ACS Publications. Most Trusted. Most Cited. Most Read
Micellization in Model Surfactant Systems
My Activity
    Research Article

    Micellization in Model Surfactant Systems
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Chimica Fisica, Università di Palermo, Via Archirafi 26, 90123 Palermo, Italy
    Institute for Physical Science and Technology and Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742-2431
    Other Access Options

    Langmuir

    Cite this: Langmuir 1999, 15, 9, 3143–3151
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la9810206
    Published April 10, 1999
    Copyright © 1999 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Formation of micelles in model lattice surfactant systems was studied by a novel methodology based on grand-canonical Monte Carlo simulations. The methodology involves combining free-energy information from a series of simulations in small systems by histogram reweighting. The solution osmotic pressure as a function of overall volume fraction of surfactant shows a sharp break at the critical micelle concentration (cmc) at sufficiently low temperatures. Studies in larger systems at appropriate values of the surfactant chemical potential are used to investigate the size distribution of micellar aggregates. The methodology allows for a clear distiction between micellization and macroscopic phase separation. Two symmetric diblock surfactants have been considered in the present work. The cmc was found to increase with increasing temperature. The enthalpy change on micellization was determined to be proportional to the chain length of the surfactant. The mean micelle aggregation numbers were found to decrease at higher temperatures and increase with overall surfactant volume fraction for temperatures near the upper limit for micellar aggregation. These observations indicate that simple geometric packing concepts for micelle formation do not adequately describe temperature and composition effects in nonionic surfactant solutions.

    Copyright © 1999 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Current address:  Department of Chemistry, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.

    *

     To whom correspondence should be addressed. E-mail:  thanos@ ipst.umd.edu.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 185 publications.

    1. Athanassios Z. Panagiotopoulos. Solvent Selectivity Controls Micro- Versus Macrophase Separation in Multiblock Chains. Macromolecules 2024, 57 (16) , 8253-8261. https://doi.org/10.1021/acs.macromol.4c01214
    2. Wengang Zhang, Yuanchi Ma, Nicholas D. Posey, Michael J. Lueckheide, Vivek M. Prabhu, Jack F. Douglas. Combined Simulation and Experimental Study of Polyampholyte Solution Properties: Effects of Charge Ratio, Hydrophobic Groups, and Polymer Concentration. Macromolecules 2022, 55 (15) , 6750-6761. https://doi.org/10.1021/acs.macromol.2c00977
    3. Mona S. Minkara, Tyler R. Josephson, Connor L. Venteicher, Benjamin R. Greenvall, Rebecca K. Lindsey, Peter H. Koenig, J. Ilja Siepmann. Nonane and Hexanol Adsorption in the Lamellar Phase of a Nonionic Surfactant: Molecular Simulations and Comparison to Ideal Adsorbed Solution Theory. The Journal of Physical Chemistry B 2022, 126 (21) , 3940-3949. https://doi.org/10.1021/acs.jpcb.2c02871
