Self-Adapting Fixed-End-Point Configurational-Bias Monte Carlo Method for the Regrowth of Interior Segments of Chain Molecules with Strong Intramolecular InteractionsClick to copy article linkArticle link copied!
Abstract
An extension to the configurational-bias Monte Carlo method is presented which allows for the efficient conformational sampling of the interior segments of chain molecules whose interactions include strong bonded terms (governing bond stretching, bond angle bending, and dihedral angle rotation). The ability to regrow interior segments overcomes the limitations of conventional configurational-bias methods (where the regrowth is always directed to a free chain end) and now allows for the simulation of chain systems with low concentrations of chain ends, that is, higher molecular weights, networks, or cyclic structures. As previously proposed by Dijkstra et al. [J. Chem. Phys.1994, 101, 3179] for lattice polymers and by Vendruscolo [J. Chem. Phys.1997, 106, 2970] for freely jointed polymers, an additional biasing (closing) probability is used that guides the bead-by-bead configurational-bias regrowth of interior segments toward its desired fixed target. However, while the previous methods are limited to chain models for which the number of random walks that lead to closure is known or which rely on simpler and less efficient geometric considerations, the algorithm presented here allows for the simulation of chain molecules using force fields of arbitrary complexity for which the closing probability is not known a priori. It is important to note that the additional biasing probability used to guide the move does not necessarily have to be the true closing probability but that a good approximation thereof is essential to improve the sampling efficiency. To this extent, we obtain an intial guess of the biasing probability from a short presimulation or an earlier simulation of a related system or simply use a uniform biasing probability. A self-adapting scheme is then used to optimize the biasing probability during the course of the simulation for the system of interest. In addition to the conformational sampling of interior segments, the new algorithm also enables efficient particle insertions and removals of cyclic molecules (of moderate length) and thereby opens the door to simulations in the grand canonical and Gibbs ensembles. Simulation results are presented for linear, branched, and cyclic alkanes using the transferable potentials for phase equilibria (TraPPE) force field.
*
Corresponding author: [email protected].
Cited By
This article is cited by 113 publications.
- Samiha Sharlin, Rodrigo A. Lozano, Tyler R. Josephson. Monte Carlo Simulations of Water Pollutant Adsorption at Parts-per-Billion Concentration: A Study on 1,4-Dioxane. Journal of Chemical Theory and Computation 2024, 20
(14)
, 5854-5865. https://doi.org/10.1021/acs.jctc.4c00236
- Qile P. Chen, Shuyi Xie, Reza Foudazi, Timothy P. Lodge, J. Ilja Siepmann. Understanding the Molecular Weight Dependence of χ and the Effect of Dispersity on Polymer Blend Phase Diagrams. Macromolecules 2018, 51
(10)
, 3774-3787. https://doi.org/10.1021/acs.macromol.8b00604
- Aliasghar Sepehri, Troy D. Loeffler, and Bin Chen . Improving the Efficiency of Configurational-Bias Monte Carlo: Extension of the Jacobian–Gaussian Scheme to Interior Sections of Cyclic and Polymeric Molecules. Journal of Chemical Theory and Computation 2017, 13
(9)
, 4043-4053. https://doi.org/10.1021/acs.jctc.7b00478
