ACS Publications. Most Trusted. Most Cited. Most Read
Rheology of Block Copolypeptide Solutions:  Hydrogels with Tunable Properties
My Activity

Figure 1Loading Img
    Article

    Rheology of Block Copolypeptide Solutions:  Hydrogels with Tunable Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Materials Research Laboratory, Department of Chemical Engineering, and Departments of Materials and Chemistry, University of California, Santa Barbara, California 93106 and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2004, 37, 10, 3943–3953
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma049885f
    Published April 24, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Amphiphilic block copolypeptides were prepared through transition-metal-mediated polymerization of amino acid N-carboxyanhydrides. In aqueous solution these materials form strong hydrogels at low concentrations. The self-assembly process that is responsible for gelation was investigated by measuring the rheological properties of the gels for a variety of molecular architectures:  poly-l-lysine-b-poly-l-leucine diblock and poly-l-lysine-b-poly-l-leucine-b-poly-l-lysine triblock copolypeptides. Experiments showed that the rodlike helical secondary structure of enantiomerically pure poly-l-leucine blocks was instrumental for gelation at polypeptide concentrations as low as 0.25 wt %. The hydrophilic polyelectrolyte segments have stretched coil configurations and stabilize the twisted fibril assemblies by forming a corona around the hydrophobic core. The self-assembly of hydrophobic blocks is highly specific and sensitive to the chirality of the helices. It was found that mechanical properties of the gels can be tuned through the molecular architecture of the block copolypeptides and also by carefully mixing different polypeptides in solution.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail: [email protected].

     Materials Research Laboratory, University of California, Santa Barbara.

     Department of Chemical Engineering, University of California, Santa Barbara.

    §

     Georgia Institute of Technology.

     Departments of Materials and Chemistry, University of California, Santa Barbara.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 177 publications.

    1. Yuya Tanimura, Kaito Miyamoto, Takuya Shiga, Masayuki Nihei, Keita Kuroiwa. Supramolecular Control of Magnetism and Morphology of Hybrid Diblock Copolypeptide Amphiphile/Cyanide-Bridged Molecular Square Complexes. The Journal of Physical Chemistry C 2023, 127 (33) , 16525-16537. https://doi.org/10.1021/acs.jpcc.3c03898
    2. Karoline E. Eckhart, Francesca A. Starvaggi, Stefanie A. Sydlik. One-Shot Synthesis of Peptide Amphiphiles with Applications in Directed Graphenic Assembly. Biomacromolecules 2020, 21 (9) , 3878-3886. https://doi.org/10.1021/acs.biomac.0c00962
    3. Emmanouil Vereroudakis, Minaspi Bantawa, René P. M. Lafleur, Daniele Parisi, Nicholas M. Matsumoto, Joris W. Peeters, Emanuela Del Gado, E. W. Meijer, Dimitris Vlassopoulos. Competitive Supramolecular Associations Mediate the Viscoelasticity of Binary Hydrogels. ACS Central Science 2020, 6 (8) , 1401-1411. https://doi.org/10.1021/acscentsci.0c00279
