ACS Publications. Most Trusted. Most Cited. Most Read
Self-Adapting Fixed-End-Point Configurational-Bias Monte Carlo Method for the Regrowth of Interior Segments of Chain Molecules with Strong Intramolecular Interactions
My Activity

Figure 1Loading Img
    Article

    Self-Adapting Fixed-End-Point Configurational-Bias Monte Carlo Method for the Regrowth of Interior Segments of Chain Molecules with Strong Intramolecular Interactions
    Click to copy article linkArticle link copied!

    View Author Information
    Departments of Chemistry and of Chemical Engineering and Materials Science, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2000, 33, 19, 7207–7218
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma000172g
    Published September 1, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    An extension to the configurational-bias Monte Carlo method is presented which allows for the efficient conformational sampling of the interior segments of chain molecules whose interactions include strong bonded terms (governing bond stretching, bond angle bending, and dihedral angle rotation). The ability to regrow interior segments overcomes the limitations of conventional configurational-bias methods (where the regrowth is always directed to a free chain end) and now allows for the simulation of chain systems with low concentrations of chain ends, that is, higher molecular weights, networks, or cyclic structures. As previously proposed by Dijkstra et al. [J. Chem. Phys.1994, 101, 3179] for lattice polymers and by Vendruscolo [J. Chem. Phys.1997, 106, 2970] for freely jointed polymers, an additional biasing (closing) probability is used that guides the bead-by-bead configurational-bias regrowth of interior segments toward its desired fixed target. However, while the previous methods are limited to chain models for which the number of random walks that lead to closure is known or which rely on simpler and less efficient geometric considerations, the algorithm presented here allows for the simulation of chain molecules using force fields of arbitrary complexity for which the closing probability is not known a priori. It is important to note that the additional biasing probability used to guide the move does not necessarily have to be the true closing probability but that a good approximation thereof is essential to improve the sampling efficiency. To this extent, we obtain an intial guess of the biasing probability from a short presimulation or an earlier simulation of a related system or simply use a uniform biasing probability. A self-adapting scheme is then used to optimize the biasing probability during the course of the simulation for the system of interest. In addition to the conformational sampling of interior segments, the new algorithm also enables efficient particle insertions and removals of cyclic molecules (of moderate length) and thereby opens the door to simulations in the grand canonical and Gibbs ensembles. Simulation results are presented for linear, branched, and cyclic alkanes using the transferable potentials for phase equilibria (TraPPE) force field.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 113 publications.

    1. Samiha Sharlin, Rodrigo A. Lozano, Tyler R. Josephson. Monte Carlo Simulations of Water Pollutant Adsorption at Parts-per-Billion Concentration: A Study on 1,4-Dioxane. Journal of Chemical Theory and Computation 2024, 20 (14) , 5854-5865. https://doi.org/10.1021/acs.jctc.4c00236
    2. Qile P. Chen, Shuyi Xie, Reza Foudazi, Timothy P. Lodge, J. Ilja Siepmann. Understanding the Molecular Weight Dependence of χ and the Effect of Dispersity on Polymer Blend Phase Diagrams. Macromolecules 2018, 51 (10) , 3774-3787. https://doi.org/10.1021/acs.macromol.8b00604
