ACS Publications. Most Trusted. Most Cited. Most Read
Phase Diagram and Phase Properties of the System Lecithin−Water−Cyclohexane
My Activity
    Research Article

    Phase Diagram and Phase Properties of the System Lecithin−Water−Cyclohexane
    Click to copy article linkArticle link copied!

    View Author Information
    Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) c/o Department of Food Technology (DISTAAM), Molise University, v. De Sanctis, I-86100, Campobasso, Italy, Department of Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O.Box 124, S-221 00, Lund, Sweden, and Department of Chemistry, Bari University, v. Orabona 4, I-70126, Bari, Italy
    Other Access Options

    Langmuir

    Cite this: Langmuir 2000, 16, 5, 2124–2132
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la9909190
    Published January 28, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The isothermal quasi-ternary-phase diagram of the lecithin−cyclohexane−water system was determined at 25 °C using a combination of polarizing microscopy, small-angle X-ray diffraction, and NMR techniques. The system contains four lyotropic liquid-crystalline phases and two isotropic liquid phases. Apart from the lamellar (Lα) phase, there are only reverse-type aggregates with a water interior, in addition to an essentially pure water phase, whose relative locations in the phase diagram follow the sequence (from the oil corner to the surfactant corner):  reverse micellar solution (L2), reverse anisotropic nematic (N2), reverse micellar cubic (I2), reverse hexagonal (H2), and finally, the lamellar phase. The aggregates have a finite swelling with water, and coexistence with excess water is found at higher water contents. The area per lecithin molecule was determined in the H2 and Lα phases. This area varies with the mole ratio [H2O]/[Lec] = W0 at lower W0 values, but saturates at an area of 90 Å2/ molecule for W0 ≳ 15. The phase diagram is discussed in relation to the known formation of giant wormlike reverse micelles in the liquid L2 phase. Of particular interest here is the transition from liquid (L2) to nematic (N2) as the wormlike aggregate concentration is increased.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

     Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI.

     Lund University.

    §

     Bari University.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 98 publications.

    1. Cesar A. Godoy, Mercedes Valiente, Wilson Muñoz, Pablo Bonilla, Ramon Pons, Gemma Montalvo. Microstructural and Viscoelastic Properties of Liquid Crystal Phases of Soybean Lecithin with Olive and Castor Oils at Low Water Contents. Journal of Chemical & Engineering Data 2023, 68 (7) , 1534-1542. https://doi.org/10.1021/acs.jced.2c00774
    2. Nicholas J. Caggiano, Brian K. Wilson, Rodney D. Priestley, Robert K. Prud’homme. Development of an In Vitro Release Assay for Low-Density Cannabidiol Nanoparticles Prepared by Flash NanoPrecipitation. Molecular Pharmaceutics 2022, 19 (5) , 1515-1525. https://doi.org/10.1021/acs.molpharmaceut.2c00041
    3. Louis G. Corcoran, Brian A. Saldana Almaraz, Kamilah Y. Amen, Geoffrey D. Bothun, Srinivasa R. Raghavan, Vijay T. John, Alon V. McCormick, R. Lee Penn. Using Microemulsion Phase Behavior as a Predictive Model for Lecithin–Tween 80 Marine Oil Dispersant Effectiveness. Langmuir 2021, 37 (27) , 8115-8128. https://doi.org/10.1021/acs.langmuir.1c00651
