ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Phase Diagram of Diblock Polyampholyte Solutions

View Author Information
Institut Charles Sadron, 6 Rue Boussingault, 67083 Strasbourg Cedex, France; Physico-Chimie, Institut Curie, 11 Rue P. et M. Curie, 75231 Paris Cedex 05, France
Cite this: Macromolecules 2002, 35, 11, 4531–4538
Publication Date (Web):April 20, 2002
https://doi.org/10.1021/ma012097v
Copyright © 2002 American Chemical Society

Article Views

659

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (85 KB)

Abstract

We discuss in this paper the phase diagram of a diblock polyampholyte solution in the limit of high ionic strength as a function of concentration and charge asymmetry. This system is shown to be very similar to solutions of so-called charged-neutral diblock copolymers:  at zero charge asymmetry, the solution phase separates into a polyelectrolyte complex and almost pure solvent. Above a charge asymmetry threshold, the copolymers are soluble as finite size aggregates. Scaling laws of the aggregates radius as a function of pH of the solution are in qualitative agreement with experiments.

*

 Corresponding author. Present address:  Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095.

Cited By

This article is cited by 64 publications.

  1. Artem M. Rumyantsev, Nicholas E. Jackson, Albert Johner, Juan J. de Pablo. Scaling Theory of Neutral Sequence-Specific Polyampholytes. Macromolecules 2021, 54 (7) , 3232-3246. https://doi.org/10.1021/acs.macromol.0c02515
  2. Andrey V. Subbotin, Alexander N. Semenov. The Structure of Polyelectrolyte Complex Coacervates and Multilayers. Macromolecules 2021, 54 (3) , 1314-1328. https://doi.org/10.1021/acs.macromol.0c02470
  3. Scott P. O. Danielsen, Sergey Panyukov, Michael Rubinstein. Ion Pairing and the Structure of Gel Coacervates. Macromolecules 2020, 53 (21) , 9420-9442. https://doi.org/10.1021/acs.macromol.0c01360
  4. Artem M. Rumyantsev, Juan J. de Pablo. Microphase Separation in Polyelectrolyte Blends: Weak Segregation Theory and Relation to Nuclear “Pasta”. Macromolecules 2020, 53 (4) , 1281-1292. https://doi.org/10.1021/acs.macromol.9b02466
  5. Marat Andreev, Vivek M. Prabhu, Jack F. Douglas, Matthew Tirrell, Juan J. de Pablo. Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules 2018, 51 (17) , 6717-6723. https://doi.org/10.1021/acs.macromol.8b00556
  6. Artem M. Rumyantsev, Ekaterina B. Zhulina, Oleg V. Borisov. Scaling Theory of Complex Coacervate Core Micelles. ACS Macro Letters 2018, 7 (7) , 811-816. https://doi.org/10.1021/acsmacrolett.8b00316
  7. Artem M. Rumyantsev, Ekaterina B. Zhulina, Oleg V. Borisov. Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules 2018, 51 (10) , 3788-3801. https://doi.org/10.1021/acs.macromol.8b00342
  8. A. G. Cherstvy . Collapse of Highly Charged Polyelectrolytes Triggered by Attractive Dipole−Dipole and Correlation-Induced Electrostatic Interactions. The Journal of Physical Chemistry B 2010, 114 (16) , 5241-5249. https://doi.org/10.1021/jp910960r
  9. Anna S. Bodrova, Elena Yu. Kramarenko and Igor I. Potemkin . Microphase Separation Induced by Complexation of Ionic−Non-Ionic Diblock Copolymers with Oppositely Charged Linear Chains. Macromolecules 2010, 43 (5) , 2622-2629. https://doi.org/10.1021/ma902516m
  10. Nikolay N. Oskolkov and, Igor I. Potemkin. Complexation in Asymmetric Solutions of Oppositely Charged Polyelectrolytes:  Phase Diagram. Macromolecules 2007, 40 (23) , 8423-8429. https://doi.org/10.1021/ma0709304
  11. Neil Ayres,, Crystal D. Cyrus, and, William J. Brittain. Stimuli-Responsive Surfaces Using Polyampholyte Polymer Brushes Prepared via Atom Transfer Radical Polymerization. Langmuir 2007, 23 (7) , 3744-3749. https://doi.org/10.1021/la062417+
  12. Anna Akinchina and, Per Linse. Diblock Polyampholytes Grafted onto Spherical Particles:  Effect of Stiffness, Charge Density, and Grafting Density. Langmuir 2007, 23 (3) , 1465-1472. https://doi.org/10.1021/la062481r