- Peng Bai and J. Ilja Siepmann . Assessment and Optimization of Configurational-Bias Monte Carlo Particle Swap Strategies for Simulations of Water in the Gibbs Ensemble. Journal of Chemical Theory and Computation 2017, 13
(2)
, 431-440. https://doi.org/10.1021/acs.jctc.6b00973
- Richard A. Messerly, Thomas A. Knotts IV, Richard L. Rowley, and W. Vincent Wilding . Improved Estimates of the Critical Point Constants for Large n-Alkanes Using Gibbs Ensemble Monte Carlo Simulations. Journal of Chemical & Engineering Data 2016, 61
(10)
, 3640-3649. https://doi.org/10.1021/acs.jced.6b00574
- Qile P. Chen, Justine D. Chu, Robert F. DeJaco, Timothy P. Lodge, J. Ilja Siepmann. Molecular Simulation of Olefin Oligomer Blend Phase Behavior. Macromolecules 2016, 49
(10)
, 3975-3985. https://doi.org/10.1021/acs.macromol.6b00394
- Troy D. Loeffler, Aliasghar Sepehri, and Bin Chen . Improved Monte Carlo Scheme for Efficient Particle Transfer in Heterogeneous Systems in the Grand Canonical Ensemble: Application to Vapor–Liquid Nucleation. Journal of Chemical Theory and Computation 2015, 11
(9)
, 4023-4032. https://doi.org/10.1021/acs.jctc.5b00466
- Steven Hayward and Akio Kitao . Monte Carlo Sampling with Linear Inverse Kinematics for Simulation of Protein Flexible Regions. Journal of Chemical Theory and Computation 2015, 11
(8)
, 3895-3905. https://doi.org/10.1021/acs.jctc.5b00215
- Ariana Torres-Knoop, Sayee Prasaad Balaji, Thijs J. H. Vlugt, and David Dubbeldam . A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation 2014, 10
(3)
, 942-952. https://doi.org/10.1021/ct4009766
- Kaustubh S. Rane, Sabharish Murali, and Jeffrey R. Errington . Monte Carlo Simulation Methods for Computing Liquid–Vapor Saturation Properties of Model Systems. Journal of Chemical Theory and Computation 2013, 9
(6)
, 2552-2566. https://doi.org/10.1021/ct400074p
- Hui Wu, Oneka T. Cummings, and Collin D. Wick . Computational Investigation on the Effect of Alumina Hydration on Lithium Ion Mobility in Poly(ethylene oxide) LiClO4 Electrolytes. The Journal of Physical Chemistry B 2012, 116
(51)
, 14922-14932. https://doi.org/10.1021/jp307794r
- Samuel J. Keasler, Sophia M. Charan, Collin D. Wick, Ioannis G. Economou, and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria–United Atom Description of Five- and Six-Membered Cyclic Alkanes and Ethers. The Journal of Physical Chemistry B 2012, 116
(36)
, 11234-11246. https://doi.org/10.1021/jp302975c
- Haohan Wu, Qihan Gong, David H. Olson, and Jing Li . Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews 2012, 112
(2)
, 836-868. https://doi.org/10.1021/cr200216x
- Katie A. Maerzke and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria−Coarse-Grain Description for Linear Alkanes. The Journal of Physical Chemistry B 2011, 115
(13)
, 3452-3465. https://doi.org/10.1021/jp1063935
- John H. Allen, Emily T. Schoch, and John M. Stubbs . Effect of Surface Binding on Heterogeneous DNA Melting Equilibria: A Monte Carlo Simulation Study. The Journal of Physical Chemistry B 2011, 115
(7)
, 1720-1726. https://doi.org/10.1021/jp111347p
- Hui Wu and Collin D. Wick. Computational Investigation on the Role of Plasticizers on Ion Conductivity in Poly(ethylene oxide) LiTFSI Electrolytes. Macromolecules 2010, 43
(7)
, 3502-3510. https://doi.org/10.1021/ma902758w
- Berend Smit and , Theo L. M. Maesen. Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews 2008, 108
(10)
, 4125-4184. https://doi.org/10.1021/cr8002642
- Jake L. Rafferty, J. Ilja Siepmann and Mark R. Schure. Molecular-Level Comparison of Alkylsilane and Polar-Embedded Reversed-Phase Liquid Chromatography Systems. Analytical Chemistry 2008, 80
(16)
, 6214-6221. https://doi.org/10.1021/ac8005473
- Loukas D. Peristeras,, Anastassia N. Rissanou,, Ioannis G. Economou, and, Doros N. Theodorou. Novel Monte Carlo Molecular Simulation Scheme Using Identity-Altering Elementary Moves for the Calculation of Structure and Thermodynamic Properties of Polyolefin Blends. Macromolecules 2007, 40
(8)
, 2904-2914. https://doi.org/10.1021/ma0627121
- Li Sun,, J. Ilja Siepmann, and, Mark R. Schure. Monte Carlo Simulations of an Isolated n-Octadecane Chain Solvated in Water−Acetonitrile Mixtures. Journal of Chemical Theory and Computation 2007, 3
(2)
, 350-357. https://doi.org/10.1021/ct600239z
- Li Sun,, J. Ilja Siepmann, and, Mark R. Schure. Conformation and Solvation Structure for an Isolated n-Octadecane Chain in Water, Methanol, and Their Mixtures. The Journal of Physical Chemistry B 2006, 110
(21)
, 10519-10525. https://doi.org/10.1021/jp0602631
- Charlles R. A. Abreu and, Fernando A. Escobedo. A Novel Configurational-Bias Monte Carlo Method for Lattice Polymers: Application to Molecules with Multicyclic Architectures. Macromolecules 2005, 38
(20)
, 8532-8545. https://doi.org/10.1021/ma050725t
- Collin D. Wick,, J. Ilja Siepmann, and, Doros N. Theodorou. Microscopic Origins for the Favorable Solvation of Carbonate Ether Copolymers in CO2. Journal of the American Chemical Society 2005, 127
(35)
, 12338-12342. https://doi.org/10.1021/ja0510008
- Joseph P. Fox and, Simon P. Bates. Simulating the Adsorption of Binary and Ternary Mixtures of Linear, Branched, and Cyclic Alkanes in Zeolites. The Journal of Physical Chemistry B 2004, 108
(44)
, 17136-17142. https://doi.org/10.1021/jp0491212
- John M. Stubbs,, Jeffrey J. Potoff, and, J. Ilja Siepmann. Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes. The Journal of Physical Chemistry B 2004, 108
(45)
, 17596-17605. https://doi.org/10.1021/jp049459w
- Jakob P. Ulmschneider and, William L. Jorgensen. Monte Carlo Backbone Sampling for Nucleic Acids Using Concerted Rotations Including Variable Bond Angles. The Journal of Physical Chemistry B 2004, 108
(43)
, 16883-16892. https://doi.org/10.1021/jp047796z
- Collin D. Wick and, Doros N. Theodorou. Connectivity-Altering Monte Carlo Simulations of the End Group Effects on Volumetric Properties for Poly(ethylene oxide). Macromolecules 2004, 37
(18)
, 7026-7033. https://doi.org/10.1021/ma049193r
- Alfred Uhlherr,, Vlasis G. Mavrantzas,, Manolis Doxastakis, and, Doros N. Theodorou. Directed Bridging Methods for Fast Atomistic Monte Carlo Simulations of Bulk Polymers. Macromolecules 2001, 34
(24)
, 8554-8568. https://doi.org/10.1021/ma0102060
- Bin Chen. Extension of the lattice-based aggregation-volume-bias Monte Carlo approach to molecular crystals: Quantitative calculations on the thermodynamic stability of the urea polymorphs. The Journal of Chemical Physics 2024, 161
(4)
https://doi.org/10.1063/5.0220812
- Divya Goel, Ravi Kumar, Sudhir Kumar. AI-Assisted Methods for Protein Structure Prediction and Analysis. 2024, 365-391. https://doi.org/10.1007/978-981-99-9621-6_22
- Joël Mabillard, Isha Malhotra, Bortolo Matteo Mognetti. Using Markov transition matrices to generate trial configurations in Markov chain Monte Carlo simulations. Computer Physics Communications 2023, 285 , 108641. https://doi.org/10.1016/j.cpc.2022.108641
- . Bibliography. 2023, 657-694. https://doi.org/10.1016/B978-0-32-390292-2.00046-5
- Daan Frenkel, Berend Smit. Configurational-bias Monte Carlo. 2023, 405-453. https://doi.org/10.1016/B978-0-32-390292-2.00023-4