    4. Chiho Kataoka-Hamai, Kohsaku Kawakami. Determination of the Coverage of Phosphatidylcholine Monolayers Formed at Silicone Oil–Water Interfaces by Vesicle Fusion. The Journal of Physical Chemistry B 2020, 124 (39) , 8719-8727. https://doi.org/10.1021/acs.jpcb.0c06310
    5. Paavo A. Penttila?, Sampsa Vierros, Katja Utriainen, Nico Carl, Lauri Rautkari, Maria Sammalkorpi, Monika O?sterberg. Phospholipid-Based Reverse Micelle Structures in Vegetable Oil Modified by Water Content, Free Fatty Acid, and Temperature. Langmuir 2019, 35 (25) , 8373-8382. https://doi.org/10.1021/acs.langmuir.9b01135
    6. Stéphane Abel, Nuno Galamba, Esra Karakas, Massimo Marchi, Ward H. Thompson, and Damien Laage . On the Structural and Dynamical Properties of DOPC Reverse Micelles. Langmuir 2016, 32 (41) , 10610-10620. https://doi.org/10.1021/acs.langmuir.6b02566
    7. Isabelle Martiel, Stephan Handschin, Wye-Khay Fong, Laurent Sagalowicz, and Raffaele Mezzenga . Oil Transfer Converts Phosphatidylcholine Vesicles into Nonlamellar Lyotropic Liquid Crystalline Particles. Langmuir 2015, 31 (1) , 96-104. https://doi.org/10.1021/la504115a
    8. Isabelle Martiel, Laurent Sagalowicz, Stephan Handschin, and Raffaele Mezzenga . Facile Dispersion and Control of Internal Structure in Lyotropic Liquid Crystalline Particles by Auxiliary Solvent Evaporation. Langmuir 2014, 30 (48) , 14452-14459. https://doi.org/10.1021/la5038662
    9. Isabelle Martiel, Laurent Sagalowicz, and Raffaele Mezzenga . Viscoelasticity and Interface Bending Properties of Lecithin Reverse Wormlike Micelles Studied by Diffusive Wave Spectroscopy in Hydrophobic Environment. Langmuir 2014, 30 (35) , 10751-10759. https://doi.org/10.1021/la502748e
    10. Isabelle Martiel, Laurent Sagalowicz, and Raffaele Mezzenga . A Reverse Micellar Mesophase of Face-Centered Cubic Fm3̅m Symmetry in Phosphatidylcholine/Water/Organic Solvent Ternary Systems. Langmuir 2013, 29 (51) , 15805-15812. https://doi.org/10.1021/la404307x
    11. G. Montalvo, R. Pons, G. Zhang, M. Díaz, and M. Valiente . Structure and Phase Equilibria of the Soybean Lecithin/PEG 40 Monostearate/Water System. Langmuir 2013, 29 (47) , 14369-14379. https://doi.org/10.1021/la402764w
    12. Naama Koifman, Maya Schnabel-Lubovsky, and Yeshayahu Talmon . Nanostructure Formation in the Lecithin/Isooctane/Water System. The Journal of Physical Chemistry B 2013, 117 (32) , 9558-9567. https://doi.org/10.1021/jp405490q
    13. Anna May, Kenji Aramaki, and José María Gutiérrez . Phase Behavior and Rheological Analysis of Reverse Liquid Crystals and W/I2 and W/H2 Gel Emulsions Using an Amphiphilic Block Copolymer. Langmuir 2011, 27 (6) , 2286-2298. https://doi.org/10.1021/la104539q
    14. Limin Liu, Grace Tan, Gary McPherson, Vijay T. John, Karol Maskos and Arijit Bose . High-Resolution NMR Characterization of a Gel-like Surfactant Mesophase. Langmuir 2008, 24 (17) , 9286-9294. https://doi.org/10.1021/la801130w
    15. Dima Libster,, Paul Ben Ishai,, Abraham Aserin,, Gil Shoham, and, Nissim Garti. From the Microscopic to the Mesoscopic Properties of Lyotropic Reverse Hexagonal Liquid Crystals. Langmuir 2008, 24 (5) , 2118-2127. https://doi.org/10.1021/la702570v
    16. Gemma Montalvo,, Mercedes Valiente, and, Ali Khan. Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System. Langmuir 2007, 23 (21) , 10518-10524. https://doi.org/10.1021/la701539f
    17. Benjamin Abécassis,, Fabienne Testard,, Lise Arleth,, Steen Hansen,, Isabelle Grillo, and, Thomas Zemb. Phase Behavior, Topology, and Growth of Neutral Catanionic Reverse Micelles. Langmuir 2006, 22 (19) , 8017-8028. https://doi.org/10.1021/la061465r