    4. Santosh L. Gawali, Mingming Zhang, Sugam Kumar, Debes Ray, Manidipa Basu, Vinod K. Aswal, Dganit Danino, Puthusserickal A. Hassan. Discerning the Structure Factor of Charged Micelles in Water and Supercooled Solvent by Contrast Variation X-ray Scattering. Langmuir 2019, 35 (30) , 9867-9877. https://doi.org/10.1021/acs.langmuir.9b00912
    5. Hassan Alasiri. Determining Critical Micelle Concentrations of Surfactants Based on Viscosity Calculations from Coarse-Grained Molecular Dynamics Simulations. Energy & Fuels 2019, 33 (3) , 2408-2412. https://doi.org/10.1021/acs.energyfuels.8b04228
    6. Hsieh Chen, Athanassios Z. Panagiotopoulos. Molecular Modeling of Surfactant Micellization Using Solvent-Accessible Surface Area. Langmuir 2019, 35 (6) , 2443-2450. https://doi.org/10.1021/acs.langmuir.8b03440
    7. Mona S. Minkara, Rebecca K. Lindsey, Celeste O. Noether, Connor L. Venteicher, Sumanth N. Jamadagni, David M. Eike, Ahmad F. Ghobadi, Peter H. Koenig, J. Ilja Siepmann. Probing Additive Loading in the Lamellar Phase of a Nonionic Surfactant: Gibbs Ensemble Monte Carlo Simulations Using the SDK Force Field. Langmuir 2018, 34 (28) , 8245-8254. https://doi.org/10.1021/acs.langmuir.8b00687
    8. Richard L. Anderson, David J. Bray, Annalaura Del Regno, Michael A. Seaton, Andrea S. Ferrante, Patrick B. Warren. Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle Dynamics. Journal of Chemical Theory and Computation 2018, 14 (5) , 2633-2643. https://doi.org/10.1021/acs.jctc.8b00075
    9. Michael A. Johnston, William C. Swope, Kirk E. Jordan, Patrick B. Warren, Massimo G. Noro, David J. Bray, and Richard L. Anderson . Toward a Standard Protocol for Micelle Simulation. The Journal of Physical Chemistry B 2016, 120 (26) , 6337-6351. https://doi.org/10.1021/acs.jpcb.6b03075
    10. Arben Jusufi and Athanassios Z. Panagiotopoulos . Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions. Langmuir 2015, 31 (11) , 3283-3292. https://doi.org/10.1021/la502227v
    11. Andrew G. Hsieh, Christian Punckt, Sibel Korkut, and Ilhan A. Aksay . Adsorption of Sodium Dodecyl Sulfate on Functionalized Graphene Measured by Conductometric Titration. The Journal of Physical Chemistry B 2013, 117 (26) , 7950-7958. https://doi.org/10.1021/jp403876t
    12. Lin Jin, Scott M. Auerbach, and Peter A. Monson . Simulating the Formation of Surfactant-Templated Mesoporous Silica Materials: A Model with Both Surfactant Self-Assembly and Silica Polymerization. Langmuir 2013, 29 (2) , 766-780. https://doi.org/10.1021/la304475j
    13. Arben Jusufi, Axel Kohlmeyer, Michael Sztucki, Theyencheri Narayanan, and Matthias Ballauff . Self-Assembly of Charged Surfactants: Full Comparison of Molecular Simulations and Scattering Experiments. Langmuir 2012, 28 (51) , 17632-17641. https://doi.org/10.1021/la304084a
    14. Samantha A. Sanders, Maria Sammalkorpi, and Athanassios Z. Panagiotopoulos . Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates. The Journal of Physical Chemistry B 2012, 116 (8) , 2430-2437. https://doi.org/10.1021/jp209207p
    15. Asfaw Gezae Daful, Josep Bonet Avalos, and Allan D. Mackie . Model Shape Transitions of Micelles: Spheres to Cylinders and Disks. Langmuir 2012, 28 (8) , 3730-3743. https://doi.org/10.1021/la204132c
    16. Jeffrey L. Woodhead and Carol K. Hall . Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles. Macromolecules 2011, 44 (13) , 5443-5451. https://doi.org/10.1021/ma102938g