  13. N. N. Oskolkov and, I. I. Potemkin. Spontaneous Charge Inversion of a Microgel Particle by Complexation with Oppositely Charged Polyelectrolytes. Macromolecules 2006, 39 (10) , 3648-3654. https://doi.org/10.1021/ma0605649
  14. N. P. Shusharina,, E. B. Zhulina,, A. V. Dobrynin, and, M. Rubinstein. Scaling Theory of Diblock Polyampholyte Solutions. Macromolecules 2005, 38 (21) , 8870-8881. https://doi.org/10.1021/ma051324g
  15. Christophe Schatz,, Angélique Bionaz,, Jean-Michel Lucas,, Christian Pichot,, Christophe Viton,, Alain Domard, and, Thierry Delair. Formation of Polyelectrolyte Complex Particles from Self-Complexation of N-Sulfated Chitosan. Biomacromolecules 2005, 6 (3) , 1642-1647. https://doi.org/10.1021/bm049224q
  16. Anna Akinchina,, Nadezhda P. Shusharina, and, Per Linse. Diblock Polyampholytes Grafted onto Spherical Particles:  Monte Carlo Simulation and Lattice Mean-Field Theory. Langmuir 2004, 20 (23) , 10351-10360. https://doi.org/10.1021/la0490386
  17. Alexander Kudlay,, Alexander V. Ermoshkin, and, Monica Olvera de la Cruz. Complexation of Oppositely Charged Polyelectrolytes:  Effect of Ion Pair Formation. Macromolecules 2004, 37 (24) , 9231-9241. https://doi.org/10.1021/ma048519t
  18. Satya Priya Moulik, Animesh Kumar Rakshit, Animesh Pan, Bappaditya Naskar. An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. Colloids and Interfaces 2022, 6 (3) , 45. https://doi.org/10.3390/colloids6030045
  19. Mohsen Ghasemi, Ronald G. Larson. Future directions in physiochemical modeling of the thermodynamics of polyelectrolyte coacervates. AIChE Journal 2022, 68 (5) https://doi.org/10.1002/aic.17646
  20. Hiroya Yamazaki, Masatoshi Takagi, Hidetaka Kosako, Tatsuya Hirano, Shige H. Yoshimura. Cell cycle-specific phase separation regulated by protein charge blockiness. Nature Cell Biology 2022, 24 (5) , 625-632. https://doi.org/10.1038/s41556-022-00903-1
  21. Phillip D. Pickett, Yuanchi Ma, Nicholas D. Posey, Michael Lueckheide, Vivek M. Prabhu. Structure and Phase Behavior of Polyampholytes and Polyzwitterions. 2022, 1-51. https://doi.org/10.1002/9783527815562.mme0056
  22. Kevin S. Silmore, Rajeev Kumar. Dynamics of a single polyampholyte chain. The Journal of Chemical Physics 2021, 155 (21) , 214903. https://doi.org/10.1063/5.0066082
  23. Suelen G. Trindade, Nádya P. da Silveira, Watson Loh. Aggregation Behavior of Asymmetric Diblock Polyampholyte in Aqueous Solution over a Wide Range of pH and Ionic Strength. Macromolecular Chemistry and Physics 2021, 222 (19) , 2100141. https://doi.org/10.1002/macp.202100141
  24. Akatsuki Saito, Maya Shofa, Hirotaka Ode, Maho Yumiya, Junki Hirano, Toru Okamoto, Shige H. Yoshimura. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?. Viruses 2021, 13 (8) , 1479. https://doi.org/10.3390/v13081479
  25. Jelena Dinic, Amanda B. Marciel, Matthew V. Tirrell. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Current Opinion in Colloid & Interface Science 2021, 54 , 101457. https://doi.org/10.1016/j.cocis.2021.101457
  26. Ibraheem Alshareedah, Mahdi Muhammad Moosa, Muralikrishna Raju, Davit A. Potoyan, Priya R. Banerjee. Phase transition of RNA−protein complexes into ordered hollow condensates. Proceedings of the National Academy of Sciences 2020, 117 (27) , 15650-15658. https://doi.org/10.1073/pnas.1922365117
  27. Naveed Athir, Ling Shi, Sayyed Asim Ali Shah, Zhiyu Zhang, Jue Cheng, Jun Liu, Junying Zhang. Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked via multifunctional zwitterions. Physical Chemistry Chemical Physics 2019, 21 (38) , 21615-21625. https://doi.org/10.1039/C9CP03221E
  28. Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly. Journal of Materials Science & Technology 2019, 35 (9) , 1894-1905. https://doi.org/10.1016/j.jmst.2019.05.010