    18. Jeannine Milhaud,, Edith Hantz, and, Jean Liquier. Different Properties of H2O- and D2O-Containing Phospholipid-Based Reverse Micelles near a Critical Temperature. Langmuir 2006, 22 (14) , 6068-6077. https://doi.org/10.1021/la060396d
    19. Mauro Giustini,, Francesco Castelli,, Ivan Husu,, Marcello Giomini,, Antonia Mallardi, and, Gerardo Palazzo. Influence of Cardiolipin on the Functionality of the QA Site of the Photosynthetic Bacterial Reaction Center. The Journal of Physical Chemistry B 2005, 109 (44) , 21187-21196. https://doi.org/10.1021/jp054104d
    20. Gunter Wolf and, Erich Kleinpeter. Pulsed Field Gradient NMR Study of Anomalous Diffusion in a Lecithin-Based Microemulsion. Langmuir 2005, 21 (15) , 6742-6752. https://doi.org/10.1021/la0506832
    21. Limin Liu,, Vijay T. John,, Gary McPherson,, Karol Maskos, and, Arijit Bose. 31P and 1H NMR as Probes of Domain Alignment in a Rigid Crystalline Surfactant Mesophase. Langmuir 2005, 21 (9) , 3795-3801. https://doi.org/10.1021/la0477901
    22. Edgar J. Acosta,, Thu Nguyen,, Anuradee Witthayapanyanon,, Jeffrey H. Harwell, and, David A. Sabatini. Linker-Based Bio-compatible Microemulsions. Environmental Science & Technology 2005, 39 (5) , 1275-1282. https://doi.org/10.1021/es049010g
    23. Ruggero Angelico,, Andrea Ceglie,, Giuseppe Colafemmina,, Francesco Lopez,, Sergio Murgia,, Ulf Olsson, and, Gerardo Palazzo. Biocompatible Lecithin Organogels:  Structure and Phase Equilibria. Langmuir 2005, 21 (1) , 140-148. https://doi.org/10.1021/la047974f
    24. Ruggero Angelico,, Andrea Ceglie,, Giuseppe Colafemmina,, Fabio Delfine,, Ulf Olsson, and, Gerardo Palazzo. Phase Behavior of the Lecithin/Water/Isooctane and Lecithin/Water/Decane Systems. Langmuir 2004, 20 (3) , 619-631. https://doi.org/10.1021/la035603d
    25. R. Angelico,, D. Burgemeister,, A. Ceglie,, U. Olsson,, G. Palazzo, and, C. Schmidt. Deuterium NMR Study of Slow Relaxation Dynamics in a Polymer-like Micelles System after Flow-Induced Orientation. The Journal of Physical Chemistry B 2003, 107 (38) , 10325-10328. https://doi.org/10.1021/jp0356259
    26. R. Angelico,, U. Olsson,, K. Mortensen,, L. Ambrosone,, G. Palazzo, and, A. Ceglie. Relaxation of Shear-Aligned Wormlike Micelles. The Journal of Physical Chemistry B 2002, 106 (10) , 2426-2428. https://doi.org/10.1021/jp013934y
    27. L. Ambrosone,, R. Angelico,, A. Ceglie,, U. Olsson, and, G. Palazzo. Molecular Diffusion in a Living Network. Langmuir 2001, 17 (22) , 6822-6830. https://doi.org/10.1021/la0105275
    28. Davide Schirone, Luigi Gentile, Ulf Olsson, Gerardo Palazzo. Probing properties of green surfactant-based formulation by combining scattering and rheology: The case study of cocoyl methyl glucamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 702 , 134956. https://doi.org/10.1016/j.colsurfa.2024.134956
    29. N. M. Murashova, T. S. Tokareva, E. A. Ovchinnikova, S. V. Shulaev. Effect of Metal-Oxide Nanoparticles on the Viscosity of Lamellar Liquid Crystals in the Lecithin–Oil Mixture–Water System. Nanobiotechnology Reports 2024, 19 (1) , 156-164. https://doi.org/10.1134/S2635167624600299
    30. Davide Schirone, Luigi Gentile, Ulf Olsson, Gerardo Palazzo. Probing Properties of Green Surfactant-Based Formulation by Combining Scattering and Rheology: The Case Study of Cocoyl Methyl Glucamide. 2024https://doi.org/10.2139/ssrn.4819415