    17. Ashish V. Sangwai and Radhakrishna Sureshkumar . Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles. Langmuir 2011, 27 (11) , 6628-6638. https://doi.org/10.1021/la2006315
    18. Asfaw Gezae Daful, Vladimir A. Baulin, Josep Bonet Avalos, and Allan D. Mackie . Accurate Critical Micelle Concentrations from a Microscopic Surfactant Model. The Journal of Physical Chemistry B 2011, 115 (13) , 3434-3443. https://doi.org/10.1021/jp1102302
    19. M. Sammalkorpi, S. Sanders, A. Z. Panagiotopoulos, M. Karttunen, and M. Haataja . Simulations of Micellization of Sodium Hexyl Sulfate. The Journal of Physical Chemistry B 2011, 115 (6) , 1403-1410. https://doi.org/10.1021/jp109882r
    20. Arben Jusufi, Samantha Sanders, Michael L. Klein, and Athanassios Z. Panagiotopoulos . Implicit-Solvent Models for Micellization: Nonionic Surfactants and Temperature-Dependent Properties. The Journal of Physical Chemistry B 2011, 115 (5) , 990-1001. https://doi.org/10.1021/jp108107f
    21. Jeffrey L. Woodhead and Carol K. Hall. Simulation of Micelle Formation in the Presence of Solutes. Langmuir 2010, 26 (19) , 15135-15141. https://doi.org/10.1021/la1024444
    22. Niaz Poorgholami-Bejarpasi, Majid Hashemianzadeh, S. Morteza Mousavi-khoshdel and Beheshteh Sohrabi . Role of Interaction Energies in the Behavior of Mixed Surfactant Systems: A Lattice Monte Carlo Simulation. Langmuir 2010, 26 (17) , 13786-13796. https://doi.org/10.1021/la100330c
    23. Zhenlong Li and Elena E. Dormidontova. Kinetics of Diblock Copolymer Micellization by Dissipative Particle Dynamics. Macromolecules 2010, 43 (7) , 3521-3531. https://doi.org/10.1021/ma902860j
    24. Suman K. Samanta, Santanu Bhattacharya and Prabal K. Maiti . Coarse-Grained Molecular Dynamics Simulation of the Aggregation Properties of Multiheaded Cationic Surfactants in Water. The Journal of Physical Chemistry B 2009, 113 (41) , 13545-13550. https://doi.org/10.1021/jp902376y
    25. Fengxian Zheng, Xianren Zhang and Wenchuan Wang. Comment on Monte Carlo Simulation of Surfactant Adsorption on Hydrophilic Surfaces. Langmuir 2009, 25 (13) , 7766-7767. https://doi.org/10.1021/la901283k
    26. Arben Jusufi, Antti-Pekka Hynninen, Mikko Haataja and Athanassios Z. Panagiotopoulos. Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants. The Journal of Physical Chemistry B 2009, 113 (18) , 6314-6320. https://doi.org/10.1021/jp901032g
    27. Zheng Li, Xianren Zhang and Biaohua Chen. Computer Simulation of the Epitaxy of Surfactant-Templated Inorganic Nanomaterials on Patterned Surfaces. Langmuir 2009, 25 (4) , 1998-2006. https://doi.org/10.1021/la803325c
    28. Ting Chen, Antti-Pekka Hynninen, Robert K. Prud’homme, Ioannis G. Kevrekidis and Athanassios Z. Panagiotopoulos. Coarse-Grained Simulations of Rapid Assembly Kinetics for Polystyrene-b-poly(ethylene oxide) Copolymers in Aqueous Solutions. The Journal of Physical Chemistry B 2008, 112 (51) , 16357-16366. https://doi.org/10.1021/jp805826a
    29. Arben Jusufi, Antti-Pekka Hynninen and Athanassios Z. Panagiotopoulos. Implicit Solvent Models for Micellization of Ionic Surfactants. The Journal of Physical Chemistry B 2008, 112 (44) , 13783-13792. https://doi.org/10.1021/jp8043225
    30. Shuangyang Li, Xianren Zhang, Wei Dong and Wenchuan Wang . Computer Simulations of Solute Exchange Using Micelles by a Collision-Driven Fusion Process. Langmuir 2008, 24 (17) , 9344-9353. https://doi.org/10.1021/la801521b
