https://doi.org/10.1021/jp0516801
- Zhengmin Li and, Carol K. Hall. Parametric Studies of Interaction Strengths in Polymer/CO2 Systems: Discontinuous Molecular Dynamics Simulations. Langmuir 2005, 21
(16)
, 7579-7587. https://doi.org/10.1021/la0500023
- René Pool and, Peter G. Bolhuis. Accurate Free Energies of Micelle Formation. The Journal of Physical Chemistry B 2005, 109
(14)
, 6650-6657. https://doi.org/10.1021/jp045576f
- Zhengmin Li and, Carol K. Hall. Phase Behavior in Model Homopolymer/CO2 and Surfactant/CO2 Systems: Discontinuous Molecular Dynamics Simulations. Langmuir 2004, 20
(20)
, 8559-8568. https://doi.org/10.1021/la049267s
- Lauriane F. Scanu,, Keith E. Gubbins, and, Carol K. Hall. Lattice Monte Carlo Simulations of Phase Separation and Micellization in Supercritical CO2/Surfactant Systems: Effect of CO2 Density. Langmuir 2004, 20
(2)
, 514-523. https://doi.org/10.1021/la0347760
- Michael Zaldivar and, Ronald G. Larson. Lattice Monte Carlo Simulations of Dilute Mixed Micelles. Langmuir 2003, 19
(24)
, 10434-10442. https://doi.org/10.1021/la034101x
- Sumeet Salaniwal,, Sanat K. Kumar, and, A. Z. Panagiotopoulos. Competing Ranges of Attractive and Repulsive Interactions in the Micellization of Model Surfactants. Langmuir 2003, 19
(12)
, 5164-5168. https://doi.org/10.1021/la026076l
- Flor R. Siperstein and, Keith E. Gubbins. Phase Separation and Liquid Crystal Self-Assembly in Surfactant−Inorganic−Solvent Systems. Langmuir 2003, 19
(6)
, 2049-2057. https://doi.org/10.1021/la026410d
- Donghai Mei and, John P. O'Connell. Molecular Dynamics Simulations of Model Perhydrogenated and Perfluorinated Alkyl Chains, Droplets, and Micelles. Langmuir 2002, 18
(23)
, 9067-9079. https://doi.org/10.1021/la0201826
- Chrystal D. Bruce,, Max L. Berkowitz,, Lalith Perera, and, Malcolm D. E. Forbes. Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution. The Journal of Physical Chemistry B 2002, 106
(15)
, 3788-3793. https://doi.org/10.1021/jp013616z
- V. Kapila,, J. M. Harris,, P. A. Deymier, and, S. Raghavan. Effect of Long-Range and Steric Hydrophilic Interactions on Micellization of Surfactant Solutions: A Monte Carlo Study in 2-D. Langmuir 2002, 18
(9)
, 3728-3736. https://doi.org/10.1021/la011206w
- Athanassios Z. Panagiotopoulos, , M. Antonio Floriano, , Sanat K. Kumar. Micellization and Phase Separation of Diblock and Triblock Model Surfactants. Langmuir 2002, 18
(7)
, 2940-2948. https://doi.org/10.1021/la0156513
- Seung Hyun Kim and, Won Ho Jo. A Monte Carlo Simulation for the Micellization of ABA- and BAB-Type Triblock Copolymers in a Selective Solvent. Macromolecules 2001, 34
(20)
, 7210-7218. https://doi.org/10.1021/ma0105136
- S. Salaniwal,, S. T. Cui,, H. D. Cochran, and, P. T. Cummings. Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 1. Structural Properties of Aggregates. Langmuir 2001, 17
(5)
, 1773-1783. https://doi.org/10.1021/la000554f
- Sumeet Salaniwal,, Shengting Cui,, Hank D. Cochran, and, Peter T. Cummings. Molecular Dynamics Simulation of Reverse Micelles in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research 2000, 39
(12)
, 4543-4554. https://doi.org/10.1021/ie000144m
- Tharique N. Ansari, Gaganpreet Kaur, Thomas J. Colacot, Sachin Handa. Chemistry of “In‐Water” Reactions: Spotlights on Micellar and Phase‐Transfer Catalysis. 2025, 29-62. https://doi.org/10.1002/9783527846849.ch3