    3. Aliasghar Sepehri, Troy D. Loeffler, and Bin Chen . Improving the Efficiency of Configurational-Bias Monte Carlo: Extension of the Jacobian–Gaussian Scheme to Interior Sections of Cyclic and Polymeric Molecules. Journal of Chemical Theory and Computation 2017, 13 (9) , 4043-4053. https://doi.org/10.1021/acs.jctc.7b00478
    4. Peng Bai and J. Ilja Siepmann . Assessment and Optimization of Configurational-Bias Monte Carlo Particle Swap Strategies for Simulations of Water in the Gibbs Ensemble. Journal of Chemical Theory and Computation 2017, 13 (2) , 431-440. https://doi.org/10.1021/acs.jctc.6b00973
    5. Richard A. Messerly, Thomas A. Knotts IV, Richard L. Rowley, and W. Vincent Wilding . Improved Estimates of the Critical Point Constants for Large n-Alkanes Using Gibbs Ensemble Monte Carlo Simulations. Journal of Chemical & Engineering Data 2016, 61 (10) , 3640-3649. https://doi.org/10.1021/acs.jced.6b00574
    6. Qile P. Chen, Justine D. Chu, Robert F. DeJaco, Timothy P. Lodge, J. Ilja Siepmann. Molecular Simulation of Olefin Oligomer Blend Phase Behavior. Macromolecules 2016, 49 (10) , 3975-3985. https://doi.org/10.1021/acs.macromol.6b00394
    7. Troy D. Loeffler, Aliasghar Sepehri, and Bin Chen . Improved Monte Carlo Scheme for Efficient Particle Transfer in Heterogeneous Systems in the Grand Canonical Ensemble: Application to Vapor–Liquid Nucleation. Journal of Chemical Theory and Computation 2015, 11 (9) , 4023-4032. https://doi.org/10.1021/acs.jctc.5b00466
    8. Steven Hayward and Akio Kitao . Monte Carlo Sampling with Linear Inverse Kinematics for Simulation of Protein Flexible Regions. Journal of Chemical Theory and Computation 2015, 11 (8) , 3895-3905. https://doi.org/10.1021/acs.jctc.5b00215
    9. Ariana Torres-Knoop, Sayee Prasaad Balaji, Thijs J. H. Vlugt, and David Dubbeldam . A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation 2014, 10 (3) , 942-952. https://doi.org/10.1021/ct4009766
    10. Kaustubh S. Rane, Sabharish Murali, and Jeffrey R. Errington . Monte Carlo Simulation Methods for Computing Liquid–Vapor Saturation Properties of Model Systems. Journal of Chemical Theory and Computation 2013, 9 (6) , 2552-2566. https://doi.org/10.1021/ct400074p
    11. Hui Wu, Oneka T. Cummings, and Collin D. Wick . Computational Investigation on the Effect of Alumina Hydration on Lithium Ion Mobility in Poly(ethylene oxide) LiClO4 Electrolytes. The Journal of Physical Chemistry B 2012, 116 (51) , 14922-14932. https://doi.org/10.1021/jp307794r
    12. Samuel J. Keasler, Sophia M. Charan, Collin D. Wick, Ioannis G. Economou, and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria–United Atom Description of Five- and Six-Membered Cyclic Alkanes and Ethers. The Journal of Physical Chemistry B 2012, 116 (36) , 11234-11246. https://doi.org/10.1021/jp302975c
    13. Haohan Wu, Qihan Gong, David H. Olson, and Jing Li . Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews 2012, 112 (2) , 836-868. https://doi.org/10.1021/cr200216x
    14. Katie A. Maerzke and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria−Coarse-Grain Description for Linear Alkanes. The Journal of Physical Chemistry B 2011, 115 (13) , 3452-3465. https://doi.org/10.1021/jp1063935
    15. John H. Allen, Emily T. Schoch, and John M. Stubbs . Effect of Surface Binding on Heterogeneous DNA Melting Equilibria: A Monte Carlo Simulation Study. The Journal of Physical Chemistry B 2011, 115 (7) , 1720-1726. https://doi.org/10.1021/jp111347p
    16. Hui Wu and Collin D. Wick. Computational Investigation on the Role of Plasticizers on Ion Conductivity in Poly(ethylene oxide) LiTFSI Electrolytes. Macromolecules 2010, 43 (7) , 3502-3510. https://doi.org/10.1021/ma902758w