    31. Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang. Macrophase and Microphase Separations for Surfactants Adsorbed on Solid Surfaces:  A Gauge Cell Monte Carlo Study in the Lattice Model. Langmuir 2008, 24 (9) , 4661-4669. https://doi.org/10.1021/la800046s
    32. Xianren Zhang,, Dapeng Cao, and, Wenchuan Wang. Formation of New Morphologies of Surfactant−Inorganic−Water Systems under Spherical Confinements. The Journal of Physical Chemistry C 2008, 112 (8) , 2943-2948. https://doi.org/10.1021/jp710840b
    33. A. Patti,, F. R. Siperstein, and, A. D. Mackie. Phase Behavior of Model Surfactants in the Presence of Hybrid Particles. The Journal of Physical Chemistry C 2007, 111 (43) , 16035-16044. https://doi.org/10.1021/jp074486i
    34. Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang. Bridge Structure:  An Intermediate State for a Morphological Transition in Confined Amphiphile/Water Systems. The Journal of Physical Chemistry C 2007, 111 (19) , 7144-7151. https://doi.org/10.1021/jp070124z
    35. Fengxian Zheng,, Xianren Zhang, and, Wenchuan Wang, , Wei Dong. Adsorption and Morphology Transition of Surfactants on Hydrophobic Surfaces:  A Lattice Monte Carlo Study. Langmuir 2006, 22 (26) , 11214-11223. https://doi.org/10.1021/la0622424
    36. A. Cavallo,, M. Müller, and, K. Binder. Formation of Micelles in Homopolymer-Copolymer Mixtures:  Quantitative Comparison between Simulations of Long Chains and Self-Consistent Field Calculations. Macromolecules 2006, 39 (26) , 9539-9550. https://doi.org/10.1021/ma061493g
    37. Jurij Lah,, Marija Bešter-Rogač,, Tine-Martin Perger, and, Gorazd Vesnaver. Energetics in Correlation with Structural Features:  The Case of Micellization. The Journal of Physical Chemistry B 2006, 110 (46) , 23279-23291. https://doi.org/10.1021/jp062796f
    38. Hussein Gharibi,, Reza Behjatmanesh-Ardakani,, Majid Hashemianzadeh, and, Morteza Mousavi-Khoshdel. Complexation between a Macromolecule and an Amphiphile by Monte Carlo Technique. The Journal of Physical Chemistry B 2006, 110 (27) , 13547-13553. https://doi.org/10.1021/jp061622v
    39. Vanessa Firetto and, Michele A. Floriano, , Athanassios Z. Panagiotopoulos. Effect of Stiffness on the Micellization Behavior of Model H4T4 Surfactant Chains. Langmuir 2006, 22 (15) , 6514-6522. https://doi.org/10.1021/la060386c
    40. Daniel W. Cheong and, Athanassios Z. Panagiotopoulos. Monte Carlo Simulations of Micellization in Model Ionic Surfactants:  Application to Sodium Dodecyl Sulfate. Langmuir 2006, 22 (9) , 4076-4083. https://doi.org/10.1021/la053511d
    41. Brian C. Stephenson,, Kenneth Beers, and, Daniel Blankschtein. Complementary Use of Simulations and Molecular-Thermodynamic Theory to Model Micellization. Langmuir 2006, 22 (4) , 1500-1513. https://doi.org/10.1021/la052042c
    42. Themis Lazaridis,, Buddhadeb Mallik, and, Yong Chen. Implicit Solvent Simulations of DPC Micelle Formation. The Journal of Physical Chemistry B 2005, 109 (31) , 15098-15106. https://doi.org/10.1021/jp0516801
    43. Zhengmin Li and, Carol K. Hall. Parametric Studies of Interaction Strengths in Polymer/CO2 Systems:  Discontinuous Molecular Dynamics Simulations. Langmuir 2005, 21 (16) , 7579-7587. https://doi.org/10.1021/la0500023
    44. René Pool and, Peter G. Bolhuis. Accurate Free Energies of Micelle Formation. The Journal of Physical Chemistry B 2005, 109 (14) , 6650-6657. https://doi.org/10.1021/jp045576f