  29. Scott P. O. Danielsen, James McCarty, Joan-Emma Shea, Kris T. Delaney, Glenn H. Fredrickson. Small ion effects on self-coacervation phenomena in block polyampholytes. The Journal of Chemical Physics 2019, 151 (3) , 034904. https://doi.org/10.1063/1.5109045
  30. Adeline Perro, Lauriane Giraud, Noémie Coudon, Sharvina Shanmugathasan, Véronique Lapeyre, Bertrand Goudeau, Jean-Paul Douliez, Valérie Ravaine. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy. Journal of Colloid and Interface Science 2019, 548 , 275-283. https://doi.org/10.1016/j.jcis.2019.04.033
  31. Scott P. O. Danielsen, James McCarty, Joan-Emma Shea, Kris T. Delaney, Glenn H. Fredrickson. Molecular design of self-coacervation phenomena in block polyampholytes. Proceedings of the National Academy of Sciences 2019, 116 (17) , 8224-8232. https://doi.org/10.1073/pnas.1900435116
  32. E. A. Litmanovich, E. V. Chernikova, A. E. Zhirnov. Influence of chain microstructure of acrylic acid and 4-vinylpyridine copolymers on their aggregative stability and adsorption from aqueous solutions. Polymer Science, Series C 2017, 59 (1) , 49-59. https://doi.org/10.1134/S1811238217010064
  33. Kris T. Delaney, Glenn H. Fredrickson. Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates. The Journal of Chemical Physics 2017, 146 (22) , 224902. https://doi.org/10.1063/1.4985568
  34. Jie Xiao, Yunqi Li, Qingrong Huang. Application of Monte Carlo simulation in addressing key issues of complex coacervation formed by polyelectrolytes and oppositely charged colloids. Advances in Colloid and Interface Science 2017, 239 , 31-45. https://doi.org/10.1016/j.cis.2016.05.010
  35. Artem M. Rumyantsev, Igor I. Potemkin. Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach. Phys. Chem. Chem. Phys. 2017, 19 (40) , 27580-27592. https://doi.org/10.1039/C7CP05300B
  36. Е.А. Литманович, Е.В. Черникова, А. Е. Жирнов. ВЛИЯНИЕ МИКРОСТРУКТУРЫ ЦЕПИ СОПОЛИМЕРОВ АКРИЛОВОЙ КИСЛОТЫ И 4-ВИНИЛПИРИДИНА НА АГРЕГАТИВНУЮ УСТОЙЧИВОСТЬ И АДСОРБЦИЮ ИЗ ВОДНЫХ РАСТВОРОВ, "Высокомолекулярные соединения. Серия С". Высокомолекулярные соединения С 2017, (1) , 55-66. https://doi.org/10.7868/S2308114717010071
  37. Samanvaya Srivastava, Matthew V. Tirrell. POLYELECTROLYTE COMPLEXATION. 2016, 499-544. https://doi.org/10.1002/9781119290971.ch7
  38. J. P. Mahalik, M. Muthukumar. Simulation of self-assembly of polyzwitterions into vesicles. The Journal of Chemical Physics 2016, 145 (7) , 074907. https://doi.org/10.1063/1.4960774
  39. Debra J. Audus, Glenn H. Fredrickson. Field-Based Simulations of Nanostructured Polyelectrolyte Gels. 2016, 1-9. https://doi.org/10.1007/978-981-287-724-6_1
  40. Debra J. Audus, Jeffrey D. Gopez, Daniel V. Krogstad, Nathaniel A. Lynd, Edward J. Kramer, Craig J. Hawker, Glenn H. Fredrickson. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter 2015, 11 (6) , 1214-1225. https://doi.org/10.1039/C4SM02299H
  41. Dan Mu, Jian-Quan Li, Sheng-Yu Feng. Mesoscopic simulation of the self-assembly of the weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers. Soft Matter 2015, 11 (22) , 4366-4374. https://doi.org/10.1039/C5SM00346F
  42. Dan Mu, Jian-Quan Li, Sheng-Yu Feng. Morphology of lipid-like structured weak polyelectrolyte poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers induced by confinements. Soft Matter 2015, 11 (22) , 4356-4365. https://doi.org/10.1039/C5SM00438A
  43. Arun Kumar Narayanan Nair, Sahin Uyaver, Shuyu Sun. Conformational transitions of a weak polyampholyte. The Journal of Chemical Physics 2014, 141 (13) , 134905. https://doi.org/10.1063/1.4897161
  44. Alberto Ciferri. Ionic Mixed Interactions and Hofmeister Effects. 2012, 167-209. https://doi.org/10.1002/9781118165850.ch6
  45. A.V. Dobrynin. Solutions of Charged Polymers. 2012, 81-132. https://doi.org/10.1016/B978-0-444-53349-4.00005-4