- Matthijs P. van den Berg, Wyler C. Scamman, John M. Stubbs. Monte Carlo molecular simulation of solution and surface-bound DNA hybridization of short oligomers at varying surface densities. Biophysical Chemistry 2022, 284 , 106784. https://doi.org/10.1016/j.bpc.2022.106784
- Sen Xu, Liling Wu, Zhenyu Li. Nucleation of Water Clusters in Gas Phase: A Computational Study Based on Neural Network Potential and Enhanced Sampling
※. Acta Chimica Sinica 2022, 80
(5)
, 598. https://doi.org/10.6023/A22010003
- Vlasis G. Mavrantzas. Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook. Frontiers in Physics 2021, 9 https://doi.org/10.3389/fphy.2021.661367
- Isha Malhotra, Bernardo Oyarzún, Bortolo Matteo Mognetti. Unfolding of the chromatin fiber driven by overexpression of noninteracting bridging factors. Biophysical Journal 2021, 120
(7)
, 1247-1256. https://doi.org/10.1016/j.bpj.2020.12.027
- Younes Nejahi, Mohammad Soroush Barhaghi, Gregory Schwing, Loren Schwiebert, Jeffrey Potoff. Update 2.70 to “GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids”. SoftwareX 2021, 13 , 100627. https://doi.org/10.1016/j.softx.2020.100627
- Abdoul Wahidou Saley Hamani, Jean-Patrick Bazile, Hai Hoang, Han Tuong Luc, Jean-Luc Daridon, Guillaume Galliero. Thermophysical properties of simple molecular liquid mixtures: On the limitations of some force fields. Journal of Molecular Liquids 2020, 303 , 112663. https://doi.org/10.1016/j.molliq.2020.112663
- Mohammad Soroush Barhaghi, Jeffrey J. Potoff. Prediction of phase equilibria and Gibbs free energies of transfer using molecular exchange Monte Carlo in the Gibbs ensemble. Fluid Phase Equilibria 2019, 486 , 106-118. https://doi.org/10.1016/j.fluid.2018.12.032
- Bernardo Oyarzún, Bortolo Matteo Mognetti. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Molecular Physics 2018, 116
(21-22)
, 2927-2941. https://doi.org/10.1080/00268976.2018.1503745
- Samuel W. K. Wong, Jun S. Liu, S. C. Kou. Exploring the conformational space for protein folding with sequential Monte Carlo. The Annals of Applied Statistics 2018, 12
(3)
https://doi.org/10.1214/17-AOAS1124
- Prashanth Chandran, Jindal K. Shah. A molecular simulation approach to the computation of mutual solubility of water and organic liquids: Application to fatty acids. Fluid Phase Equilibria 2018, 472 , 48-55. https://doi.org/10.1016/j.fluid.2018.05.002
- Bernardo Oyarzún, Bortolo Matteo Mognetti. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles. The Journal of Chemical Physics 2018, 148
(11)
https://doi.org/10.1063/1.5020158
- Brea R. Rivard, Connor J. Cooper, John M. Stubbs. The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation. Chemical Physics Letters 2018, 693 , 127-131. https://doi.org/10.1016/j.cplett.2018.01.024
- Samuel W. K. Wong, Jun S. Liu, S. C. Kou. Fast
de novo
discovery of low‐energy protein loop conformations. Proteins: Structure, Function, and Bioinformatics 2017, 85
(8)
, 1402-1412. https://doi.org/10.1002/prot.25300
- Richard A. Messerly, Thomas A. Knotts, W. Vincent Wilding. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for
n
-alkanes. The Journal of Chemical Physics 2017, 146
(19)
https://doi.org/10.1063/1.4983406
- Gabriele Raabe. Monte Carlo Simulations. 2017, 31-82. https://doi.org/10.1007/978-981-10-3545-6_3
- John M. Stubbs. Molecular simulations of supercritical fluid systems. The Journal of Supercritical Fluids 2016, 108 , 104-122. https://doi.org/10.1016/j.supflu.2015.10.027
- Stefano Angioletti-Uberti, Bortolo M. Mognetti, Daan Frenkel. Theory and simulation of DNA-coated colloids: a guide for rational design. Physical Chemistry Chemical Physics 2016, 18