    4. Yintao Sun, Timothy J. Deming. Self-Healing Multiblock Copolypeptide Hydrogels via Polyion Complexation. ACS Macro Letters 2019, 8 (5) , 553-557. https://doi.org/10.1021/acsmacrolett.9b00269
    5. Yuhan Wei, Jiliang Tian, Zekun Zhang, Chenhui Zhu, Jing Sun, Zhibo Li. Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets. Macromolecules 2019, 52 (4) , 1546-1556. https://doi.org/10.1021/acs.macromol.8b02230
    6. Sheng-Shu Hou, Nai-Shin Fan, Yu-Chao Tseng, Jeng-Shiung Jan. Self-Assembly and Hydrogelation of Coil–Sheet Poly(l-lysine)-block-poly(l-threonine) Block Copolypeptides. Macromolecules 2018, 51 (20) , 8054-8063. https://doi.org/10.1021/acs.macromol.8b01265
    7. Yingkai Liang, Linqing Li, Rebecca A. Scott, and Kristi L. Kiick . 50th Anniversary Perspective: Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules 2017, 50 (2) , 483-502. https://doi.org/10.1021/acs.macromol.6b02389
    8. Manos Gkikas, Reginald K. Avery, and Bradley D. Olsen . Thermoresponsive and Mechanical Properties of Poly(l-proline) Gels. Biomacromolecules 2016, 17 (2) , 399-406. https://doi.org/10.1021/acs.biomac.5b01168
    9. Manos Gkikas, Johannes S. Haataja, Janne Ruokolainen, Hermis Iatrou, and Nikolay Houbenov . Complexation-Driven Mutarotation in Poly(l-proline) Block Copolypeptides. Biomacromolecules 2015, 16 (11) , 3686-3693. https://doi.org/10.1021/acs.biomac.5b01198
    10. Shanshan Zhang, Joshua E. Burda, Mark A. Anderson, Ziru Zhao, Yan Ao, Yin Cheng, Yi Sun, Timothy J. Deming, and Michael V. Sofroniew . Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery. ACS Biomaterials Science & Engineering 2015, 1 (8) , 705-717. https://doi.org/10.1021/acsbiomaterials.5b00153
    11. Sujit Sarkar, Prithvi Raj Pandey, and Sudip Roy . Propensity of Self-Assembled Leucine-Lysine Diblock Copolymeric α-Helical Peptides To Remain in Parallel and Antiparallel Alignments in Water. The Journal of Physical Chemistry B 2015, 119 (30) , 9520-9531. https://doi.org/10.1021/acs.jpcb.5b02258
    12. Kelsey E. McNeel, Susmita Das, Noureen Siraj, Ioan I. Negulescu, and Isiah M. Warner . Sodium Deoxycholate Hydrogels: Effects of Modifications on Gelation, Drug Release, and Nanotemplating. The Journal of Physical Chemistry B 2015, 119 (27) , 8651-8659. https://doi.org/10.1021/acs.jpcb.5b00411
    13. Shanshan Zhang, Daniel J. Alvarez, Michael V. Sofroniew, and Timothy J. Deming . Design and Synthesis of Nonionic Copolypeptide Hydrogels with Reversible Thermoresponsive and Tunable Physical Properties. Biomacromolecules 2015, 16 (4) , 1331-1340. https://doi.org/10.1021/acs.biomac.5b00124
    14. Maryam Kabiri and Larry D. Unsworth . Application of Isothermal Titration Calorimetry for Characterizing Thermodynamic Parameters of Biomolecular Interactions: Peptide Self-Assembly and Protein Adsorption Case Studies. Biomacromolecules 2014, 15 (10) , 3463-3473. https://doi.org/10.1021/bm5004515
    15. Daniel V. Krogstad, Nathaniel A. Lynd, Soo-Hyung Choi, Jason M. Spruell, Craig J. Hawker, Edward J. Kramer, and Matthew V. Tirrell . Effects of Polymer and Salt Concentration on the Structure and Properties of Triblock Copolymer Coacervate Hydrogels. Macromolecules 2013, 46 (4) , 1512-1518. https://doi.org/10.1021/ma302299r