  46. Michael Bajomo, Ian Robb, Joachim H. G. Steinke, Alexander Bismarck. Fully Reversible pH-Triggered Network Formation of Amphoteric Polyelectrolyte Hydrogels. Advanced Functional Materials 2011, 21 (1) , 172-176. https://doi.org/10.1002/adfm.201000587
  47. Alberto Ciferri . Ionic Mixed Interactions in Macromolecules. Chemistry - A European Journal 2010, 16 (36) , 10930-10945. https://doi.org/10.1002/chem.201000763
  48. M. Baratlo, H. Fazli. Molecular dynamics simulation of semiflexible polyampholyte brushes--The effect of charged monomers sequence. The European Physical Journal E 2009, 29 (2) , 131-138. https://doi.org/10.1140/epje/i2009-10458-x
  49. Jonghoon Lee, Yuri O. Popov, Glenn H. Fredrickson. Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation. The Journal of Chemical Physics 2008, 128 (22) , 224908. https://doi.org/10.1063/1.2936834
  50. Yuri O. Popov, Jonghoon Lee, Glenn H. Fredrickson. Field-theoretic simulations of polyelectrolyte complexation. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (24) , 3223-3230. https://doi.org/10.1002/polb.21334
  51. A. Ciferri, S. Kudaibergenov. Natural and Synthetic Polyampholytes, 1. Macromolecular Rapid Communications 2007, 28 (20) , 1953-1968. https://doi.org/10.1002/marc.200700162
  52. Per Linse. Interaction between colloids with grafted diblock polyampholytes. The Journal of Chemical Physics 2007, 126 (11) , 114903. https://doi.org/10.1063/1.2436874
  53. Nadezhda P. Shusharina, Michael Rubinstein. Scaling Theory of Polyelectrolyte and Polyampholyte Micelles. 2007, 301-326. https://doi.org/10.1007/978-1-4020-6330-5_10
  54. E. Yu. Kramarenko, A. R. Khokhlov, P. Reineker. Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. The Journal of Chemical Physics 2006, 125 (19) , 194902. https://doi.org/10.1063/1.2387173
  55. Renko de Vries, Martien Cohen Stuart. Theory and simulations of macroion complexation. Current Opinion in Colloid & Interface Science 2006, 11 (5) , 295-301. https://doi.org/10.1016/j.cocis.2006.09.004
  56. Zuowei Wang, Michael Rubinstein. Regimes of Conformational Transitions of a Diblock Polyampholyte. Macromolecules 2006, 39 (17) , 5897-5912. https://doi.org/10.1021/ma0607517
  57. Daniel W. Cheong, Athanassios Z. Panagiotopoulos *. Phase behaviour of polyampholyte chains from grand canonical Monte Carlo simulations. Molecular Physics 2005, 103 (21-23) , 3031-3044. https://doi.org/10.1080/00268970500186045
  58. Martien A. Cohen Stuart, Bas Hofs, Ilja K. Voets, Arie de Keizer. Assembly of polyelectrolyte-containing block copolymers in aqueous media. Current Opinion in Colloid & Interface Science 2005, 10 (1-2) , 30-36. https://doi.org/10.1016/j.cocis.2005.04.004
  59. . Polyelectrolyte Block Copolymers. 2005, 173-213. https://doi.org/10.1002/9780470016985.ch4
  60. A. V. Kyrylyuk, J. G. E. M. Fraaije. Structure formation in films of weakly charged block polyelectrolyte solutions. The Journal of Chemical Physics 2004, 121 (18) , 9166-9171. https://doi.org/10.1063/1.1806132
  61. Alexander Kudlay, Monica Olvera de la Cruz. Precipitation of oppositely charged polyelectrolytes in salt solutions. The Journal of Chemical Physics 2004, 120 (1) , 404-412. https://doi.org/10.1063/1.1629271
  62. A. V. Kyrylyuk, J. G. E. M. Fraaije. Microphase separation of weakly charged block polyelectrolyte solutions: Donnan theory for dynamic polymer morphologies. The Journal of Chemical Physics 2004, 121 (6) , 2806. https://doi.org/10.1063/1.1768940
  63. M Castelnovo. Thermodynamics of micellization of oppositely charged polymers. Europhysics Letters (EPL) 2003, 62 (6) , 841-847. https://doi.org/10.1209/epl/i2003-00449-1
  64. Andreas F. Thünemann, Martin Müller, Herbert Dautzenberg, Jean-François Joanny, Hartmut Löwen. Polyelectrolyte Complexes. , 113-171. https://doi.org/10.1007/b11350

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect