Phase Diagram of Diblock Polyampholyte Solutions
Abstract
We discuss in this paper the phase diagram of a diblock polyampholyte solution in the limit of high ionic strength as a function of concentration and charge asymmetry. This system is shown to be very similar to solutions of so-called charged-neutral diblock copolymers: at zero charge asymmetry, the solution phase separates into a polyelectrolyte complex and almost pure solvent. Above a charge asymmetry threshold, the copolymers are soluble as finite size aggregates. Scaling laws of the aggregates radius as a function of pH of the solution are in qualitative agreement with experiments.
*
Corresponding author. Present address: Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095.
Cited By
This article is cited by 64 publications.
- Artem M. Rumyantsev, Nicholas E. Jackson, Albert Johner, Juan J. de Pablo. Scaling Theory of Neutral Sequence-Specific Polyampholytes. Macromolecules 2021, 54 (7) , 3232-3246. https://doi.org/10.1021/acs.macromol.0c02515
- Andrey V. Subbotin, Alexander N. Semenov. The Structure of Polyelectrolyte Complex Coacervates and Multilayers. Macromolecules 2021, 54 (3) , 1314-1328. https://doi.org/10.1021/acs.macromol.0c02470
- Scott P. O. Danielsen, Sergey Panyukov, Michael Rubinstein. Ion Pairing and the Structure of Gel Coacervates. Macromolecules 2020, 53 (21) , 9420-9442. https://doi.org/10.1021/acs.macromol.0c01360
- Artem M. Rumyantsev, Juan J. de Pablo. Microphase Separation in Polyelectrolyte Blends: Weak Segregation Theory and Relation to Nuclear “Pasta”. Macromolecules 2020, 53 (4) , 1281-1292. https://doi.org/10.1021/acs.macromol.9b02466
- Marat Andreev, Vivek M. Prabhu, Jack F. Douglas, Matthew Tirrell, Juan J. de Pablo. Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules 2018, 51 (17) , 6717-6723. https://doi.org/10.1021/acs.macromol.8b00556
- Artem M. Rumyantsev, Ekaterina B. Zhulina, Oleg V. Borisov. Scaling Theory of Complex Coacervate Core Micelles. ACS Macro Letters 2018, 7 (7) , 811-816. https://doi.org/10.1021/acsmacrolett.8b00316
- Artem M. Rumyantsev, Ekaterina B. Zhulina, Oleg V. Borisov. Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules 2018, 51 (10) , 3788-3801. https://doi.org/10.1021/acs.macromol.8b00342
- A. G. Cherstvy . Collapse of Highly Charged Polyelectrolytes Triggered by Attractive Dipole−Dipole and Correlation-Induced Electrostatic Interactions. The Journal of Physical Chemistry B 2010, 114 (16) , 5241-5249. https://doi.org/10.1021/jp910960r
- Anna S. Bodrova, Elena Yu. Kramarenko and Igor I. Potemkin . Microphase Separation Induced by Complexation of Ionic−Non-Ionic Diblock Copolymers with Oppositely Charged Linear Chains. Macromolecules 2010, 43 (5) , 2622-2629. https://doi.org/10.1021/ma902516m
- Nikolay N. Oskolkov and, Igor I. Potemkin. Complexation in Asymmetric Solutions of Oppositely Charged Polyelectrolytes: Phase Diagram. Macromolecules 2007, 40 (23) , 8423-8429. https://doi.org/10.1021/ma0709304
- Neil Ayres,, Crystal D. Cyrus, and, William J. Brittain. Stimuli-Responsive Surfaces Using Polyampholyte Polymer Brushes Prepared via Atom Transfer Radical Polymerization. Langmuir 2007, 23 (7) , 3744-3749. https://doi.org/10.1021/la062417+
- Anna Akinchina and, Per Linse. Diblock Polyampholytes Grafted onto Spherical Particles: Effect of Stiffness, Charge Density, and Grafting Density. Langmuir 2007, 23 (3) , 1465-1472. https://doi.org/10.1021/la062481r
- N. N. Oskolkov and, I. I. Potemkin. Spontaneous Charge Inversion of a Microgel Particle by Complexation with Oppositely Charged Polyelectrolytes. Macromolecules 2006, 39 (10) , 3648-3654. https://doi.org/10.1021/ma0605649
- N. P. Shusharina,, E. B. Zhulina,, A. V. Dobrynin, and, M. Rubinstein. Scaling Theory of Diblock Polyampholyte Solutions. Macromolecules 2005, 38 (21) , 8870-8881. https://doi.org/10.1021/ma051324g
- Christophe Schatz,, Angélique Bionaz,, Jean-Michel Lucas,, Christian Pichot,, Christophe Viton,, Alain Domard, and, Thierry Delair. Formation of Polyelectrolyte Complex Particles from Self-Complexation of N-Sulfated Chitosan. Biomacromolecules 2005, 6 (3) , 1642-1647. https://doi.org/10.1021/bm049224q
- Anna Akinchina,, Nadezhda P. Shusharina, and, Per Linse. Diblock Polyampholytes Grafted onto Spherical Particles: Monte Carlo Simulation and Lattice Mean-Field Theory. Langmuir 2004, 20 (23) , 10351-10360. https://doi.org/10.1021/la0490386
- Alexander Kudlay,, Alexander V. Ermoshkin, and, Monica Olvera de la Cruz. Complexation of Oppositely Charged Polyelectrolytes: Effect of Ion Pair Formation. Macromolecules 2004, 37 (24) , 9231-9241. https://doi.org/10.1021/ma048519t
- Satya Priya Moulik, Animesh Kumar Rakshit, Animesh Pan, Bappaditya Naskar. An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. Colloids and Interfaces 2022, 6 (3) , 45. https://doi.org/10.3390/colloids6030045
- Mohsen Ghasemi, Ronald G. Larson. Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates. AIChE Journal 2022, 68 (5) https://doi.org/10.1002/aic.17646
- Hiroya Yamazaki, Masatoshi Takagi, Hidetaka Kosako, Tatsuya Hirano, Shige H. Yoshimura. Cell cycle-specific phase separation regulated by protein charge blockiness. Nature Cell Biology 2022, 24 (5) , 625-632. https://doi.org/10.1038/s41556-022-00903-1
- Phillip D. Pickett, Yuanchi Ma, Nicholas D. Posey, Michael Lueckheide, Vivek M. Prabhu. Structure and Phase Behavior of Polyampholytes and Polyzwitterions. 2022, 1-51. https://doi.org/10.1002/9783527815562.mme0056
- Kevin S. Silmore, Rajeev Kumar. Dynamics of a single polyampholyte chain. The Journal of Chemical Physics 2021, 155 (21) , 214903. https://doi.org/10.1063/5.0066082
- Suelen G. Trindade, Nádya P. da Silveira, Watson Loh. Aggregation Behavior of Asymmetric Diblock Polyampholyte in Aqueous Solution over a Wide Range of pH and Ionic Strength. Macromolecular Chemistry and Physics 2021, 222 (19) , 2100141. https://doi.org/10.1002/macp.202100141
- Akatsuki Saito, Maya Shofa, Hirotaka Ode, Maho Yumiya, Junki Hirano, Toru Okamoto, Shige H. Yoshimura. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?. Viruses 2021, 13 (8) , 1479. https://doi.org/10.3390/v13081479
- Jelena Dinic, Amanda B. Marciel, Matthew V. Tirrell. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Current Opinion in Colloid & Interface Science 2021, 54 , 101457. https://doi.org/10.1016/j.cocis.2021.101457
- Ibraheem Alshareedah, Mahdi Muhammad Moosa, Muralikrishna Raju, Davit A. Potoyan, Priya R. Banerjee. Phase transition of RNA−protein complexes into ordered hollow condensates. Proceedings of the National Academy of Sciences 2020, 117 (27) , 15650-15658. https://doi.org/10.1073/pnas.1922365117
- Naveed Athir, Ling Shi, Sayyed Asim Ali Shah, Zhiyu Zhang, Jue Cheng, Jun Liu, Junying Zhang. Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked via multifunctional zwitterions. Physical Chemistry Chemical Physics 2019, 21 (38) , 21615-21625. https://doi.org/10.1039/C9CP03221E
- Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly. Journal of Materials Science & Technology 2019, 35 (9) , 1894-1905. https://doi.org/10.1016/j.jmst.2019.05.010
- Scott P. O. Danielsen, James McCarty, Joan-Emma Shea, Kris T. Delaney, Glenn H. Fredrickson. Small ion effects on self-coacervation phenomena in block polyampholytes. The Journal of Chemical Physics 2019, 151 (3) , 034904. https://doi.org/10.1063/1.5109045