    45. Zhengmin Li and, Carol K. Hall. Phase Behavior in Model Homopolymer/CO2 and Surfactant/CO2 Systems:  Discontinuous Molecular Dynamics Simulations. Langmuir 2004, 20 (20) , 8559-8568. https://doi.org/10.1021/la049267s
    46. Lauriane F. Scanu,, Keith E. Gubbins, and, Carol K. Hall. Lattice Monte Carlo Simulations of Phase Separation and Micellization in Supercritical CO2/Surfactant Systems:  Effect of CO2 Density. Langmuir 2004, 20 (2) , 514-523. https://doi.org/10.1021/la0347760
    47. Michael Zaldivar and, Ronald G. Larson. Lattice Monte Carlo Simulations of Dilute Mixed Micelles. Langmuir 2003, 19 (24) , 10434-10442. https://doi.org/10.1021/la034101x
    48. Sumeet Salaniwal,, Sanat K. Kumar, and, A. Z. Panagiotopoulos. Competing Ranges of Attractive and Repulsive Interactions in the Micellization of Model Surfactants. Langmuir 2003, 19 (12) , 5164-5168. https://doi.org/10.1021/la026076l
    49. Flor R. Siperstein and, Keith E. Gubbins. Phase Separation and Liquid Crystal Self-Assembly in Surfactant−Inorganic−Solvent Systems. Langmuir 2003, 19 (6) , 2049-2057. https://doi.org/10.1021/la026410d
    50. Donghai Mei and, John P. O'Connell. Molecular Dynamics Simulations of Model Perhydrogenated and Perfluorinated Alkyl Chains, Droplets, and Micelles. Langmuir 2002, 18 (23) , 9067-9079. https://doi.org/10.1021/la0201826
    51. Chrystal D. Bruce,, Max L. Berkowitz,, Lalith Perera, and, Malcolm D. E. Forbes. Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution. The Journal of Physical Chemistry B 2002, 106 (15) , 3788-3793. https://doi.org/10.1021/jp013616z
    52. V. Kapila,, J. M. Harris,, P. A. Deymier, and, S. Raghavan. Effect of Long-Range and Steric Hydrophilic Interactions on Micellization of Surfactant Solutions:  A Monte Carlo Study in 2-D. Langmuir 2002, 18 (9) , 3728-3736. https://doi.org/10.1021/la011206w
    53. Athanassios Z. Panagiotopoulos, , M. Antonio Floriano, , Sanat K. Kumar. Micellization and Phase Separation of Diblock and Triblock Model Surfactants. Langmuir 2002, 18 (7) , 2940-2948. https://doi.org/10.1021/la0156513
    54. Seung Hyun Kim and, Won Ho Jo. A Monte Carlo Simulation for the Micellization of ABA- and BAB-Type Triblock Copolymers in a Selective Solvent. Macromolecules 2001, 34 (20) , 7210-7218. https://doi.org/10.1021/ma0105136
    55. S. Salaniwal,, S. T. Cui,, H. D. Cochran, and, P. T. Cummings. Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 1. Structural Properties of Aggregates. Langmuir 2001, 17 (5) , 1773-1783. https://doi.org/10.1021/la000554f
    56. Sumeet Salaniwal,, Shengting Cui,, Hank D. Cochran, and, Peter T. Cummings. Molecular Dynamics Simulation of Reverse Micelles in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research 2000, 39 (12) , 4543-4554. https://doi.org/10.1021/ie000144m
    57. Tharique N. Ansari, Gaganpreet Kaur, Thomas J. Colacot, Sachin Handa. Chemistry of “In‐Water” Reactions: Spotlights on Micellar and Phase‐Transfer Catalysis. 2025, 29-62. https://doi.org/10.1002/9783527846849.ch3
    58. Athanassios Z. Panagiotopoulos. Sequence dependence of critical properties for two-letter chains. The Journal of Chemical Physics 2024, 160 (23) https://doi.org/10.1063/5.0215700
    59. Manoj Kumar Banjare, Benvikram Barman. Effect of biologically active amino acids based deep eutectic solvents on sodium dodecyl sulfate: A comparative spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 308 , 123700. https://doi.org/10.1016/j.saa.2023.123700