    16. Jin Huang, Conn L. Hastings, Garry P. Duffy, Helena M. Kelly, Jaclyn Raeburn, Dave J. Adams, and Andreas Heise . Supramolecular Hydrogels with Reverse Thermal Gelation Properties from (Oligo)tyrosine Containing Block Copolymers. Biomacromolecules 2013, 14 (1) , 200-206. https://doi.org/10.1021/bm301629f
    17. Jeng-Shiung Jan, Pei-Shan Chen, Ping-Lun Hsieh, and Bo-Yu Chen . Silicification of Genipin-Cross-Linked Polypeptide Hydrogels Toward Biohybrid Materials and Mesoporous Oxides. ACS Applied Materials & Interfaces 2012, 4 (12) , 6865-6874. https://doi.org/10.1021/am302016c
    18. Rabih F. Shamoun, Haifa H. Hariri, Ramy A. Ghostine, and Joseph B. Schlenoff . Thermal Transformations in Extruded Saloplastic Polyelectrolyte Complexes. Macromolecules 2012, 45 (24) , 9759-9767. https://doi.org/10.1021/ma302075p
    19. Carlo Yuvienco, Haresh T. More, Jennifer S. Haghpanah, Raymond S. Tu, and Jin Kim Montclare . Modulating Supramolecular Assemblies and Mechanical Properties of Engineered Protein Materials by Fluorinated Amino Acids. Biomacromolecules 2012, 13 (8) , 2273-2278. https://doi.org/10.1021/bm3005116
    20. Venkata Krishna Kotharangannagari, Antoni Sánchez-Ferrer, Janne Ruokolainen, and Raffaele Mezzenga . Thermoreversible Gel–Sol Behavior of Rod–Coil–Rod Peptide-Based Triblock Copolymers. Macromolecules 2012, 45 (4) , 1982-1990. https://doi.org/10.1021/ma2026379
    21. Florian Hermes, Katharina Otte, Jessica Brandt, Marlies Gräwert, Hans G. Börner, and Helmut Schlaad . Polypeptide-Based Organogelators: Effects of Secondary Structure. Macromolecules 2011, 44 (18) , 7489-7492. https://doi.org/10.1021/ma201232a
    22. Erick Soto-Cantu, Sibel Turksen-Selcuk, Jianhong Qiu, Zhe Zhou, and Paul S. Russo, Margaret C. Henk. Silica−Polypeptide Composite Particles: Controlling Shell Growth. Langmuir 2010, 26 (19) , 15604-15613. https://doi.org/10.1021/la1023955
    23. Xiaojun Wang, Jamie Messman, Jimmy W. Mays, and Durairaj Baskaran . Polypeptide Grafted Hyaluronan: Synthesis and Characterization. Biomacromolecules 2010, 11 (9) , 2313-2320. https://doi.org/10.1021/bm1004146
    24. Geetha G. Nair, S. Krishna Prasad, R. Bhargavi, V. Jayalakshmi, G. Shanker and C. V. Yelamaggad. Soft Glass Rheology in Liquid Crystalline Gels Formed by a Monodisperse Dipeptide. The Journal of Physical Chemistry B 2010, 114 (2) , 697-704. https://doi.org/10.1021/jp9071394
    25. Nikos Hadjichristidis, Hermis Iatrou, Marinos Pitsikalis and Georgios Sakellariou. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chemical Reviews 2009, 109 (11) , 5528-5578. https://doi.org/10.1021/cr900049t
    26. Sandeep S. Naik and Daniel A. Savin . Poly(Z-lysine)-Based Organogels: Effect of Interfacial Frustration on Gel Strength. Macromolecules 2009, 42 (18) , 7114-7121. https://doi.org/10.1021/ma9011126
    27. Geetha G. Nair, S. Krishna Prasad, V. Jayalakshmi, G. Shanker and C. V. Yelamaggad. Fast Responding Robust Nematic Liquid Crystalline Gels Formed by a Monodisperse Dipeptide: Electro-Optic and Rheological Studies. The Journal of Physical Chemistry B 2009, 113 (19) , 6647-6651. https://doi.org/10.1021/jp900074e