    31. N. M. Murashova. Lecithin Microemulsions as Drug Carriers. Colloid Journal 2023, 85 (5) , 746-756. https://doi.org/10.1134/S1061933X23600689
    32. N. M. Murashova. Lecithin Microemulsions as Drug Carriers. Коллоидный журнал 2023, 85 (5) , 629-640. https://doi.org/10.31857/S0023291223600517
    33. Maisa Vuorte, Maria Sammalkorpi. From microemulsion phase diagrams to hydrophilicity and hydration controlled adsorption: a dissipative particle dynamics modelling study of phospholipid assembly in bio oils. Soft Matter 2023, 19 (29) , 5538-5550. https://doi.org/10.1039/D3SM00508A
    34. Suresh Kumar Sahu, Rakesh Raj, Pooja Mongia Raj, Ram Alpana. Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review. Current Drug Therapy 2020, 15 (4) , 283-298. https://doi.org/10.2174/1574885513666181112153213
    35. Juliana N.R. Ract, Richtier G. da Cruz, Camila Gambini Pereira. Phase Equilibrium of Organogels. 2019, 563-591. https://doi.org/10.1016/B978-0-12-811556-5.00014-4
    36. Homa Naseri, Kieran Trickett, Nicholas Mitroglou, Ioannis Karathanassis, Phoevos Koukouvinis, Manolis Gavaises, Robert Barbour, Dale Diamond, Sarah E. Rogers, Maurizio Santini, Jin Wang. Turbulence and Cavitation Suppression by Quaternary Ammonium Salt Additives. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-25980-x
    37. Moritz Kindlein, Ekaterina Elts, Heiko Briesen. Phospholipids in chocolate: Structural insights and mechanistic explanations of rheological behavior by coarse-grained molecular dynamics simulations. Journal of Food Engineering 2018, 228 , 118-127. https://doi.org/10.1016/j.jfoodeng.2018.02.014
    38. Paula K. Okuro, Iris Tavernier, Mohd D. Bin Sintang, Andre G. Skirtach, António A. Vicente, Koen Dewettinck, Rosiane L. Cunha. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food & Function 2018, 9 (3) , 1755-1767. https://doi.org/10.1039/C7FO01775H
    39. Olli-Pekka Lehtinen, Robertus Wahyu N. Nugroho, Tuula Lehtimaa, Sampsa Vierros, Panu Hiekkataipale, Janne Ruokolainen, Maria Sammalkorpi, Monika Österberg. Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids and Surfaces B: Biointerfaces 2017, 160 , 355-363. https://doi.org/10.1016/j.colsurfb.2017.09.050
    40. Jacopo Cautela, Mauro Giustini, Nicolae Viorel Pavel, Gerardo Palazzo, Luciano Galantini. Wormlike reverse micelles in lecithin/bile salt/water mixtures in oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 532 , 411-419. https://doi.org/10.1016/j.colsurfa.2017.04.052
    41. Subas Dhakal, Radhakrishna Sureshkumar. Anomalous diffusion and stress relaxation in surfactant micelles. Physical Review E 2017, 96 (1) https://doi.org/10.1103/PhysRevE.96.012605
    42. Mehdi Nouraei, Edgar J. Acosta. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions. Journal of Colloid and Interface Science 2017, 495 , 178-190. https://doi.org/10.1016/j.jcis.2017.01.114
    43. V. Preziosi, M. Barra, A. Perazzo, G. Tarabella, A. Romeo, S. L. Marasso, P. D'Angelo, S. Iannotta, A. Cassinese, S. Guido. Monitoring emulsion microstructure by using organic electrochemical transistors. Journal of Materials Chemistry C 2017, 5 (8) , 2056-2065. https://doi.org/10.1039/C6TC05149A
    44. Kaname Hashizaki, Miko Imai, Shuhei Yako, Hitomi Tsusaka, Yuichi Sakanishi, Yoshihiro Saito, Makiko Fujii. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil. Journal of Oleo Science 2017, 66 (9) , 997-1007. https://doi.org/10.5650/jos.ess17091
    45. Xuebin Ma, Zhiwen Ye, Zhongni Wang. Lyotropic Liquid Crystal Formed in Aqueous Lecithin Solutions with IPM and AEO 20 Additives. Tenside Surfactants Detergents 2016, 53 (6) , 534-539. https://doi.org/10.3139/113.110468