    17. Berend Smit and , Theo L. M. Maesen. Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews 2008, 108 (10) , 4125-4184. https://doi.org/10.1021/cr8002642
    18. Jake L. Rafferty, J. Ilja Siepmann and Mark R. Schure. Molecular-Level Comparison of Alkylsilane and Polar-Embedded Reversed-Phase Liquid Chromatography Systems. Analytical Chemistry 2008, 80 (16) , 6214-6221. https://doi.org/10.1021/ac8005473
    19. Loukas D. Peristeras,, Anastassia N. Rissanou,, Ioannis G. Economou, and, Doros N. Theodorou. Novel Monte Carlo Molecular Simulation Scheme Using Identity-Altering Elementary Moves for the Calculation of Structure and Thermodynamic Properties of Polyolefin Blends. Macromolecules 2007, 40 (8) , 2904-2914. https://doi.org/10.1021/ma0627121
    20. Li Sun,, J. Ilja Siepmann, and, Mark R. Schure. Monte Carlo Simulations of an Isolated n-Octadecane Chain Solvated in Water−Acetonitrile Mixtures. Journal of Chemical Theory and Computation 2007, 3 (2) , 350-357. https://doi.org/10.1021/ct600239z
    21. Li Sun,, J. Ilja Siepmann, and, Mark R. Schure. Conformation and Solvation Structure for an Isolated n-Octadecane Chain in Water, Methanol, and Their Mixtures. The Journal of Physical Chemistry B 2006, 110 (21) , 10519-10525. https://doi.org/10.1021/jp0602631
    22. Charlles R. A. Abreu and, Fernando A. Escobedo. A Novel Configurational-Bias Monte Carlo Method for Lattice Polymers:  Application to Molecules with Multicyclic Architectures. Macromolecules 2005, 38 (20) , 8532-8545. https://doi.org/10.1021/ma050725t
    23. Collin D. Wick,, J. Ilja Siepmann, and, Doros N. Theodorou. Microscopic Origins for the Favorable Solvation of Carbonate Ether Copolymers in CO2. Journal of the American Chemical Society 2005, 127 (35) , 12338-12342. https://doi.org/10.1021/ja0510008
    24. Joseph P. Fox and, Simon P. Bates. Simulating the Adsorption of Binary and Ternary Mixtures of Linear, Branched, and Cyclic Alkanes in Zeolites. The Journal of Physical Chemistry B 2004, 108 (44) , 17136-17142. https://doi.org/10.1021/jp0491212
    25. John M. Stubbs,, Jeffrey J. Potoff, and, J. Ilja Siepmann. Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes. The Journal of Physical Chemistry B 2004, 108 (45) , 17596-17605. https://doi.org/10.1021/jp049459w
    26. Jakob P. Ulmschneider and, William L. Jorgensen. Monte Carlo Backbone Sampling for Nucleic Acids Using Concerted Rotations Including Variable Bond Angles. The Journal of Physical Chemistry B 2004, 108 (43) , 16883-16892. https://doi.org/10.1021/jp047796z
    27. Collin D. Wick and, Doros N. Theodorou. Connectivity-Altering Monte Carlo Simulations of the End Group Effects on Volumetric Properties for Poly(ethylene oxide). Macromolecules 2004, 37 (18) , 7026-7033. https://doi.org/10.1021/ma049193r
    28. Alfred Uhlherr,, Vlasis G. Mavrantzas,, Manolis Doxastakis, and, Doros N. Theodorou. Directed Bridging Methods for Fast Atomistic Monte Carlo Simulations of Bulk Polymers. Macromolecules 2001, 34 (24) , 8554-8568. https://doi.org/10.1021/ma0102060
    29. Bin Chen. Extension of the lattice-based aggregation-volume-bias Monte Carlo approach to molecular crystals: Quantitative calculations on the thermodynamic stability of the urea polymorphs. The Journal of Chemical Physics 2024, 161 (4) https://doi.org/10.1063/5.0220812
    30. Divya Goel, Ravi Kumar, Sudhir Kumar. AI-Assisted Methods for Protein Structure Prediction and Analysis. 2024, 365-391. https://doi.org/10.1007/978-981-99-9621-6_22
    31. Joël Mabillard, Isha Malhotra, Bortolo Matteo Mognetti. Using Markov transition matrices to generate trial configurations in Markov chain Monte Carlo simulations. Computer Physics Communications 2023, 285 , 108641. https://doi.org/10.1016/j.cpc.2022.108641