- Adeline Perro, Lauriane Giraud, Noémie Coudon, Sharvina Shanmugathasan, Véronique Lapeyre, Bertrand Goudeau, Jean-Paul Douliez, Valérie Ravaine. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy. Journal of Colloid and Interface Science 2019, 548 , 275-283. https://doi.org/10.1016/j.jcis.2019.04.033
- Scott P. O. Danielsen, James McCarty, Joan-Emma Shea, Kris T. Delaney, Glenn H. Fredrickson. Molecular design of self-coacervation phenomena in block polyampholytes. Proceedings of the National Academy of Sciences 2019, 116 (17) , 8224-8232. https://doi.org/10.1073/pnas.1900435116
- E. A. Litmanovich, E. V. Chernikova, A. E. Zhirnov. Influence of chain microstructure of acrylic acid and 4-vinylpyridine copolymers on their aggregative stability and adsorption from aqueous solutions. Polymer Science, Series C 2017, 59 (1) , 49-59. https://doi.org/10.1134/S1811238217010064
- Kris T. Delaney, Glenn H. Fredrickson. Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates. The Journal of Chemical Physics 2017, 146 (22) , 224902. https://doi.org/10.1063/1.4985568
- Jie Xiao, Yunqi Li, Qingrong Huang. Application of Monte Carlo simulation in addressing key issues of complex coacervation formed by polyelectrolytes and oppositely charged colloids. Advances in Colloid and Interface Science 2017, 239 , 31-45. https://doi.org/10.1016/j.cis.2016.05.010
- Artem M. Rumyantsev, Igor I. Potemkin. Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach. Phys. Chem. Chem. Phys. 2017, 19 (40) , 27580-27592. https://doi.org/10.1039/C7CP05300B
- Е.А. Литманович, Е.В. Черникова, А. Е. Жирнов. ВЛИЯНИЕ МИКРОСТРУКТУРЫ ЦЕПИ СОПОЛИМЕРОВ АКРИЛОВОЙ КИСЛОТЫ И 4-ВИНИЛПИРИДИНА НА АГРЕГАТИВНУЮ УСТОЙЧИВОСТЬ И АДСОРБЦИЮ ИЗ ВОДНЫХ РАСТВОРОВ, "Высокомолекулярные соединения. Серия С". Высокомолекулярные соединения С 2017, (1) , 55-66. https://doi.org/10.7868/S2308114717010071
- Samanvaya Srivastava, Matthew V. Tirrell. POLYELECTROLYTE COMPLEXATION. 2016, 499-544. https://doi.org/10.1002/9781119290971.ch7
- J. P. Mahalik, M. Muthukumar. Simulation of self-assembly of polyzwitterions into vesicles. The Journal of Chemical Physics 2016, 145 (7) , 074907. https://doi.org/10.1063/1.4960774
- Debra J. Audus, Glenn H. Fredrickson. Field-Based Simulations of Nanostructured Polyelectrolyte Gels. 2016, 1-9. https://doi.org/10.1007/978-981-287-724-6_1
- Debra J. Audus, Jeffrey D. Gopez, Daniel V. Krogstad, Nathaniel A. Lynd, Edward J. Kramer, Craig J. Hawker, Glenn H. Fredrickson. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter 2015, 11 (6) , 1214-1225. https://doi.org/10.1039/C4SM02299H
- Dan Mu, Jian-Quan Li, Sheng-Yu Feng. Mesoscopic simulation of the self-assembly of the weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers. Soft Matter 2015, 11 (22) , 4366-4374. https://doi.org/10.1039/C5SM00346F
- Dan Mu, Jian-Quan Li, Sheng-Yu Feng. Morphology of lipid-like structured weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers induced by confinements. Soft Matter 2015, 11 (22) , 4356-4365. https://doi.org/10.1039/C5SM00438A
- Arun Kumar Narayanan Nair, Sahin Uyaver, Shuyu Sun. Conformational transitions of a weak polyampholyte. The Journal of Chemical Physics 2014, 141 (13) , 134905. https://doi.org/10.1063/1.4897161
- Alberto Ciferri. Ionic Mixed Interactions and Hofmeister Effects. 2012, 167-209. https://doi.org/10.1002/9781118165850.ch6
- A.V. Dobrynin. Solutions of Charged Polymers. 2012, 81-132. https://doi.org/10.1016/B978-0-444-53349-4.00005-4