    28. Karel Dušek, Miroslava Dušková-Smrčková, Jiyuan Yang and Jindřich Kopeček . Coiled-Coil Hydrogels: Effect of Grafted Copolymer Composition and Cyclization on Gelation. Macromolecules 2009, 42 (6) , 2265-2274. https://doi.org/10.1021/ma801906j
    29. Sami Hietala, Satu Strandman, Paula Järvi, Mika Torkkeli, Katja Jankova, Søren Hvilsted and Heikki Tenhu. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology. Macromolecules 2009, 42 (5) , 1726-1732. https://doi.org/10.1021/ma801805q
    30. Shyamal Kumar Kundu, Noboru Osaka, Takuro Matsunaga, Masaru Yoshida and Mitsuhiro Shibayama. Structural Characterization of Ionic Gelator Studied by Dynamic Light Scattering and Small-Angle Neutron Scattering. The Journal of Physical Chemistry B 2008, 112 (51) , 16469-16477. https://doi.org/10.1021/jp807992t
    31. Meredith C. Roberts, Alamelu Mahalingam, Melissa C. Hanson and Patrick F. Kiser. Chemorheology of Phenylboronate−Salicylhydroxamate Cross-Linked Hydrogel Networks with a Sulfonated Polymer Backbone. Macromolecules 2008, 41 (22) , 8832-8840. https://doi.org/10.1021/ma8012674
    32. Yoshihiro Misawa, Nagatoshi Koumura, Hajime Matsumoto, Nobuyuki Tamaoki and Masaru Yoshida. Hydrogels Based on Surfactant-Free Ionene Polymers with N,N′-(p-Phenylene)dibenzamide Linkages. Macromolecules 2008, 41 (22) , 8841-8846. https://doi.org/10.1021/ma801350k
    33. Jingyi Rao, Yanfeng Zhang, Jingyan Zhang and Shiyong Liu. Facile Preparation of Well-Defined AB2 Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry. Biomacromolecules 2008, 9 (10) , 2586-2593. https://doi.org/10.1021/bm800462q
    34. Shyamal Kumar Kundu, Takuro Matsunaga, Masaru Yoshida and Mitsuhiro Shibayama. Rheological Study on Rapid Recovery of Hydrogel Based on Oligomeric Electrolyte. The Journal of Physical Chemistry B 2008, 112 (37) , 11537-11541. https://doi.org/10.1021/jp803774r
    35. Ying Zhao, Hidenori Yokoi, Masayoshi Tanaka, Takatoshi Kinoshita and Tianwei Tan. Self-Assembled pH-Responsive Hydrogels Composed of the RATEA16 Peptide. Biomacromolecules 2008, 9 (6) , 1511-1518. https://doi.org/10.1021/bm701143g
    36. Antti Nykänen, Markus Nuopponen, Panu Hiekkataipale, Sami-Pekka Hirvonen, Antti Soininen, Heikki Tenhu, Olli Ikkala, Raffaele Mezzenga and Janne Ruokolainen . Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM. Macromolecules 2008, 41 (9) , 3243-3249. https://doi.org/10.1021/ma702496j
    37. A. Sinaga,, T. A. Hatton, and, K. C. Tam. Hydrogen Bonded Assembly of Poly(acrylic acid)-block-poly(l-valine) in Dilute Solutions. Macromolecules 2007, 40 (25) , 9064-9073. https://doi.org/10.1021/ma071539l
    38. A. Sinaga,, T. A. Hatton, and, K. C. Tam. Poly(acrylic acid)-block-poly(l-valine):  Evaluation of β-Sheet Formation and Its Stability Using Circular Dichroism Technique. Biomacromolecules 2007, 8 (9) , 2801-2808. https://doi.org/10.1021/bm700491q
    39. Masaru Yoshida,, Nagatoshi Koumura,, Yoshihiro Misawa,, Nobuyuki Tamaoki,, Hajime Matsumoto,, Hajime Kawanami,, Said Kazaoui, and, Nobutsugu Minami. Oligomeric Electrolyte as a Multifunctional Gelator. Journal of the American Chemical Society 2007, 129 (36) , 11039-11041. https://doi.org/10.1021/ja0738677