    60. My. V. T. Nguyen, Kate Dolph, Kris T. Delaney, Kevin Shen, Nicholas Sherck, Stephan Köhler, Rohini Gupta, Matthew B. Francis, M. Scott Shell, Glenn H. Fredrickson. Molecularly informed field theory for estimating critical micelle concentrations of intrinsically disordered protein surfactants. The Journal of Chemical Physics 2023, 159 (24) https://doi.org/10.1063/5.0178910
    61. Tharique N. Ansari, Fabrice Gallou, Sachin Handa. Palladium-catalyzed micellar cross-couplings: An outlook. Coordination Chemistry Reviews 2023, 488 , 215158. https://doi.org/10.1016/j.ccr.2023.215158
    62. Athanassios Z. Panagiotopoulos. Phase separation and aggregation in multiblock chains. The Journal of Chemical Physics 2023, 158 (15) https://doi.org/10.1063/5.0146673
    63. Meenakshi Kumari, Punita Sharma, D. S. Rana. Study of micellization behaviour of SDS, DTAB and [12-2-12] gemini surfactants using density and sound velocity measurements. 2023, 030018. https://doi.org/10.1063/5.0140974
    64. J. D. Hernández Velázquez, J. Santos-Santos, A. Gama Goicochea. The persistence length of linear surfactants modulates the self-assembly of reverse micelles and their diffusion in nonpolar solvents. Molecular Systems Design & Engineering 2022, 7 (12) , 1650-1657. https://doi.org/10.1039/D2ME00113F
    65. Hadi Saboorian-Jooybari, Zhangxin Chen. Simple formulas for prediction of the sizes of worm-like and globular micelles in symmetrical electrolyte solutions. Journal of Molecular Liquids 2021, 343 , 117393. https://doi.org/10.1016/j.molliq.2021.117393
    66. Ushnish Rana, Clifford P. Brangwynne, Athanassios Z. Panagiotopoulos. Phase separation vs aggregation behavior for model disordered proteins. The Journal of Chemical Physics 2021, 155 (12) https://doi.org/10.1063/5.0060046
    67. Antonia Statt, Devon C. Kleeblatt, Wesley F. Reinhart. Unsupervised learning of sequence-specific aggregation behavior for a model copolymer. Soft Matter 2021, 17 (33) , 7697-7707. https://doi.org/10.1039/D1SM01012C
    68. Ferenc Horkay, Alexandros Chremos, Jack F. Douglas, Ronald Jones, Junzhe Lou, Yan Xia. Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. The Journal of Chemical Physics 2021, 155 (7) https://doi.org/10.1063/5.0061649
    69. Lakshmikumar Kunche, Upendra Natarajan. Structure and dynamics of an aqueous solution containing poly-(acrylic acid) and non-ionic surfactant octaethylene glycol n -decyl ether (C 10 E 8 ) aggregates and their complexes investigated by molecular dynamics simulations. Soft Matter 2021, 17 (3) , 670-687. https://doi.org/10.1039/D0SM01322F
    70. Lakshmikumar Kunche, Upendra Natarajan. Structure and dynamics of aqueous solutions containing poly-(acrylic acid) and non-ionic surfactant pentaethylene glycol n-octyl ether (C8E5): A molecular simulations study. Computational Materials Science 2021, 186 , 110043. https://doi.org/10.1016/j.commatsci.2020.110043
    71. Luis D. Vargas, Gustavo A. Chapela, Orlando Guzmán, Pedro Díaz Leyva, Rodrigo Sánchez, Fernando del Río. Self-assembling and phase coexistence of SW trimers as complex amphiphile analogues. I. Simulations. Molecular Physics 2020, 118 (9-10) , e1726519. https://doi.org/10.1080/00268976.2020.1726519
    72. Antonia Statt, Helena Casademunt, Clifford P. Brangwynne, Athanassios Z. Panagiotopoulos. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. The Journal of Chemical Physics 2020, 152 (7) https://doi.org/10.1063/1.5141095