    46. Yahira M. Báez-Santos, Andrew Otte, Ellina A. Mun, Bong-Kwan Soh, Chang-Geun Song, Young-nam Lee, Kinam Park. Formulation and characterization of a liquid crystalline hexagonal mesophase region of phosphatidylcholine, sorbitan monooleate, and tocopherol acetate for sustained delivery of leuprolide acetate. International Journal of Pharmaceutics 2016, 514 (1) , 314-321. https://doi.org/10.1016/j.ijpharm.2016.06.138
    47. Limin Liu, Grace Tan, Mohit Singh, Vijay T. John, Gary McPherson, Vivek Agarwal, Arijit Bose. Nanostructured Materials: Surfactant Mesophases Shear Alignment and Templated Synthesis. 2016, 4946-4960. https://doi.org/10.1081/E-ESCS3-120029883
    48. L. Sagalowicz, C. Moccand, T. Davidek, R. Ghanbari, I. Martiel, R. Negrini, R. Mezzenga, M. E. Leser, I. Blank, M. Michel. Lipid self-assembled structures for reactivity control in food. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374 (2072) , 20150136. https://doi.org/10.1098/rsta.2015.0136
    49. R. Angelico, L. Gentile, G. A. Ranieri, C. Oliviero Rossi. Flow-induced structures observed in a viscoelastic reverse wormlike micellar system by magnetic resonance imaging and NMR velocimetry. RSC Advances 2016, 6 (40) , 33339-33347. https://doi.org/10.1039/C6RA00206D
    50. Miko Imai, Kaname Hashizaki, Aiko Yanagi, Hiroyuki Taguchi, Yoshihiro Saito, Shigeyasu Motohashi, Makiko Fujii. Skin Permeation of Testosterone from Viscoelastic Lecithin Reverse Wormlike Micellar Solution. Biological & Pharmaceutical Bulletin 2016, 39 (4) , 532-539. https://doi.org/10.1248/bpb.b15-00750
    51. Durga P. Acharya, Hironobu Kunieda. Micellar Solutions, Worm-Like: Phase and Rheological Behaviors. 2015, 4313-4329. https://doi.org/10.1081/E-ESCS3-120029882
    52. Abdelkader Mouri, Olivier Diat, Abdeslam El Ghzaoui, Isabelle Ly, Christophe Dorandeu, Jean Claude Maurel, Jean-Marie Devoisselle, Philippe Legrand. Development of pharmaceutical clear gel based on Peceol®, lecithin, ethanol and water: Physicochemical characterization and stability study. Journal of Colloid and Interface Science 2015, 457 , 152-161. https://doi.org/10.1016/j.jcis.2015.06.010
    53. A. Perazzo, V. Preziosi, S. Guido. Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science 2015, 222 , 581-599. https://doi.org/10.1016/j.cis.2015.01.001
    54. C.A. Godoy, M. Valiente, R. Pons, G. Montalvo. Effect of fatty acids on self-assembly of soybean lecithin systems. Colloids and Surfaces B: Biointerfaces 2015, 131 , 21-28. https://doi.org/10.1016/j.colsurfb.2015.03.065
    55. Isabelle Martiel, Nicole Baumann, Jijo J. Vallooran, Jotam Bergfreund, Laurent Sagalowicz, Raffaele Mezzenga. Oil and drug control the release rate from lyotropic liquid crystals. Journal of Controlled Release 2015, 204 , 78-84. https://doi.org/10.1016/j.jconrel.2015.02.034
    56. Ravi Kant Upadhyay, Navneet Soin, Susmita Saha, Anjan Barman, Susanta Sinha Roy. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis. Materials Chemistry and Physics 2015, 156 , 105-112. https://doi.org/10.1016/j.matchemphys.2015.02.032
    57. S. Vierros, M. Sammalkorpi. Phosphatidylcholine reverse micelles on the wrong track in molecular dynamics simulations of phospholipids in an organic solvent. The Journal of Chemical Physics 2015, 142 (9) https://doi.org/10.1063/1.4914022
