Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Nanostructural Features of Pd/C Catalysts Investigated by Physical Methods:  A Reference for Chemisorption Analysis

View Author Information
Dipartimento di Chimica Fisica, Università di Venezia, DD2137 Venezia, Italy, Consultant, Via Pansa 7/c, 28100 Novara, Italy, and Dipartimento di Chimica, Università di Venezia, DD2137 Venezia, Italy
Cite this: Langmuir 2000, 16, 10, 4539–4546
Publication Date (Web):April 14, 2000
https://doi.org/10.1021/la991463p
Copyright © 2000 American Chemical Society

    Article Views

    837

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    In this work we have determined, on a series of 0.5% Pd/C catalysts, the palladium particle sizes by the following physical techniques:  (i) X-ray diffraction (XRD) line broadening (LB) method, associated with the Rietveld method, (ii) small-angle X-ray scattering, and (iii) transmission electron microscopy. The catalysts, suitably aged at different temperatures (673, 773, 873, and 973 K), had significantly different metal dispersions. Since the XRD-LB technique is not able to measure directly very small metal particles or clusters (roughly ≤25 Å in size), because they give diffuse X-ray scattering spreading out into the background, we have tackled this problem by means of a suitably tailored Rietveld quantitative analysis. This analysis allowed determination of the Pd fraction “visible” in the Voigtian XRD peaks and its average crystallite size using the LB method. As to the nanoparticle size of the undetectable fraction, an average value of 20 Å was assumed, corresponding to the size of a cubooctahedral perfect cluster of the fourth order. Combining all these data, real effective Pd average particle sizes could be calculated and compared with the corresponding values found by CO chemisorption. It was found that a surface Pd/CO stoichiometry of 2 must be assumed, irrespective of Pd dispersion, to get correct values of the average Pd particle size.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Dipartimento di Chimica Fisica, Università di Venezia.

     Consultant.

    §

     Dipartimento di Chimica, Università di Venezia.

    Cited By

    This article is cited by 55 publications.