    73. M. Litniewski, A. Ciach. Effect of aggregation on adsorption phenomena. The Journal of Chemical Physics 2019, 150 (23) https://doi.org/10.1063/1.5102157
    74. Simon Raschke, Andreas Heuer. Non-equilibrium effects of micelle formation as studied by a minimum particle-based model. The Journal of Chemical Physics 2019, 150 (20) https://doi.org/10.1063/1.5086618
    75. Mohammad Soroush Barhaghi, Korosh Torabi, Younes Nejahi, Loren Schwiebert, Jeffrey J. Potoff. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5025184
    76. Sally Jiao, Andrew P. Santos, Athanassios Z. Panagiotopoulos. Differences in free surfactant concentration and aggregation properties for amphiphiles with the same critical micelle concentration. Fluid Phase Equilibria 2018, 470 , 126-133. https://doi.org/10.1016/j.fluid.2017.10.026
    77. Nathan A. Mahynski, Sally Jiao, Harold W. Hatch, Marco A. Blanco, Vincent K. Shen. Predicting structural properties of fluids by thermodynamic extrapolation. The Journal of Chemical Physics 2018, 148 (19) https://doi.org/10.1063/1.5026493
    78. Yi Hu, Patrick Charbonneau. Clustering and assembly dynamics of a one-dimensional microphase former. Soft Matter 2018, 14 (20) , 4101-4109. https://doi.org/10.1039/C8SM00315G
    79. Nathan A. Mahynski, Marco A. Blanco, Jeffrey R. Errington, Vincent K. Shen. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods. The Journal of Chemical Physics 2017, 146 (7) https://doi.org/10.1063/1.4975331
    80. Andrew P. Santos, Jakub Pȩkalski, Athanassios Z. Panagiotopoulos. Thermodynamic signatures and cluster properties of self-assembly in systems with competing interactions. Soft Matter 2017, 13 (44) , 8055-8063. https://doi.org/10.1039/C7SM01721A
    81. Andrew P. Santos, Athanassios Z. Panagiotopoulos. Determination of the critical micelle concentration in simulations of surfactant systems. The Journal of Chemical Physics 2016, 144 (4) https://doi.org/10.1063/1.4940687
    82. Lorenzo Rovigatti, Barbara Capone, Christos N. Likos. Soft self-assembled nanoparticles with temperature-dependent properties. Nanoscale 2016, 8 (6) , 3288-3295. https://doi.org/10.1039/C5NR04661K
    83. Yaoyao Wei, Guokui Liu, Zhongni Wang, Shiling Yuan. Molecular dynamics study on the aggregation behaviour of different positional isomers of sodium dodecyl benzenesulphonate. RSC Advances 2016, 6 (55) , 49708-49716. https://doi.org/10.1039/C6RA05188J
    84. Harold W. Hatch, Seung-Yeob Yang, Jeetain Mittal, Vincent K. Shen. Self-assembly of trimer colloids: effect of shape and interaction range. Soft Matter 2016, 12 (18) , 4170-4179. https://doi.org/10.1039/C6SM00473C
    85. Shumeng Wang, Zhi Li, Bei Liu, Xianren Zhang, Qingyuan Yang. Molecular mechanisms for surfactant-aided oil removal from a solid surface. Applied Surface Science 2015, 359 , 98-105. https://doi.org/10.1016/j.apsusc.2015.10.068
    86. G. Heinzelmann, P. Seide, W. Figueiredo. Dynamics of micelle formation from temperature-jump Monte Carlo simulations. Physical Review E 2015, 92 (5) https://doi.org/10.1103/PhysRevE.92.052305
    87. Harold W. Hatch, Jeetain Mittal, Vincent K. Shen. Computational study of trimer self-assembly and fluid phase behavior. The Journal of Chemical Physics 2015, 142 (16) https://doi.org/10.1063/1.4918557