    58. S. Vierros, M. Sammalkorpi. Role of hydration in phosphatidylcholine reverse micelle structure and gelation in cyclohexane: a molecular dynamics study. Physical Chemistry Chemical Physics 2015, 17 (22) , 14951-14960. https://doi.org/10.1039/C5CP01799H
    59. Lars Jørgensen, Klaus Qvortrup, Ioannis S. Chronakis. Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter. RSC Advances 2015, 5 (66) , 53644-53652. https://doi.org/10.1039/C5RA10498J
    60. Constantinos V. Nikiforidis. Lipid Mesophase Nanostructures. 2014, 114-143. https://doi.org/10.1039/BK9781849738958-00114
    61. Isabelle Martiel, Laurent Sagalowicz, Raffaele Mezzenga. Phospholipid-based nonlamellar mesophases for delivery systems: Bridging the gap between empirical and rational design. Advances in Colloid and Interface Science 2014, 209 , 127-143. https://doi.org/10.1016/j.cis.2014.03.005
    62. Mohammad Mydul Alam, Kenji Aramaki. Liquid Crystal-Based Emulsions: Progress and Prospects. Journal of Oleo Science 2014, 63 (2) , 97-108. https://doi.org/10.5650/jos.ess13101
    63. Xuebin Ma, Zhongni Wang, Fumin Guo, Zhen Li, Min Wang, Wu Zhou. Phase Behavior and Rheological Properties of Concentrated Lecithin Aqueous Solutions with Additives. Journal of Dispersion Science and Technology 2013, 34 (11) , 1540-1547. https://doi.org/10.1080/01932691.2012.752330
    64. Miko Imai, Kaname Hashizaki, Hiroyuki Taguchi, Yoshihiro Saito, Shigeyasu Motohashi. A new reverse worm-like micellar system from a lecithin, multivalent carboxylic acid and oil mixture. Journal of Colloid and Interface Science 2013, 403 , 77-83. https://doi.org/10.1016/j.jcis.2013.04.033
    65. Arash Momeni, Morteza Rasoolian, Amir Momeni, Ali Navaei, Shahriar Emami, Zahra Shaker, Mehdi Mohebali, Alireza Khoshdel. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. Journal of Liposome Research 2013, 23 (2) , 134-144. https://doi.org/10.3109/08982104.2012.762519
    66. Maria Magliulo, Antonia Mallardi, Mohammad Yusuf Mulla, Serafina Cotrone, Bianca Rita Pistillo, Pietro Favia, Inger Vikholm‐Lundin, Gerardo Palazzo, Luisa Torsi. Electrolyte‐Gated Organic Field‐Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer. Advanced Materials 2013, 25 (14) , 2090-2094. https://doi.org/10.1002/adma.201203587
    67. P. Fadda, M. Monduzzi, F. Caboi, S. Piras, P. Lazzari. Solid lipid nanoparticle preparation by a warm microemulsion based process: Influence of microemulsion microstructure. International Journal of Pharmaceutics 2013, 446 (1-2) , 166-175. https://doi.org/10.1016/j.ijpharm.2013.02.027
    68. Emma Drinkel, Franciane D. Souza, Haidi D. Fiedler, Faruk Nome. The chameleon effect in zwitterionic micelles: Binding of anions and cations and use as nanoparticle stabilizing agents. Current Opinion in Colloid & Interface Science 2013, 18 (1) , 26-34. https://doi.org/10.1016/j.cocis.2013.01.001
    69. Gerardo Palazzo. Wormlike reverse micelles. Soft Matter 2013, 9 (45) , 10668. https://doi.org/10.1039/c3sm52193a
    70. Aaron P.R. Eberle, Lionel Porcar. Flow-SANS and Rheo-SANS applied to soft matter. Current Opinion in Colloid & Interface Science 2012, 17 (1) , 33-43. https://doi.org/10.1016/j.cocis.2011.12.001
    71. Ruggero Angelico, Samiul Amin, Maura Monduzzi, Sergio Murgia, Ulf Olsson, Gerardo Palazzo. Impact of branching on the viscoelasticity of wormlike reverse micelles. Soft Matter 2012, 8 (42) , 10941. https://doi.org/10.1039/c2sm26528a
    72. Kaname Hashizaki, Yuichi Sakanishi, Shuhei Yako, Hitomi Tsusaka, Miko Imai, Hiroyuki Taguchi, Yoshihiro Saito. New Lecithin Organogels from Lecithin/Polyglycerol/Oil Systems. Journal of Oleo Science 2012, 61 (5) , 267-275. https://doi.org/10.5650/jos.61.267