- Michael Bajomo, Ian Robb, Joachim H. G. Steinke, Alexander Bismarck. Fully Reversible pH-Triggered Network Formation of Amphoteric Polyelectrolyte Hydrogels. Advanced Functional Materials 2011, 21 (1) , 172-176. https://doi.org/10.1002/adfm.201000587
- Alberto Ciferri . Ionic Mixed Interactions in Macromolecules. Chemistry - A European Journal 2010, 16 (36) , 10930-10945. https://doi.org/10.1002/chem.201000763
- M. Baratlo, H. Fazli. Molecular dynamics simulation of semiflexible polyampholyte brushes--The effect of charged monomers sequence. The European Physical Journal E 2009, 29 (2) , 131-138. https://doi.org/10.1140/epje/i2009-10458-x
- Jonghoon Lee, Yuri O. Popov, Glenn H. Fredrickson. Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation. The Journal of Chemical Physics 2008, 128 (22) , 224908. https://doi.org/10.1063/1.2936834
- Yuri O. Popov, Jonghoon Lee, Glenn H. Fredrickson. Field-theoretic simulations of polyelectrolyte complexation. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (24) , 3223-3230. https://doi.org/10.1002/polb.21334
- A. Ciferri, S. Kudaibergenov. Natural and Synthetic Polyampholytes, 1. Macromolecular Rapid Communications 2007, 28 (20) , 1953-1968. https://doi.org/10.1002/marc.200700162
- Per Linse. Interaction between colloids with grafted diblock polyampholytes. The Journal of Chemical Physics 2007, 126 (11) , 114903. https://doi.org/10.1063/1.2436874
- Nadezhda P. Shusharina, Michael Rubinstein. Scaling Theory of Polyelectrolyte and Polyampholyte Micelles. 2007, 301-326. https://doi.org/10.1007/978-1-4020-6330-5_10
- E. Yu. Kramarenko, A. R. Khokhlov, P. Reineker. Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. The Journal of Chemical Physics 2006, 125 (19) , 194902. https://doi.org/10.1063/1.2387173
- Renko de Vries, Martien Cohen Stuart. Theory and simulations of macroion complexation. Current Opinion in Colloid & Interface Science 2006, 11 (5) , 295-301. https://doi.org/10.1016/j.cocis.2006.09.004
- Zuowei Wang, Michael Rubinstein. Regimes of Conformational Transitions of a Diblock Polyampholyte. Macromolecules 2006, 39 (17) , 5897-5912. https://doi.org/10.1021/ma0607517
- Daniel W. Cheong, Athanassios Z. Panagiotopoulos *. Phase behaviour of polyampholyte chains from grand canonical Monte Carlo simulations. Molecular Physics 2005, 103 (21-23) , 3031-3044. https://doi.org/10.1080/00268970500186045
- Martien A. Cohen Stuart, Bas Hofs, Ilja K. Voets, Arie de Keizer. Assembly of polyelectrolyte-containing block copolymers in aqueous media. Current Opinion in Colloid & Interface Science 2005, 10 (1-2) , 30-36. https://doi.org/10.1016/j.cocis.2005.04.004
- . Polyelectrolyte Block Copolymers. 2005, 173-213. https://doi.org/10.1002/9780470016985.ch4
- A. V. Kyrylyuk, J. G. E. M. Fraaije. Structure formation in films of weakly charged block polyelectrolyte solutions. The Journal of Chemical Physics 2004, 121 (18) , 9166-9171. https://doi.org/10.1063/1.1806132
- Alexander Kudlay, Monica Olvera de la Cruz. Precipitation of oppositely charged polyelectrolytes in salt solutions. The Journal of Chemical Physics 2004, 120 (1) , 404-412. https://doi.org/10.1063/1.1629271
- A. V. Kyrylyuk, J. G. E. M. Fraaije. Microphase separation of weakly charged block polyelectrolyte solutions: Donnan theory for dynamic polymer morphologies. The Journal of Chemical Physics 2004, 121 (6) , 2806. https://doi.org/10.1063/1.1768940
- M Castelnovo. Thermodynamics of micellization of oppositely charged polymers. Europhysics Letters (EPL) 2003, 62 (6) , 841-847. https://doi.org/10.1209/epl/i2003-00449-1
- Andreas F. Thünemann, Martin Müller, Herbert Dautzenberg, Jean-François Joanny, Hartmut Löwen. Polyelectrolyte Complexes. , 113-171. https://doi.org/10.1007/b11350