    1. Claudia E. Berdugo-Díaz, Yang Sik Yun, Melissa T. Manetsch, Jing Luo, David G. Barton, Xue Chen, David W. Flaherty. Pathways for Reactions of Esters with H2 over Supported Pd Catalysts: Elementary Steps, Site Requirements, and Particle Size Effects. ACS Catalysis 2022, 12 (15) , 9717-9734. https://doi.org/10.1021/acscatal.2c02129
    2. Jinyu Gao, Changxu Ren, Xiangchen Huo, Rundong Ji, Xiaoyu Wen, Juchen Guo, Jinyong Liu. Supported Palladium Catalysts: A Facile Preparation Method and Implications to Reductive Catalysis Technology for Water Treatment. ACS ES&T Engineering 2021, 1 (3) , 562-570. https://doi.org/10.1021/acsestengg.0c00227
    3. Ahmed Aït Khouya, Housseinou Ba, Walid Baaziz, Jean-Mario Nhut, Andrea Rossin, Spyridon Zafeiratos, Ovidiu Ersen, Giuliano Giambastiani, Vincent Ritleng, Cuong Pham-Huu. Palladium Nanosheet-Carbon Black Powder Composites for Selective Hydrogenation of Alkynes to Alkenes. ACS Applied Nano Materials 2021, 4 (2) , 2265-2277. https://doi.org/10.1021/acsanm.1c00002
    4. Giovanni Agostini, Andrea Piovano, Luca Bertinetti, Riccardo Pellegrini, Giuseppe Leofanti, Elena Groppo, and Carlo Lamberti . Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C 2014, 118 (8) , 4085-4094. https://doi.org/10.1021/jp4091014
    5. Kai-Yue Han, Hao-Ran Zuo, Zhen-Wei Zhu, Gui-Ping Cao, Chong Lu, and Yan-Hua Wang . High Performance of Palladium Nanoparticles Supported on Carbon Nanotubes for the Hydrogenation of Commercial Polystyrene. Industrial & Engineering Chemistry Research 2013, 52 (50) , 17750-17759. https://doi.org/10.1021/ie401184h
    6. Danmeng Shuai, Jong Kwon Choe, John R. Shapley, and Charles J. Werth . Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction. Environmental Science & Technology 2012, 46 (5) , 2847-2855. https://doi.org/10.1021/es203200d
    7. Yunxia Zhang, Keith D. Hurley, and John R. Shapley . Heterogeneous Catalytic Reduction of Perchlorate in Water with Re−Pd/C Catalysts Derived from an Oxorhenium(V) Molecular Precursor. Inorganic Chemistry 2011, 50 (4) , 1534-1543. https://doi.org/10.1021/ic102158a
    8. Brian D. Adams, Guosheng Wu, Samantha Nigro and Aicheng Chen. Facile Synthesis of Pd−Cd Nanostructures with High Capacity for Hydrogen Storage. Journal of the American Chemical Society 2009, 131 (20) , 6930-6931. https://doi.org/10.1021/ja901798u
    9. Kathryn A. Guy, Huiping Xu, Judith C. Yang, Charles J. Werth and John R. Shapley . Catalytic Nitrate and Nitrite Reduction with Pd−Cu/PVP Colloids in Water: Composition, Structure, and Reactivity Correlations. The Journal of Physical Chemistry C 2009, 113 (19) , 8177-8185. https://doi.org/10.1021/jp810049y
    10. Sonia Domínguez-Domínguez,, Ángel Berenguer-Murcia,, Bhabendra K. Pradhan,, Ángel Linares-Solano, and, Diego Cazorla-Amorós. Semihydrogenation of Phenylacetylene Catalyzed by Palladium Nanoparticles Supported on Carbon Materials. The Journal of Physical Chemistry C 2008, 112 (10) , 3827-3834. https://doi.org/10.1021/jp710693u
    11. Patrizia Canton,, Giuliano Fagherazzi,, Marino Battagliarin,, Federica Menegazzo,, Francesco Pinna, and, Nicola Pernicone. Pd/CO Average Chemisorption Stoichiometry in Highly Dispersed Supported Pd/γ-Al2O3 Catalysts. Langmuir 2002, 18 (17) , 6530-6535. https://doi.org/10.1021/la015650a
    12. Canio Scarfiello, Aurélien Durupt, Yann Tison, Doan Pham Minh, Katerina Soulantica, Philippe Serp. Effects of Pd and Co intimacy in Pd-modified Co/TiO 2 catalysts for direct CO 2 hydrogenation to fuels: the closer not the better. Catalysis Science & Technology 2024, 14 (10) , 2896-2907. https://doi.org/10.1039/D4CY00324A