    40. Guillaume Miquelard-Garnier,, Sophie Demoures,, Costantino Creton, and, Dominique Hourdet. Synthesis and Rheological Behavior of New Hydrophobically Modified Hydrogels with Tunable Properties. Macromolecules 2006, 39 (23) , 8128-8139. https://doi.org/10.1021/ma061361n
    41. Abigail S. Kimerling,, Willie E. (Skip) Rochefort, and, Surita R. Bhatia. Rheology of Block Polyelectrolyte Solutions and Gels:  A Review. Industrial & Engineering Chemistry Research 2006, 45 (21) , 6885-6889. https://doi.org/10.1021/ie051034o
    42. Bradley D. Olsen and, Rachel A. Segalman. Structure and Thermodynamics of Weakly Segregated Rod−Coil Block Copolymers. Macromolecules 2005, 38 (24) , 10127-10137. https://doi.org/10.1021/ma051468v
    43. Eric P. Holowka,, Darrin J. Pochan, and, Timothy J. Deming. Charged Polypeptide Vesicles with Controllable Diameter. Journal of the American Chemical Society 2005, 127 (35) , 12423-12428. https://doi.org/10.1021/ja053557t
    44. Sivakumar Ramachandran,, Yiider Tseng, and, Y. Bruce Yu. Repeated Rapid Shear-Responsiveness of Peptide Hydrogels with Tunable Shear Modulus. Biomacromolecules 2005, 6 (3) , 1316-1321. https://doi.org/10.1021/bm049284w
    45. Xuhong Guo,, Ahmed A. Abdala,, Bruce L. May,, Stephen F. Lincoln,, Saad A. Khan, and, Robert K. Prud'homme. Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds. Macromolecules 2005, 38 (7) , 3037-3040. https://doi.org/10.1021/ma050071o
    46. Ronnie V. Garcia, Elizabeth A. Murphy, Nairiti J. Sinha, Yoichi Okayama, Juan Manuel Urueña, Matthew E. Helgeson, Christopher M. Bates, Craig J. Hawker, Robert D. Murphy, Javier Read de Alaniz. Tailoring Writability and Performance of Star Block Copolypeptides Hydrogels through Side‐Chain Design. Small 2023, 19 (50) https://doi.org/10.1002/smll.202302794
    47. Ning Li, Yuheng Lei, Ziyuan Song, Lichen Yin. Helix-specific properties and applications in synthetic polypeptides. Current Opinion in Solid State and Materials Science 2023, 27 (5) , 101104. https://doi.org/10.1016/j.cossms.2023.101104
    48. Hashem Ahmadizadegan, Sheida Esmaielzadeh. Synthesis and characterization of new nanocomposites-based polyimide/modified montmorillonite and their applications in gas separation. Polymer-Plastics Technology and Materials 2023, 62 (10) , 1329-1346. https://doi.org/10.1080/25740881.2023.2207101
    49. Timothy P. Enright, Dominic L. Garcia, Gia Storti, Jason E. Heindl, Alexander Sidorenko. Synthesis and Antibiotic Activity of Chitosan-Based Comb-like Co-Polypeptides. Marine Drugs 2023, 21 (4) , 243. https://doi.org/10.3390/md21040243
    50. Dan Zhao, Yan Rong, Dong Li, Chaoliang He, Xuesi Chen. Thermo-induced physically crosslinked polypeptide-based block copolymer hydrogels for biomedical applications. Regenerative Biomaterials 2023, 10 https://doi.org/10.1093/rb/rbad039
    51. Abdulwahhab Khedr, Mohamed A. N. Soliman, Mohamed A. Elsawy. Design Rules for Self-Assembling Peptide Nanostructures. 2023, 1-52. https://doi.org/10.1007/978-3-031-29360-3_1
    52. Gaurav Pandey, Debika Datta. Peptide-based nanomaterials: applications and challenges. 2023, 133-171. https://doi.org/10.1016/B978-0-323-99917-5.00001-9