- Athanassios Z. Panagiotopoulos. Sequence dependence of critical properties for two-letter chains. The Journal of Chemical Physics 2024, 160
(23)
https://doi.org/10.1063/5.0215700
- Manoj Kumar Banjare, Benvikram Barman. Effect of biologically active amino acids based deep eutectic solvents on sodium dodecyl sulfate: A comparative spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 308 , 123700. https://doi.org/10.1016/j.saa.2023.123700
- My. V. T. Nguyen, Kate Dolph, Kris T. Delaney, Kevin Shen, Nicholas Sherck, Stephan Köhler, Rohini Gupta, Matthew B. Francis, M. Scott Shell, Glenn H. Fredrickson. Molecularly informed field theory for estimating critical micelle concentrations of intrinsically disordered protein surfactants. The Journal of Chemical Physics 2023, 159
(24)
https://doi.org/10.1063/5.0178910
- Tharique N. Ansari, Fabrice Gallou, Sachin Handa. Palladium-catalyzed micellar cross-couplings: An outlook. Coordination Chemistry Reviews 2023, 488 , 215158. https://doi.org/10.1016/j.ccr.2023.215158
- Athanassios Z. Panagiotopoulos. Phase separation and aggregation in multiblock chains. The Journal of Chemical Physics 2023, 158
(15)
https://doi.org/10.1063/5.0146673
- Meenakshi Kumari, Punita Sharma, D. S. Rana. Study of micellization behaviour of SDS, DTAB and [12-2-12] gemini surfactants using density and sound velocity measurements. 2023, 030018. https://doi.org/10.1063/5.0140974
- J. D. Hernández Velázquez, J. Santos-Santos, A. Gama Goicochea. The persistence length of linear surfactants modulates the self-assembly of reverse micelles and their diffusion in nonpolar solvents. Molecular Systems Design & Engineering 2022, 7
(12)
, 1650-1657. https://doi.org/10.1039/D2ME00113F
- Hadi Saboorian-Jooybari, Zhangxin Chen. Simple formulas for prediction of the sizes of worm-like and globular micelles in symmetrical electrolyte solutions. Journal of Molecular Liquids 2021, 343 , 117393. https://doi.org/10.1016/j.molliq.2021.117393
- Ushnish Rana, Clifford P. Brangwynne, Athanassios Z. Panagiotopoulos. Phase separation vs aggregation behavior for model disordered proteins. The Journal of Chemical Physics 2021, 155
(12)
https://doi.org/10.1063/5.0060046
- Antonia Statt, Devon C. Kleeblatt, Wesley F. Reinhart. Unsupervised learning of sequence-specific aggregation behavior for a model copolymer. Soft Matter 2021, 17
(33)
, 7697-7707. https://doi.org/10.1039/D1SM01012C
- Ferenc Horkay, Alexandros Chremos, Jack F. Douglas, Ronald Jones, Junzhe Lou, Yan Xia. Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. The Journal of Chemical Physics 2021, 155
(7)
https://doi.org/10.1063/5.0061649
- Lakshmikumar Kunche, Upendra Natarajan. Structure and dynamics of an aqueous solution containing poly-(acrylic acid) and non-ionic surfactant octaethylene glycol
n
-decyl ether (C
10
E
8
) aggregates and their complexes investigated by molecular dynamics simulations. Soft Matter 2021, 17
(3)
, 670-687. https://doi.org/10.1039/D0SM01322F
- Lakshmikumar Kunche, Upendra Natarajan. Structure and dynamics of aqueous solutions containing poly-(acrylic acid) and non-ionic surfactant pentaethylene glycol n-octyl ether (C8E5): A molecular simulations study. Computational Materials Science 2021, 186 , 110043. https://doi.org/10.1016/j.commatsci.2020.110043
- Luis D. Vargas, Gustavo A. Chapela, Orlando Guzmán, Pedro Díaz Leyva, Rodrigo Sánchez, Fernando del Río. Self-assembling and phase coexistence of SW trimers as complex amphiphile analogues. I. Simulations. Molecular Physics 2020, 118
(9-10)
, e1726519. https://doi.org/10.1080/00268976.2020.1726519
- Antonia Statt, Helena Casademunt, Clifford P. Brangwynne, Athanassios Z. Panagiotopoulos. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. The Journal of Chemical Physics 2020, 152
(7)
https://doi.org/10.1063/1.5141095
- M. Litniewski, A. Ciach. Effect of aggregation on adsorption phenomena. The Journal of Chemical Physics 2019, 150
(23)
https://doi.org/10.1063/1.5102157
- Simon Raschke, Andreas Heuer. Non-equilibrium effects of micelle formation as studied by a minimum particle-based model. The Journal of Chemical Physics 2019, 150
(20)
https://doi.org/10.1063/1.5086618
- Mohammad Soroush Barhaghi, Korosh Torabi, Younes Nejahi, Loren Schwiebert, Jeffrey J. Potoff. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. The Journal of Chemical Physics 2018, 149
(7)
https://doi.org/10.1063/1.5025184
- Sally Jiao, Andrew P. Santos, Athanassios Z. Panagiotopoulos. Differences in free surfactant concentration and aggregation properties for amphiphiles with the same critical micelle concentration. Fluid Phase Equilibria 2018, 470 , 126-133. https://doi.org/10.1016/j.fluid.2017.10.026
- Nathan A. Mahynski, Sally Jiao, Harold W. Hatch, Marco A. Blanco, Vincent K. Shen. Predicting structural properties of fluids by thermodynamic extrapolation. The Journal of Chemical Physics 2018, 148
(19)
https://doi.org/10.1063/1.5026493
- Yi Hu, Patrick Charbonneau. Clustering and assembly dynamics of a one-dimensional microphase former. Soft Matter 2018, 14
(20)
, 4101-4109. https://doi.org/10.1039/C8SM00315G
- Nathan A. Mahynski, Marco A. Blanco, Jeffrey R. Errington, Vincent K. Shen. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods. The Journal of Chemical Physics 2017, 146
(7)
https://doi.org/10.1063/1.4975331
- Andrew P. Santos, Jakub Pȩkalski, Athanassios Z. Panagiotopoulos. Thermodynamic signatures and cluster properties of self-assembly in systems with competing interactions. Soft Matter 2017, 13
(44)
, 8055-8063. https://doi.org/10.1039/C7SM01721A
- Andrew P. Santos, Athanassios Z. Panagiotopoulos. Determination of the critical micelle concentration in simulations of surfactant systems. The Journal of Chemical Physics 2016, 144
(4)
https://doi.org/10.1063/1.4940687
- Lorenzo Rovigatti, Barbara Capone, Christos N. Likos. Soft self-assembled nanoparticles with temperature-dependent properties. Nanoscale 2016, 8
(6)
, 3288-3295. https://doi.org/10.1039/C5NR04661K
- Yaoyao Wei, Guokui Liu, Zhongni Wang, Shiling Yuan. Molecular dynamics study on the aggregation behaviour of different positional isomers of sodium dodecyl benzenesulphonate. RSC Advances 2016, 6
(55)
, 49708-49716. https://doi.org/10.1039/C6RA05188J
- Harold W. Hatch, Seung-Yeob Yang, Jeetain Mittal, Vincent K. Shen. Self-assembly of trimer colloids: effect of shape and interaction range. Soft Matter 2016, 12
(18)
, 4170-4179. https://doi.org/10.1039/C6SM00473C
- Shumeng Wang, Zhi Li, Bei Liu, Xianren Zhang, Qingyuan Yang. Molecular mechanisms for surfactant-aided oil removal from a solid surface. Applied Surface Science 2015, 359 , 98-105. https://doi.org/10.1016/j.apsusc.2015.10.068
- G. Heinzelmann, P. Seide, W. Figueiredo. Dynamics of micelle formation from temperature-jump Monte Carlo simulations. Physical Review E 2015, 92
(5)
https://doi.org/10.1103/PhysRevE.92.052305
- Harold W. Hatch, Jeetain Mittal, Vincent K. Shen. Computational study of trimer self-assembly and fluid phase behavior. The Journal of Chemical Physics 2015, 142
(16)
https://doi.org/10.1063/1.4918557
- Nathan A. Mahynski, Athanassios Z. Panagiotopoulos. Grafted nanoparticles as soft patchy colloids: Self-assembly versus phase separation. The Journal of Chemical Physics 2015, 142
(7)
https://doi.org/10.1063/1.4908044
- Ruzanna Yahya, Roghayeh Abedi Karjiban, Mahiran Basri, Mohd Basyaruddin Abdul Rahman, Mauricio Girardi. Monte Carlo simulation of mixed nonionic Brij surfactants in water. Journal of Molecular Modeling 2014, 20
(11)
https://doi.org/10.1007/s00894-014-2512-1
- Arash Nikoubashman, Athanassios Z. Panagiotopoulos. Communication: Effect of solvophobic block length on critical micelle concentration in model surfactant systems. The Journal of Chemical Physics 2014, 141
(4)
https://doi.org/10.1063/1.4890981
- Zhaohuan Mai, Estelle Couallier, Mohammed Rakib, Bernard Rousseau. Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates. The Journal of Chemical Physics 2014, 140
(20)
https://doi.org/10.1063/1.4875515
- Gianmarco Munaò, Patrick O’Toole, Toby S. Hudson, Dino Costa, Carlo Caccamo, Achille Giacometti, Francesco Sciortino. Phase separation and self-assembly of colloidal dimers with tunable attractive strength: from symmetrical square-wells to Janus dumbbells. Soft Matter 2014, 10
(29)
, 5269-5279. https://doi.org/10.1039/C4SM00544A
- Simone Dussi, Lorenzo Rovigatti, Francesco Sciortino. On the gas–liquid phase separation and the self-assembly of charged soft dumbbells. Molecular Physics 2013, 111
(22-23)
, 3608-3617. https://doi.org/10.1080/00268976.2013.838315
- Arben Jusufi. Molecular simulations of self-assembly processes of amphiphiles in dilute solutions: the challenge for quantitative modelling. Molecular Physics 2013, 111
(21)
, 3182-3192. https://doi.org/10.1080/00268976.2013.826394
- Alessandro Patti. Modeling the aggregation behavior of amphiphiles in the continuous phase of highly concentrated emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 437 , 90-100. https://doi.org/10.1016/j.colsurfa.2012.11.021
- Lorenzo Rovigatti, José Maria Tavares, Francesco Sciortino. Self-Assembly in Chains, Rings, and Branches: A Single Component System with Two Critical Points. Physical Review Letters 2013, 111
(16)
https://doi.org/10.1103/PhysRevLett.111.168302
- Guadalupe Jiménez-Serratos, Alejandro Gil-Villegas, Carlos Vega, Felipe J. Blas. Monte Carlo simulation of flexible trimers: From square well chains to amphiphilic primitive models. The Journal of Chemical Physics 2013, 139
(11)
https://doi.org/10.1063/1.4820530
- Jurriaan A. Luiken, Peter G. Bolhuis. Anisotropic aggregation in a simple model of isotropically polymer-coated nanoparticles. Physical Review E 2013, 88
(1)
https://doi.org/10.1103/PhysRevE.88.012303
- Teun Vissers, Zdeněk Preisler, Frank Smallenburg, Marjolein Dijkstra, Francesco Sciortino. Predicting crystals of Janus colloids. The Journal of Chemical Physics 2013, 138
(16)
https://doi.org/10.1063/1.4801438
- Christian Koch, Athanassios Z. Panagiotopoulos, Federica Lo Verso, Christos N. Likos. Phase behavior of rigid, amphiphilic star polymers. Soft Matter 2013, 9
(31)
, 7424. https://doi.org/10.1039/c3sm51135a
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.