(9)
, 6373-6393. https://doi.org/10.1039/C5CP06981E
- Richard A. Messerly, Richard L. Rowley, Thomas A. Knotts, W. Vincent Wilding. An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation. The Journal of Chemical Physics 2015, 143
(10)
https://doi.org/10.1063/1.4928865
- Connor J. Cooper, John M. Stubbs. The effect of unequal strand length on short DNA duplex hybridization in a model microarray system: A Monte Carlo simulation study. Chemical Physics Letters 2015, 634 , 230-235. https://doi.org/10.1016/j.cplett.2015.06.024
- Robin De Gernier, Tine Curk, Galina V. Dubacheva, Ralf P. Richter, Bortolo M. Mognetti. A new configurational bias scheme for sampling supramolecular structures. The Journal of Chemical Physics 2014, 141
(24)
https://doi.org/10.1063/1.4904727
- Aliasghar Sepehri, Troy D. Loeffler, Bin Chen. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules. The Journal of Chemical Physics 2014, 141
(7)
https://doi.org/10.1063/1.4892640
- Becky L. Eggimann, Amara J. Sunnarborg, Hudson D. Stern, Andrew P. Bliss, J. Ilja Siepmann. An online parameter and property database for the TraPPE force field. Molecular Simulation 2014, 40
(1-3)
, 101-105. https://doi.org/10.1080/08927022.2013.842994
- Jason Mick, Eyad Hailat, Vincent Russo, Kamel Rushaidat, Loren Schwiebert, Jeffrey Potoff. GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium. Computer Physics Communications 2013, 184
(12)
, 2662-2669. https://doi.org/10.1016/j.cpc.2013.06.020
- John M. Stubbs. Solute extraction via supercritical ethane from poly(ethylene glycol): A Monte Carlo simulation study. Fluid Phase Equilibria 2013, 360 , 351-356. https://doi.org/10.1016/j.fluid.2013.09.055
- David Dubbeldam, Ariana Torres-Knoop, Krista S. Walton. On the inner workings of Monte Carlo codes. Molecular Simulation 2013, 39
(14-15)
, 1253-1292. https://doi.org/10.1080/08927022.2013.819102
- Rebecca K. Lindsey, Jake L. Rafferty, Becky L. Eggimann, J. Ilja Siepmann, Mark R. Schure. Molecular simulation studies of reversed-phase liquid chromatography. Journal of Chromatography A 2013, 1287 , 60-82. https://doi.org/10.1016/j.chroma.2013.02.040
- Katie A. Maerzke, Lili Gai, Peter T. Cummings, Clare McCabe. Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems. The Journal of Chemical Physics 2012, 137
(20)
https://doi.org/10.1063/1.4766354
- Michael T. Huber, John M. Stubbs. The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol). Theoretical Chemistry Accounts 2012, 131
(10)
https://doi.org/10.1007/s00214-012-1276-x
- K. Hall, M. Ashtari, N. M. Cann. On simulations of complex interfaces: Molecular dynamics simulations of stationary phases. The Journal of Chemical Physics 2012, 136
(11)
https://doi.org/10.1063/1.3693516
- Yogendra Narayan Pandey, Manolis Doxastakis. Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. The Journal of Chemical Physics 2012, 136
(9)
https://doi.org/10.1063/1.3689316
- Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography. Journal of Chromatography A 2012, 1223 , 24-34. https://doi.org/10.1016/j.chroma.2011.11.039
- Christopher J. Rasmussen, Aleksey Vishnyakov, Alexander V. Neimark. Calculation of chemical potentials of chain molecules by the incremental gauge cell method. The Journal of Chemical Physics 2011, 135
(21)
https://doi.org/10.1063/1.3657438
- Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases. Journal of Chromatography A 2011, 1218
(51)
, 9183-9193. https://doi.org/10.1016/j.chroma.2011.10.043
- Jindal K. Shah, Edward J. Maginn. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. The Journal of Chemical Physics 2011, 135
(13)
https://doi.org/10.1063/1.3644939
- John M. Stubbs. Monte Carlo simulation of solute extraction via supercritical carbon dioxide from poly(ethylene glycol). Fluid Phase Equilibria 2011, 305
(1)
, 76-82. https://doi.org/10.1016/j.fluid.2011.03.014
- Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Mobile phase effects in reversed-phase liquid chromatography: A comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Journal of Chromatography A 2011, 1218
(16)
, 2203-2213. https://doi.org/10.1016/j.chroma.2011.02.012
- G. Tsolou, V. G. Mavrantzas. Hierarchical Modeling of Polymeric Systems at Multiple Time and Length Scales. 2011, 85-134. https://doi.org/10.1002/9783527631315.ch3
- Marcos R. Betancourt. Optimization of Monte Carlo trial moves for protein simulations. The Journal of Chemical Physics 2011, 134
(1)
https://doi.org/10.1063/1.3515960
- Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales. 2011, 181-200. https://doi.org/10.1007/128_2011_210
- G. Tsolou, V. G. Mavrantzas. Hierarchical Modeling of Polymeric Systems at Multiple Time and Length Scales. 2010, 85-134. https://doi.org/10.1002/9783527631209.ch54
- Max L. Berkowitz, James T. Kindt. Molecular Detailed Simulations of Lipid Bilayers. 2010, 253-286. https://doi.org/10.1002/9780470890905.ch5
- Daniel Reith, Peter Virnau. Implementation and performance analysis of bridging Monte Carlo moves for off-lattice single chain polymers in globular states. Computer Physics Communications 2010, 181
(4)
, 800-805. https://doi.org/10.1016/j.cpc.2009.12.012
- F.J. Keil. Molecular Simulation of Adsorption in Zeolites and Carbon Nanotubes. 2010, 9-40. https://doi.org/10.1007/978-90-481-2481-7_2
- Nicholas B. Tito, John M. Stubbs. Application of a coarse-grained model for DNA to homo- and heterogeneous melting equilibria. Chemical Physics Letters 2010, 485
(4-6)
, 354-359. https://doi.org/10.1016/j.cplett.2009.12.079
- Jake L. Rafferty, J.Ilja Siepmann, Mark.R. Schure. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: Molecular-level insights from Monte Carlo simulations. Journal of Chromatography A 2009, 1216
(12)
, 2320-2331. https://doi.org/10.1016/j.chroma.2008.12.088
- François A. Detcheverry, Darin Q. Pike, Umang Nagpal, Paul F. Nealey, Juan J. de Pablo. Theoretically informed coarse grain simulations of block copolymer melts: method and applications. Soft Matter 2009, 5
(24)
, 4858. https://doi.org/10.1039/b911646j
- Neeraj Rai, Divesh Bhatt, J. Ilja Siepmann, Laurence E. Fried. Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria. The Journal of Chemical Physics 2008, 129
(19)
https://doi.org/10.1063/1.3006054
- Jake L. Rafferty, J.Ilja Siepmann, Mark R. Schure. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation. Journal of Chromatography A 2008, 1204
(1)
, 11-19. https://doi.org/10.1016/j.chroma.2008.07.037
- Jake L. Rafferty, J. Ilja Siepmann, Mark R. Schure. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation. Journal of Chromatography A 2008, 1204
(1)
, 20-27. https://doi.org/10.1016/j.chroma.2008.07.038
- Colin A. Smith, Tanja Kortemme. Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction. Journal of Molecular Biology 2008, 380
(4)
, 742-756. https://doi.org/10.1016/j.jmb.2008.05.023
- Manuel Laso, Nikos Ch. Karayiannis, Matthias Müller. Min-map bias Monte Carlo for chain molecules: Biased Monte Carlo sampling based on bijective minimum-to-minimum mapping. The Journal of Chemical Physics 2006, 125
(16)
https://doi.org/10.1063/1.2359442
- Li Sun, J.Ilja Siepmann, Wendy L. Klotz, Mark R. Schure. Retention in gas–liquid chromatography with a polyethylene oxide stationary phase: Molecular simulation and experiment. Journal of Chromatography A 2006, 1126
(1-2)
, 373-380. https://doi.org/10.1016/j.chroma.2006.05.084
- Ling Zhang, Jake L. Rafferty, J.Ilja Siepmann, Bin Chen, Mark R. Schure. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. Journal of Chromatography A 2006, 1126
(1-2)
, 219-231. https://doi.org/10.1016/j.chroma.2006.06.003
- Tushar Jain, David S. Cerutti, J. Andrew McCammon. Configurational‐bias sampling technique for predicting side‐chain conformations in proteins. Protein Science 2006, 15
(9)
, 2029-2039. https://doi.org/10.1110/ps.062165906
- Marcus G. Martin, Amalie L. Frischknecht. Using arbitrary trial distributions to improve intramolecular sampling in configurational-bias Monte Carlo. Molecular Physics 2006, 104
(15)
, 2439-2456. https://doi.org/10.1080/00268970600751078
- Collin D. Wick, Gregory K. Schenter. Critical comparison of classical and quantum mechanical treatments of the phase equilibria of water. The Journal of Chemical Physics 2006, 124
(11)
https://doi.org/10.1063/1.2178322
- S. Ulas, U. M. Diwekar. Efficient molecular simulations for environmentally benign processes. Molecular Simulation 2006, 32
(3-4)
, 315-329. https://doi.org/10.1080/08927020600599113
- Nikos Ch. Karayiannis, Vlasis G. Mavrantzas. Advanced Monte Carlo Methods for the atomistic simulation of polymers with a linear or a non-linear molecular architecture. 2006, 31-67. https://doi.org/10.1016/S1570-7946(06)80004-0
- Daniel R Mason, Adrian P Sutton. Computational steering in Monte Carlo simulations of thin film polystyrene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2005, 363
(1833)
, 1961-1974. https://doi.org/10.1098/rsta.2005.1622
- Susan L. Weitz, Jeffrey J. Potoff. Effect of quadrupole moment on the phase behavior of binary mixtures containing ethene. Fluid Phase Equilibria 2005, 234
(1-2)
, 144-150. https://doi.org/10.1016/j.fluid.2005.06.008
- Sagar S. Rane, Wayne L. Mattice. Interior segment regrowth configurational-bias algorithm for the efficient sampling and fast relaxation of coarse-grained polyethylene and polyoxyethylene melts on a high coordination lattice. The Journal of Chemical Physics 2005, 122
(23)
https://doi.org/10.1063/1.1940057
- Ling Zhang, Li Sun, J.I. Siepmann, Mark R. Schure. Molecular simulation study of the bonded-phase structure in reversed-phase liquid chromatography with neat aqueous solvent. Journal of Chromatography A 2005, 1079
(1-2)
, 127-135. https://doi.org/10.1016/j.chroma.2005.03.124
- Jun-Seok Lee, Collin D. Wick, John M. Stubbs, J. Ilja Siepmann *. Simulating the vapour–liquid equilibria of large cyclic alkanes. Molecular Physics 2005, 103
(1)
, 99-104. https://doi.org/10.1080/00268970412331303341
- V. G. Mavrantzas. Monte Carlo Simulation of Chain Molecules. 2005, 2583-2597. https://doi.org/10.1007/978-1-4020-3286-8_137
- T Jain, J De Pablo. Configurational Bias Techniques for Simulation of Complex Fluids. 2004https://doi.org/10.1201/9780203021255.pt4
- Ioannis G. Economou. Molecular Simulation of Phase Equilibria for Industrial Applications. 2004, 279-307. https://doi.org/10.1016/S1570-7946(04)80014-2
- Michael R. Shirts, Jed W. Pitera, William C. Swope, Vijay S. Pande. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. The Journal of Chemical Physics 2003, 119
(11)
, 5740-5761. https://doi.org/10.1063/1.1587119
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.