    13. Shengzhe Ding, Christopher M.A. Parlett, Xiaolei Fan. Recent developments in multifunctional catalysts for fatty acid hydrodeoxygenation as a route towards biofuels. Molecular Catalysis 2022, 523 , 111492. https://doi.org/10.1016/j.mcat.2021.111492
    14. Zachary Blanchette, Jing Zhang, Sadegh Yazdi, Michael B. Griffin, Daniel K. Schwartz, J. Will Medlin. Investigating deposition sequence during synthesis of Pd/Al 2 O 3 catalysts modified with organic monolayers. Catalysis Science & Technology 2022, 12 (7) , 2306-2314. https://doi.org/10.1039/D1CY02131A
    15. Shengzhe Ding, Muhammad Ganesh, Yilai Jiao, Xiaoxia Ou, Mark A. Isaacs, Mark S'ari, Antonio Torres Lopez, Xiaolei Fan, Christopher M. A. Parlett. Palladium-doped hierarchical ZSM-5 for catalytic selective oxidation of allylic and benzylic alcohols. Royal Society Open Science 2021, 8 (10) https://doi.org/10.1098/rsos.211086
    16. Karolina Jaroszewska, Monika Fedyna, Aleksandra Masalska, Rafał Łużny, Janusz Trawczyński. Promotional Effect of Pd Addition on the Catalytic Activity of Composite Pt-Pd/AlSBA-15–β Catalyst for Enhanced n-Heptane Hydroisomerization. Catalysts 2021, 11 (3) , 377. https://doi.org/10.3390/catal11030377
    17. Yue Zhao, Rong Liu. Cu@Pt/NCNT preparation and electrochemical performance. Journal of Materials Science: Materials in Electronics 2021, 32 (4) , 4214-4227. https://doi.org/10.1007/s10854-020-05166-w
    18. Roman M. Mironenko, Elina R. Saybulina, Liudmila N. Stepanova, Tatiana I. Gulyaeva, Mikhail V. Trenikhin, Konstantin S. Rodygin, Valentine P. Ananikov. Sustainable Hydrogenation of Vinyl Derivatives Using Pd/C Catalysts. Catalysts 2021, 11 (2) , 179. https://doi.org/10.3390/catal11020179
    19. Penghui Yan, Glenn Bryant, Molly Meng-Jung Li, Jim Mensah, Eric Kennedy, Michael Stockenhuber. Shape selectivity of zeolite catalysts for the hydrodeoxygenation of biocrude oil and its model compounds. Microporous and Mesoporous Materials 2020, 309 , 110561. https://doi.org/10.1016/j.micromeso.2020.110561
    20. Monika Fedyna, Michał Śliwa, Karolina Jaroszewska, Janusz Trawczyński. Effect of zeolite amount on the properties of Pt/(AlSBA-15 + Beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane. Fuel 2020, 280 , 118607. https://doi.org/10.1016/j.fuel.2020.118607
    21. R. M. Mironenko, O. B. Belskaya, L. N. Stepanova, T. I. Gulyaeva, M. V. Trenikhin, V. A. Likholobov. Palladium Supported on Carbon Nanoglobules as a Promising Catalyst for Selective Hydrogenation of Nitroarenes. Catalysis Letters 2020, 150 (3) , 888-900. https://doi.org/10.1007/s10562-019-02974-6
    22. Monika Fedyna, Michał Śliwa, Karolina Jaroszewska, Leszek Kępiński, Janusz Trawczyński. Procedure for the synthesis of AlSBA-15 with high aluminium content: Characterization and catalytic activity. Microporous and Mesoporous Materials 2020, 292 , 109701. https://doi.org/10.1016/j.micromeso.2019.109701
    23. Paolo Centomo, Patrizia Canton, Claudio Burato, Carlo Meneghini, Marco Zecca. Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles †. Applied Sciences 2019, 9 (15) , 2959. https://doi.org/10.3390/app9152959
    24. Simon T. Thompson, H. Henry Lamb. Vapor-phase hydrodeoxygenation of guaiacol over carbon-supported Pd, Re and PdRe catalysts. Applied Catalysis A: General 2018, 563 , 105-117. https://doi.org/10.1016/j.apcata.2018.06.031
    25. Jiajie Huo, Robert L. Johnson, Pu Duan, Hien N. Pham, Deyny Mendivelso-Perez, Emily A. Smith, Abhaya K. Datye, Klaus Schmidt-Rohr, Brent H. Shanks. Stability of Pd nanoparticles on carbon-coated supports under hydrothermal conditions. Catalysis Science & Technology 2018, 8 (4) , 1151-1160. https://doi.org/10.1039/C7CY02098H
    26. Jiajie Huo, Pu Duan, Hien N. Pham, Yee Jher Chan, Abhaya K. Datye, Klaus Schmidt-Rohr, Brent H. Shanks. Improved hydrothermal stability of Pd nanoparticles on nitrogen-doped carbon supports. Catalysis Science & Technology 2018, 8 (14) , 3548-3561. https://doi.org/10.1039/C8CY00947C