    32. . Bibliography. 2023, 657-694. https://doi.org/10.1016/B978-0-32-390292-2.00046-5
    33. Daan Frenkel, Berend Smit. Configurational-bias Monte Carlo. 2023, 405-453. https://doi.org/10.1016/B978-0-32-390292-2.00023-4
    34. Matthijs P. van den Berg, Wyler C. Scamman, John M. Stubbs. Monte Carlo molecular simulation of solution and surface-bound DNA hybridization of short oligomers at varying surface densities. Biophysical Chemistry 2022, 284 , 106784. https://doi.org/10.1016/j.bpc.2022.106784
    35. Sen Xu, Liling Wu, Zhenyu Li. Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling ※. Acta Chimica Sinica 2022, 80 (5) , 598. https://doi.org/10.6023/A22010003
    36. Vlasis G. Mavrantzas. Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook. Frontiers in Physics 2021, 9 https://doi.org/10.3389/fphy.2021.661367
    37. Isha Malhotra, Bernardo Oyarzún, Bortolo Matteo Mognetti. Unfolding of the chromatin fiber driven by overexpression of noninteracting bridging factors. Biophysical Journal 2021, 120 (7) , 1247-1256. https://doi.org/10.1016/j.bpj.2020.12.027
    38. Younes Nejahi, Mohammad Soroush Barhaghi, Gregory Schwing, Loren Schwiebert, Jeffrey Potoff. Update 2.70 to “GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids”. SoftwareX 2021, 13 , 100627. https://doi.org/10.1016/j.softx.2020.100627
    39. Abdoul Wahidou Saley Hamani, Jean-Patrick Bazile, Hai Hoang, Han Tuong Luc, Jean-Luc Daridon, Guillaume Galliero. Thermophysical properties of simple molecular liquid mixtures: On the limitations of some force fields. Journal of Molecular Liquids 2020, 303 , 112663. https://doi.org/10.1016/j.molliq.2020.112663
    40. Mohammad Soroush Barhaghi, Jeffrey J. Potoff. Prediction of phase equilibria and Gibbs free energies of transfer using molecular exchange Monte Carlo in the Gibbs ensemble. Fluid Phase Equilibria 2019, 486 , 106-118. https://doi.org/10.1016/j.fluid.2018.12.032
    41. Bernardo Oyarzún, Bortolo Matteo Mognetti. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Molecular Physics 2018, 116 (21-22) , 2927-2941. https://doi.org/10.1080/00268976.2018.1503745
    42. Samuel W. K. Wong, Jun S. Liu, S. C. Kou. Exploring the conformational space for protein folding with sequential Monte Carlo. The Annals of Applied Statistics 2018, 12 (3) https://doi.org/10.1214/17-AOAS1124
    43. Prashanth Chandran, Jindal K. Shah. A molecular simulation approach to the computation of mutual solubility of water and organic liquids: Application to fatty acids. Fluid Phase Equilibria 2018, 472 , 48-55. https://doi.org/10.1016/j.fluid.2018.05.002
    44. Bernardo Oyarzún, Bortolo Matteo Mognetti. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles. The Journal of Chemical Physics 2018, 148 (11) https://doi.org/10.1063/1.5020158
    45. Brea R. Rivard, Connor J. Cooper, John M. Stubbs. The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation. Chemical Physics Letters 2018, 693 , 127-131. https://doi.org/10.1016/j.cplett.2018.01.024
    46. Samuel W. K. Wong, Jun S. Liu, S. C. Kou. Fast de novo discovery of low‐energy protein loop conformations. Proteins: Structure, Function, and Bioinformatics 2017, 85 (8) , 1402-1412. https://doi.org/10.1002/prot.25300
    47. Richard A. Messerly, Thomas A. Knotts, W. Vincent Wilding. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n -alkanes. The Journal of Chemical Physics 2017, 146 (19) https://doi.org/10.1063/1.4983406
    48. Gabriele Raabe. Monte Carlo Simulations. 2017, 31-82. https://doi.org/10.1007/978-981-10-3545-6_3
    49. John M. Stubbs. Molecular simulations of supercritical fluid systems. The Journal of Supercritical Fluids 2016, 108 , 104-122. https://doi.org/10.1016/j.supflu.2015.10.027