    73. Tarek S. Awad, Eric S. Johnson, Andrei Bureiko, Ulf Olsson. Colloidal Structure and Physical Properties of Gel Networks Containing Anionic Surfactant and Fatty Alcohol Mixture. Journal of Dispersion Science and Technology 2011, 32 (6) , 807-815. https://doi.org/10.1080/01932691.2010.488134
    74. M. P. San Andrés, S. Vera, M. Torre, M. Valiente. Retinol fluorescence in lecithin/n-butanol/water aggregates: a new improvement for its analysis in cosmetics without pretreatment. Analytical and Bioanalytical Chemistry 2011, 399 (2) , 851-859. https://doi.org/10.1007/s00216-010-4322-3
    75. Luyan Wang, Zhiyan Wu, Meishan Pei, Xinzhou Wu, Xutang Tao. Effect of L64 on the Phase Behavior of 1‐Dodecyl‐3‐methylimidazolium Chloride/Water System. Chinese Journal of Chemistry 2010, 28 (7) , 1069-1075. https://doi.org/10.1002/cjoc.201090187
    76. U. Olsson, J. Börjesson, R. Angelico, A. Ceglie, G. Palazzo. Slow dynamics of wormlike micelles. Soft Matter 2010, 6 (8) , 1769. https://doi.org/10.1039/b920115g
    77. R. Angelico, C. Oliviero Rossi, L. Ambrosone, G. Palazzo, K. Mortensen, U. Olsson. Ordering fluctuations in a shear-banding wormlike micellar system. Physical Chemistry Chemical Physics 2010, 12 (31) , 8856. https://doi.org/10.1039/b926152d
    78. Tatiana Kuriabova, M. D. Betterton, Matthew A. Glaser. Linear aggregation and liquid-crystalline order: comparison of Monte Carlo simulation and analytic theory. Journal of Materials Chemistry 2010, 20 (46) , 10366. https://doi.org/10.1039/c0jm02355h
    79. Kaname Hashizaki, Hiroyuki Taguchi, Yoshihiro Saito. New Lecithin Organogels with Sugars of RNA and DNA. Chemistry Letters 2009, 38 (11) , 1036-1037. https://doi.org/10.1246/cl.2009.1036
    80. Kaname Hashizaki, Hiroyuki Taguchi, Yoshihiro Saito. A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid and Polymer Science 2009, 287 (9) , 1099-1105. https://doi.org/10.1007/s00396-009-2076-2
    81. Kaname Hashizaki, Takashi Chiba, Hiroyuki Taguchi, Yoshihiro Saito. Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid and Polymer Science 2009, 287 (8) , 927-932. https://doi.org/10.1007/s00396-009-2048-6
    82. Shoshana Rozner, Inna Popov, Vladimir Uvarov, Abraham Aserin, Nissim Garti. Templated cocrystallization of cholesterol and phytosterols from microemulsions. Journal of Crystal Growth 2009, 311 (16) , 4022-4033. https://doi.org/10.1016/j.jcrysgro.2009.06.027
    83. C. Moran, M.R. Infante, L. Perez, A. Pinazo, L. Coppola, M. Youssry, I. Nicotera. Aqueous self-assembly and physicochemical properties of 1,2-dilauroyl-rac-glycero-3-(Nα-acetyl-l-arginine). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 327 (1-3) , 111-121. https://doi.org/10.1016/j.colsurfa.2008.06.023
    84. R. Efrat, A. Aserin, N. Garti. On structural transitions in a discontinuous micellar cubic phase loaded with sodium diclofenac. Journal of Colloid and Interface Science 2008, 321 (1) , 166-176. https://doi.org/10.1016/j.jcis.2008.01.013
    85. Durga P. Acharya, Hironobu Kunieda. Wormlike micelles in mixed surfactant solutions. Advances in Colloid and Interface Science 2006, 123-126 , 401-413. https://doi.org/10.1016/j.cis.2006.05.024
    86. Ruggero Angelico, Andrea Ceglie, Ulf Olsson, Gerardo Palazzo, Luigi Ambrosone. Anomalous surfactant diffusion in a living polymer system. Physical Review E 2006, 74 (3) https://doi.org/10.1103/PhysRevE.74.031403