    27. Roman M. Mironenko, Olga B. Belskaya, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Alexander I. Nizovskii, Alexander V. Kalinkin, Valerii I. Bukhtiyarov, Alexander V. Lavrenov, Vladimir A. Likholobov. Liquid-phase hydrogenation of benzaldehyde over Pd-Ru/C catalysts: Synergistic effect between supported metals. Catalysis Today 2017, 279 , 2-9. https://doi.org/10.1016/j.cattod.2016.07.022
    28. Miao Guo, Can Li, Qihua Yang. Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catalysis Science & Technology 2017, 7 (11) , 2221-2227. https://doi.org/10.1039/C7CY00394C
    29. Davide Albani, Gianvito Vilé, Sharon Mitchell, Peter T. Witte, Neyvis Almora-Barrios, René Verel, Núria López, Javier Pérez-Ramírez. Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catalysis Science & Technology 2016, 6 (6) , 1621-1631. https://doi.org/10.1039/C5CY01921D
    30. Roman M. Mironenko, Olga B. Belskaya, Tatyana I. Gulyaeva, Alexander I. Nizovskii, Alexander V. Kalinkin, Valerii I. Bukhtiyarov, Alexander V. Lavrenov, Vladimir A. Likholobov. Effect of the nature of carbon support on the formation of active sites in Pd/C and Ru/C catalysts for hydrogenation of furfural. Catalysis Today 2015, 249 , 145-152. https://doi.org/10.1016/j.cattod.2014.10.037
    31. Davide Ferri, Mark A. Newton, Marco Di Michiel, Gian Luca Chiarello, Songhak Yoon, Ye Lu, Jérôme Andrieux. Revealing the Dynamic Structure of Complex Solid Catalysts Using Modulated Excitation X‐ray Diffraction. Angewandte Chemie 2014, 126 (34) , 9036-9040. https://doi.org/10.1002/ange.201403094
    32. Davide Ferri, Mark A. Newton, Marco Di Michiel, Gian Luca Chiarello, Songhak Yoon, Ye Lu, Jérôme Andrieux. Revealing the Dynamic Structure of Complex Solid Catalysts Using Modulated Excitation X‐ray Diffraction. Angewandte Chemie International Edition 2014, 53 (34) , 8890-8894. https://doi.org/10.1002/anie.201403094
    33. Gianvito Vilé, Neyvis Almora‐Barrios, Sharon Mitchell, Núria López, Javier Pérez‐Ramírez. From the Lindlar Catalyst to Supported Ligand‐Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous‐Flow Three‐Phase Hydrogenation of Acetylenic Compounds. Chemistry – A European Journal 2014, 20 (20) , 5926-5937. https://doi.org/10.1002/chem.201304795
    34. A. Pashkova, L. Greiner, U. Krtschil, C. Hofmann, R. Zapf. Direct synthesis of hydrogen peroxide over supported Pd catalysts: Turning to dense CO2 as an alternative solvent. Applied Catalysis A: General 2013, 464-465 , 281-287. https://doi.org/10.1016/j.apcata.2013.06.007
    35. Y. V. Larichev, F. V. Tuzikov. Advances in small-angle X-ray scattering for the study of supported catalysts. Journal of Applied Crystallography 2013, 46 (3) , 752-757. https://doi.org/10.1107/S0021889813009023
    36. Rui Zhang, Danmeng Shuai, Kathryn A. Guy, John R. Shapley, Timothy J. Strathmann, Charles J. Werth. Elucidation of Nitrate Reduction Mechanisms on a Pd‐In Bimetallic Catalyst using Isotope Labeled Nitrogen Species. ChemCatChem 2013, 5 (1) , 313-321. https://doi.org/10.1002/cctc.201200457
    37. O. B. Belskaya, R. M. Mironenko, V. A. Likholobov. Effect of carbon support nature and palladium content on the properties of Pd/C catalysts in hydrogenation of benzaldehyde. Theoretical and Experimental Chemistry 2013, 48 (6) , 381-385. https://doi.org/10.1007/s11237-013-9285-y
    38. Farid Bensebaa. Nanoparticle Fundamentals. 2013, 1-84. https://doi.org/10.1016/B978-0-12-369550-5.00001-X
    39. G.B. Sergeev, K.J. Klabunde. Nanoparticles in Science and Technology. 2013, 299-345. https://doi.org/10.1016/B978-0-444-59397-9.00011-6