    50. Stefano Angioletti-Uberti, Bortolo M. Mognetti, Daan Frenkel. Theory and simulation of DNA-coated colloids: a guide for rational design. Physical Chemistry Chemical Physics 2016, 18 (9) , 6373-6393. https://doi.org/10.1039/C5CP06981E
    51. Richard A. Messerly, Richard L. Rowley, Thomas A. Knotts, W. Vincent Wilding. An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation. The Journal of Chemical Physics 2015, 143 (10) https://doi.org/10.1063/1.4928865
    52. Connor J. Cooper, John M. Stubbs. The effect of unequal strand length on short DNA duplex hybridization in a model microarray system: A Monte Carlo simulation study. Chemical Physics Letters 2015, 634 , 230-235. https://doi.org/10.1016/j.cplett.2015.06.024
    53. Robin De Gernier, Tine Curk, Galina V. Dubacheva, Ralf P. Richter, Bortolo M. Mognetti. A new configurational bias scheme for sampling supramolecular structures. The Journal of Chemical Physics 2014, 141 (24) https://doi.org/10.1063/1.4904727
    54. Aliasghar Sepehri, Troy D. Loeffler, Bin Chen. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules. The Journal of Chemical Physics 2014, 141 (7) https://doi.org/10.1063/1.4892640
    55. Becky L. Eggimann, Amara J. Sunnarborg, Hudson D. Stern, Andrew P. Bliss, J. Ilja Siepmann. An online parameter and property database for the TraPPE force field. Molecular Simulation 2014, 40 (1-3) , 101-105. https://doi.org/10.1080/08927022.2013.842994
    56. Jason Mick, Eyad Hailat, Vincent Russo, Kamel Rushaidat, Loren Schwiebert, Jeffrey Potoff. GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium. Computer Physics Communications 2013, 184 (12) , 2662-2669. https://doi.org/10.1016/j.cpc.2013.06.020
    57. John M. Stubbs. Solute extraction via supercritical ethane from poly(ethylene glycol): A Monte Carlo simulation study. Fluid Phase Equilibria 2013, 360 , 351-356. https://doi.org/10.1016/j.fluid.2013.09.055
    58. David Dubbeldam, Ariana Torres-Knoop, Krista S. Walton. On the inner workings of Monte Carlo codes. Molecular Simulation 2013, 39 (14-15) , 1253-1292. https://doi.org/10.1080/08927022.2013.819102
    59. Rebecca K. Lindsey, Jake L. Rafferty, Becky L. Eggimann, J. Ilja Siepmann, Mark R. Schure. Molecular simulation studies of reversed-phase liquid chromatography. Journal of Chromatography A 2013, 1287 , 60-82. https://doi.org/10.1016/j.chroma.2013.02.040
    60. Katie A. Maerzke, Lili Gai, Peter T. Cummings, Clare McCabe. Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems. The Journal of Chemical Physics 2012, 137 (20) https://doi.org/10.1063/1.4766354
    61. Michael T. Huber, John M. Stubbs. The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol). Theoretical Chemistry Accounts 2012, 131 (10) https://doi.org/10.1007/s00214-012-1276-x
    62. K. Hall, M. Ashtari, N. M. Cann. On simulations of complex interfaces: Molecular dynamics simulations of stationary phases. The Journal of Chemical Physics 2012, 136 (11) https://doi.org/10.1063/1.3693516
    63. Yogendra Narayan Pandey, Manolis Doxastakis. Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. The Journal of Chemical Physics 2012, 136 (9) https://doi.org/10.1063/1.3689316
    64. Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography. Journal of Chromatography A 2012, 1223 , 24-34. https://doi.org/10.1016/j.chroma.2011.11.039
    65. Christopher J. Rasmussen, Aleksey Vishnyakov, Alexander V. Neimark. Calculation of chemical potentials of chain molecules by the incremental gauge cell method. The Journal of Chemical Physics 2011, 135 (21) https://doi.org/10.1063/1.3657438
    66. Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases. Journal of Chromatography A 2011, 1218 (51) , 9183-9193. https://doi.org/10.1016/j.chroma.2011.10.043