    87. Luigi Coppola, Domenico Gabriele, Isabella Nicotera, Cesare Oliviero. MRI Experiments as a Tool to Study Asymptotic-Shear Flow Behaviour of a Worm-Like Reverse Micellar Phase. Applied Rheology 2006, 16 (4) , 190-197. https://doi.org/10.1515/arh-2006-0013
    88. Aviram Spernath, Abraham Aserin, Nissim Garti. Fully dilutable microemulsions embedded with phospholipids and stabilized by short-chain organic acids and polyols. Journal of Colloid and Interface Science 2006, 299 (2) , 900-909. https://doi.org/10.1016/j.jcis.2006.02.024
    89. Sylvain Doussin, Nicolas Birlirakis, Dominique Georgin, Frédéric Taran, Patrick Berthault. Novel Zwitterionic Reverse Micelles for Encapsulation of Proteins in Low‐Viscosity Media. Chemistry – A European Journal 2006, 12 (15) , 4170-4175. https://doi.org/10.1002/chem.200501422
    90. Francesca Caboi, Paolo Lazzari, Luca Pani, Maura Monduzzi. Effect of 1-butanol on the microstructure of lecithin/water/tripalmitin system. Chemistry and Physics of Lipids 2005, 135 (2) , 147-156. https://doi.org/10.1016/j.chemphyslip.2005.02.010
    91. Meike Harms, Stefan Mackeben, Christel C. Müller-Goymann. Thermotropic transition structures in the ternary system lecithin/isopropyl myristate/water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 259 (1-3) , 81-87. https://doi.org/10.1016/j.colsurfa.2005.02.013
    92. Shehata M. Zourab, Rola F. El‐Samak. Phase Diagram and Effect of Additives on the Behavior of Alkyldimethyl Amine Oxide Mixture. Journal of Dispersion Science and Technology 2004, 25 (1) , 41-51. https://doi.org/10.1081/DIS-120027667
    93. Gerardo Palazzo, Luigi Carbone, Giuseppe Colafemmina, Ruggero Angelico, Andrea Ceglie, Mauro Giustini. The role of the cosurfactant in the CTAB/water/n-pentanol/n-hexane system: Pentanol effect on the phase equilibria and mesophase structure. Phys. Chem. Chem. Phys. 2004, 6 (7) , 1423-1429. https://doi.org/10.1039/B314509N
    94. Mika Kanamaru, Yoshiyuki Einaga. Polymer-like structure of lecithin reverse micelles in the lecithin+water+cyclohexane system. Polymer 2002, 43 (14) , 3925-3936. https://doi.org/10.1016/S0032-3861(02)00218-5
    95. Ken-ichi WATANABE, Noriko KANEI, Hironobu KUNIEDA. Highly Concentrated Emulsions Based on the Reverse Micellar Cubic Phase.. Journal of Oleo Science 2002, 51 (12) , 771-779. https://doi.org/10.5650/jos.51.771
    96. Shehata Zourab, Ibrahim Kayali, Amany El-Astal. Phase Behavior of Tetradecyldimethylaminoxide in the Presence of Perfluorooctanol and HCl. Journal of Dispersion Science and Technology 2001, 22 (5) , 431-442. https://doi.org/10.1081/DIS-100107852
    97. Yu.A Shchipunov. Lecithin organogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 183-185 , 541-554. https://doi.org/10.1016/S0927-7757(01)00511-8
    98. Gerardo Palazzo, Antonia Mallardi, Mauro Giustini, Debora Berti, Giovanni Venturoli. Cumulant Analysis of Charge Recombination Kinetics in Bacterial Reaction Centers Reconstituted into Lipid Vesicles. Biophysical Journal 2000, 79 (3) , 1171-1179. https://doi.org/10.1016/S0006-3495(00)76371-5
    99. R. Angelico, L. Ambrosone, A. Ceglie, G. Palazzo, K. Mortensen, U. Olsson. Structure and dynamics of polymer-like reverse micelles. , 37-41. https://doi.org/10.1007/3-540-44941-8_7

    Langmuir

    Cite this: Langmuir 2000, 16, 5, 2124–2132
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la9909190
    Published January 28, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    1496

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.