    40. F. Menegazzo, M. Signoretto, G. Frison, F. Pinna, G. Strukul, M. Manzoli, F. Boccuzzi. When high metal dispersion has a detrimental effect: Hydrogen peroxide direct synthesis under very mild and nonexplosive conditions catalyzed by Pd supported on silica. Journal of Catalysis 2012, 290 , 143-150. https://doi.org/10.1016/j.jcat.2012.03.010
    41. Malte Behrens, Robert Schlögl. X‐Ray Diffraction and Small Angle X‐Ray Scattering. 2012, 609-653. https://doi.org/10.1002/9783527645329.ch15
    42. Niko M. Kinnunen, Janne T. Hirvi, Mika Suvanto, Tapani A. Pakkanen. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter. Journal of Molecular Catalysis A: Chemical 2012, 356 , 20-28. https://doi.org/10.1016/j.molcata.2011.12.023
    43. Niko M. Kinnunen, Janne T. Hirvi, Tapani Venäläinen, Mika Suvanto, Tapani A. Pakkanen. Procedure to tailor activity of methane combustion catalyst: Relation between Pd/PdOx active sites and methane oxidation activity. Applied Catalysis A: General 2011, 397 (1-2) , 54-61. https://doi.org/10.1016/j.apcata.2011.02.013
    44. Robert Schlögl. Chapter 5 X‐ray Diffraction. 2009, 273-338. https://doi.org/10.1016/S0360-0564(08)00005-9
    45. Sonia Domínguez-Domínguez, Ángel Berenguer-Murcia, Ángel Linares-Solano, Diego Cazorla-Amorós. Inorganic materials as supports for palladium nanoparticles: Application in the semi-hydrogenation of phenylacetylene. Journal of Catalysis 2008, 257 (1) , 87-95. https://doi.org/10.1016/j.jcat.2008.04.008
    46. Gérard Bergeret, Pierre Gallezot. Particle Size and Dispersion Measurements. 2008, 738-765. https://doi.org/10.1002/9783527610044.hetcat0038
    47. B. Corain, P. Centomo, C. Burato, P. Canton. Gel-Type Cross-Linked Functional Polymers as Template in the Synthesis of Size Controlled Metal Nanoclusters. 2008, 413-418. https://doi.org/10.1016/B978-044453057-8.50031-3
    48. F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna. Metal dispersion and distribution in Pd-based PTA catalysts. Catalysis Communications 2007, 8 (6) , 876-879. https://doi.org/10.1016/j.catcom.2006.09.021
    49. . References. 2006, 215-246. https://doi.org/10.1016/B978-044451956-6/50012-2
    50. Reto Strobel, Sotiris E. Pratsinis, Alfons Baiker. Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion. Journal of Materials Chemistry 2005, 15 (5) , 605. https://doi.org/10.1039/b413198c
    51. Benedetto Corain, Karel Jerabek, Paolo Centomo, Patrizia Canton. Generation of Size‐Controlled Pd 0 Nanoclusters inside Nanoporous Domains of Gel‐Type Resins: Diverse and Convergent Evidence That Supports a Strategy of Template‐Controlled Synthesis. Angewandte Chemie 2004, 116 (8) , 977-980. https://doi.org/10.1002/ange.200352640
    52. Benedetto Corain, Karel Jerabek, Paolo Centomo, Patrizia Canton. Generation of Size‐Controlled Pd 0 Nanoclusters inside Nanoporous Domains of Gel‐Type Resins: Diverse and Convergent Evidence That Supports a Strategy of Template‐Controlled Synthesis. Angewandte Chemie International Edition 2004, 43 (8) , 959-962. https://doi.org/10.1002/anie.200352640
    53. Ilenia Rossetti, Nicola Pernicone, Lucio Forni. Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption. Applied Catalysis A: General 2003, 248 (1-2) , 97-103. https://doi.org/10.1016/S0926-860X(03)00151-0
    54. F Pinna, F Menegazzo, M Signoretto, P Canton, G Fagherazzi, N Pernicone. Consecutive hydrogenation of benzaldehyde over Pd catalysts. Applied Catalysis A: General 2001, 219 (1-2) , 195-200. https://doi.org/10.1016/S0926-860X(01)00685-8
    55. P. Canton, F. Menegazzo, M. Signoretto, F. Pinna, P. RieIlo, A. Bencdetti, N. Pernicone. Influence of preparation procedure on physical and catalytic properties of carbon supported Pd-Au catalysts.. 2000, 1011-1018. https://doi.org/10.1016/S0167-2991(00)80746-6