    67. Jindal K. Shah, Edward J. Maginn. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. The Journal of Chemical Physics 2011, 135 (13) https://doi.org/10.1063/1.3644939
    68. John M. Stubbs. Monte Carlo simulation of solute extraction via supercritical carbon dioxide from poly(ethylene glycol). Fluid Phase Equilibria 2011, 305 (1) , 76-82. https://doi.org/10.1016/j.fluid.2011.03.014
    69. Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Mobile phase effects in reversed-phase liquid chromatography: A comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Journal of Chromatography A 2011, 1218 (16) , 2203-2213. https://doi.org/10.1016/j.chroma.2011.02.012
    70. G. Tsolou, V. G. Mavrantzas. Hierarchical Modeling of Polymeric Systems at Multiple Time and Length Scales. 2011, 85-134. https://doi.org/10.1002/9783527631315.ch3
    71. Marcos R. Betancourt. Optimization of Monte Carlo trial moves for protein simulations. The Journal of Chemical Physics 2011, 134 (1) https://doi.org/10.1063/1.3515960
    72. Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales. 2011, 181-200. https://doi.org/10.1007/128_2011_210
    73. G. Tsolou, V. G. Mavrantzas. Hierarchical Modeling of Polymeric Systems at Multiple Time and Length Scales. 2010, 85-134. https://doi.org/10.1002/9783527631209.ch54
    74. Max L. Berkowitz, James T. Kindt. Molecular Detailed Simulations of Lipid Bilayers. 2010, 253-286. https://doi.org/10.1002/9780470890905.ch5
    75. Daniel Reith, Peter Virnau. Implementation and performance analysis of bridging Monte Carlo moves for off-lattice single chain polymers in globular states. Computer Physics Communications 2010, 181 (4) , 800-805. https://doi.org/10.1016/j.cpc.2009.12.012
    76. F.J. Keil. Molecular Simulation of Adsorption in Zeolites and Carbon Nanotubes. 2010, 9-40. https://doi.org/10.1007/978-90-481-2481-7_2
    77. Nicholas B. Tito, John M. Stubbs. Application of a coarse-grained model for DNA to homo- and heterogeneous melting equilibria. Chemical Physics Letters 2010, 485 (4-6) , 354-359. https://doi.org/10.1016/j.cplett.2009.12.079
    78. Jake L. Rafferty, J.Ilja Siepmann, Mark.R. Schure. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: Molecular-level insights from Monte Carlo simulations. Journal of Chromatography A 2009, 1216 (12) , 2320-2331. https://doi.org/10.1016/j.chroma.2008.12.088
    79. François A. Detcheverry, Darin Q. Pike, Umang Nagpal, Paul F. Nealey, Juan J. de Pablo. Theoretically informed coarse grain simulations of block copolymer melts: method and applications. Soft Matter 2009, 5 (24) , 4858. https://doi.org/10.1039/b911646j
    80. Neeraj Rai, Divesh Bhatt, J. Ilja Siepmann, Laurence E. Fried. Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria. The Journal of Chemical Physics 2008, 129 (19) https://doi.org/10.1063/1.3006054
    81. Jake L. Rafferty, J.Ilja Siepmann, Mark R. Schure. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation. Journal of Chromatography A 2008, 1204 (1) , 11-19. https://doi.org/10.1016/j.chroma.2008.07.037
    82. Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation. Journal of Chromatography A 2008, 1204 (1) , 20-27. https://doi.org/10.1016/j.chroma.2008.07.038
    83. Colin A. Smith, Tanja Kortemme. Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction. Journal of Molecular Biology 2008, 380 (4) , 742-756. https://doi.org/10.1016/j.jmb.2008.05.023
    84. Manuel Laso, Nikos Ch. Karayiannis, Matthias Müller. Min-map bias Monte Carlo for chain molecules: Biased Monte Carlo sampling based on bijective minimum-to-minimum mapping. The Journal of Chemical Physics 2006, 125 (16) https://doi.org/10.1063/1.2359442