    88. Nathan A. Mahynski, Athanassios Z. Panagiotopoulos. Grafted nanoparticles as soft patchy colloids: Self-assembly versus phase separation. The Journal of Chemical Physics 2015, 142 (7) https://doi.org/10.1063/1.4908044
    89. Ruzanna Yahya, Roghayeh Abedi Karjiban, Mahiran Basri, Mohd Basyaruddin Abdul Rahman, Mauricio Girardi. Monte Carlo simulation of mixed nonionic Brij surfactants in water. Journal of Molecular Modeling 2014, 20 (11) https://doi.org/10.1007/s00894-014-2512-1
    90. Arash Nikoubashman, Athanassios Z. Panagiotopoulos. Communication: Effect of solvophobic block length on critical micelle concentration in model surfactant systems. The Journal of Chemical Physics 2014, 141 (4) https://doi.org/10.1063/1.4890981
    91. Zhaohuan Mai, Estelle Couallier, Mohammed Rakib, Bernard Rousseau. Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates. The Journal of Chemical Physics 2014, 140 (20) https://doi.org/10.1063/1.4875515
    92. Gianmarco Munaò, Patrick O’Toole, Toby S. Hudson, Dino Costa, Carlo Caccamo, Achille Giacometti, Francesco Sciortino. Phase separation and self-assembly of colloidal dimers with tunable attractive strength: from symmetrical square-wells to Janus dumbbells. Soft Matter 2014, 10 (29) , 5269-5279. https://doi.org/10.1039/C4SM00544A
    93. Simone Dussi, Lorenzo Rovigatti, Francesco Sciortino. On the gas–liquid phase separation and the self-assembly of charged soft dumbbells. Molecular Physics 2013, 111 (22-23) , 3608-3617. https://doi.org/10.1080/00268976.2013.838315
    94. Arben Jusufi. Molecular simulations of self-assembly processes of amphiphiles in dilute solutions: the challenge for quantitative modelling. Molecular Physics 2013, 111 (21) , 3182-3192. https://doi.org/10.1080/00268976.2013.826394
    95. Alessandro Patti. Modeling the aggregation behavior of amphiphiles in the continuous phase of highly concentrated emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 437 , 90-100. https://doi.org/10.1016/j.colsurfa.2012.11.021
    96. Lorenzo Rovigatti, José Maria Tavares, Francesco Sciortino. Self-Assembly in Chains, Rings, and Branches: A Single Component System with Two Critical Points. Physical Review Letters 2013, 111 (16) https://doi.org/10.1103/PhysRevLett.111.168302
    97. Guadalupe Jiménez-Serratos, Alejandro Gil-Villegas, Carlos Vega, Felipe J. Blas. Monte Carlo simulation of flexible trimers: From square well chains to amphiphilic primitive models. The Journal of Chemical Physics 2013, 139 (11) https://doi.org/10.1063/1.4820530
    98. Jurriaan A. Luiken, Peter G. Bolhuis. Anisotropic aggregation in a simple model of isotropically polymer-coated nanoparticles. Physical Review E 2013, 88 (1) https://doi.org/10.1103/PhysRevE.88.012303
    99. Teun Vissers, Zdeněk Preisler, Frank Smallenburg, Marjolein Dijkstra, Francesco Sciortino. Predicting crystals of Janus colloids. The Journal of Chemical Physics 2013, 138 (16) https://doi.org/10.1063/1.4801438
    100. Christian Koch, Athanassios Z. Panagiotopoulos, Federica Lo Verso, Christos N. Likos. Phase behavior of rigid, amphiphilic star polymers. Soft Matter 2013, 9 (31) , 7424. https://doi.org/10.1039/c3sm51135a
    Load all citations

    Langmuir

    Cite this: Langmuir 1999, 15, 9, 3143–3151
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la9810206
    Published April 10, 1999
    Copyright © 1999 American Chemical Society

    Article Views

    1570

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.