    85. Li Sun, J.Ilja Siepmann, Wendy L. Klotz, Mark R. Schure. Retention in gas–liquid chromatography with a polyethylene oxide stationary phase: Molecular simulation and experiment. Journal of Chromatography A 2006, 1126 (1-2) , 373-380. https://doi.org/10.1016/j.chroma.2006.05.084
    86. Ling Zhang, Jake L. Rafferty, J.Ilja Siepmann, Bin Chen, Mark R. Schure. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. Journal of Chromatography A 2006, 1126 (1-2) , 219-231. https://doi.org/10.1016/j.chroma.2006.06.003
    87. Tushar Jain, David S. Cerutti, J. Andrew McCammon. Configurational‐bias sampling technique for predicting side‐chain conformations in proteins. Protein Science 2006, 15 (9) , 2029-2039. https://doi.org/10.1110/ps.062165906
    88. Marcus G. Martin, Amalie L. Frischknecht. Using arbitrary trial distributions to improve intramolecular sampling in configurational-bias Monte Carlo. Molecular Physics 2006, 104 (15) , 2439-2456. https://doi.org/10.1080/00268970600751078
    89. Collin D. Wick, Gregory K. Schenter. Critical comparison of classical and quantum mechanical treatments of the phase equilibria of water. The Journal of Chemical Physics 2006, 124 (11) https://doi.org/10.1063/1.2178322
    90. S. Ulas, U. M. Diwekar. Efficient molecular simulations for environmentally benign processes. Molecular Simulation 2006, 32 (3-4) , 315-329. https://doi.org/10.1080/08927020600599113
    91. Nikos Ch. Karayiannis, Vlasis G. Mavrantzas. Advanced Monte Carlo Methods for the atomistic simulation of polymers with a linear or a non-linear molecular architecture. 2006, 31-67. https://doi.org/10.1016/S1570-7946(06)80004-0
    92. Daniel R Mason, Adrian P Sutton. Computational steering in Monte Carlo simulations of thin film polystyrene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005, 363 (1833) , 1961-1974. https://doi.org/10.1098/rsta.2005.1622
    93. Susan L. Weitz, Jeffrey J. Potoff. Effect of quadrupole moment on the phase behavior of binary mixtures containing ethene. Fluid Phase Equilibria 2005, 234 (1-2) , 144-150. https://doi.org/10.1016/j.fluid.2005.06.008
    94. Sagar S. Rane, Wayne L. Mattice. Interior segment regrowth configurational-bias algorithm for the efficient sampling and fast relaxation of coarse-grained polyethylene and polyoxyethylene melts on a high coordination lattice. The Journal of Chemical Physics 2005, 122 (23) https://doi.org/10.1063/1.1940057
    95. Ling Zhang, Li Sun, J.I. Siepmann, Mark R. Schure. Molecular simulation study of the bonded-phase structure in reversed-phase liquid chromatography with neat aqueous solvent. Journal of Chromatography A 2005, 1079 (1-2) , 127-135. https://doi.org/10.1016/j.chroma.2005.03.124
    96. Jun-Seok Lee, Collin D. Wick, John M. Stubbs, J. Ilja Siepmann *. Simulating the vapour–liquid equilibria of large cyclic alkanes. Molecular Physics 2005, 103 (1) , 99-104. https://doi.org/10.1080/00268970412331303341
    97. V. G. Mavrantzas. Monte Carlo Simulation of Chain Molecules. 2005, 2583-2597. https://doi.org/10.1007/978-1-4020-3286-8_137
    98. T Jain, J De Pablo. Configurational Bias Techniques for Simulation of Complex Fluids. 2004https://doi.org/10.1201/9780203021255.pt4
    99. Ioannis G. Economou. Molecular Simulation of Phase Equilibria for Industrial Applications. 2004, 279-307. https://doi.org/10.1016/S1570-7946(04)80014-2
    100. Michael R. Shirts, Jed W. Pitera, William C. Swope, Vijay S. Pande. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. The Journal of Chemical Physics 2003, 119 (11) , 5740-5761. https://doi.org/10.1063/1.1587119
    Load all citations

    Macromolecules

    Cite this: Macromolecules 2000, 33, 19, 7207–7218
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma000172g
    Published September 1, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    870

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.