    53. Nicholas J. Chan, Sarah Lentz, Paul A. Gurr, Thomas Scheibel, Greg G. Qiao. Mimicry of silk utilizing synthetic polypeptides. Progress in Polymer Science 2022, 130 , 101557. https://doi.org/10.1016/j.progpolymsci.2022.101557
    54. Ching-Chia Huang, Thi Ha My Phan, Tooru Ooya, Shiho Kawasaki, Bi-Yun Lin, Jeng-Shiung Jan. Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. Polymer 2022, 250 , 124864. https://doi.org/10.1016/j.polymer.2022.124864
    55. Takayuki Tanaka, Keita Kuroiwa. Supramolecular Hybrids from Cyanometallate Complexes and Diblock Copolypeptide Amphiphiles in Water. Molecules 2022, 27 (10) , 3262. https://doi.org/10.3390/molecules27103262
    56. Vincent P. Gray, Connor D. Amelung, Israt Jahan Duti, Emma G. Laudermilch, Rachel A. Letteri, Kyle J. Lampe. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomaterialia 2022, 140 , 43-75. https://doi.org/10.1016/j.actbio.2021.10.030
    57. Zubair Ahmad, Saad Salman, Shahid Ali Khan, Abdul Amin, Zia Ur Rahman, Youssef O. Al-Ghamdi, Kalsoom Akhtar, Esraa M. Bakhsh, Sher Bahadar Khan. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8 (3) , 167. https://doi.org/10.3390/gels8030167
    58. Ernesto Tinajero-Díaz, Scott D. Kimmins, Zaira-Yunuen García-Carvajal, Antxon Martínez de Ilarduya. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. Reactive and Functional Polymers 2021, 168 , 105040. https://doi.org/10.1016/j.reactfunctpolym.2021.105040
    59. Thi Ha My Phan, Ching-Chia Huang, Yi-Jen Tsai, Jin-Jia Hu, Jeng-Shiung Jan. Polypeptide Composition and Topology Affect Hydrogelation of Star-Shaped Poly(L-lysine)-Based Amphiphilic Copolypeptides. Gels 2021, 7 (3) , 131. https://doi.org/10.3390/gels7030131
    60. Chen-Chi Tang, Song-Hao Zhang, Thi Ha My Phan, Yu-Chao Tseng, Jeng-Shiung Jan. Block length and topology affect self-assembly and gelation of poly(l-lysine)-block-poly(S-benzyl-l-cysteine) block copolypeptides. Polymer 2021, 228 , 123891. https://doi.org/10.1016/j.polymer.2021.123891
    61. Javier Sánchez Santiago, Ramón L Cerro, Carmen Scholz. A robust affinity chromatography system based on ceramic monoliths coated with poly(amino acid)‐based polymeric constructs. Polymer International 2021, 70 (1) , 41-50. https://doi.org/10.1002/pi.6142
    62. Debika Datta, Nitin Chaudhary. Peptide-based hydrogels for biomedical applications. 2021, 203-232. https://doi.org/10.1016/B978-0-12-821972-0.00003-4
    63. A. Jastram, J. Claus, P.A. Janmey, U. Kragl. Rheological properties of hydrogels based on ionic liquids. Polymer Testing 2021, 93 , 106943. https://doi.org/10.1016/j.polymertesting.2020.106943
    64. Bineet Sharma, Yutao Ma, Andrew L. Ferguson, Allen P. Liu. In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment. Soft Matter 2020, 16 (48) , 10769-10780. https://doi.org/10.1039/D0SM01644F
    65. Daichi Yokota, Arihiro Kanazawa, Sadahito Aoshima. Precise synthesis of amphiphilic diblock copolymers consisting of various ionic liquid-type segments and their influence on physical gelation behavior in water. RSC Advances 2020, 10 (69) , 42378-42387. https://doi.org/10.1039/D0RA09163D
    66. Yuya Tanimura, Mina Sakuragi, Timothy J. Deming, Keita Kuroiwa. Self‐assembly of Soluble Nanoarchitecture using Hybrids of Diblock Copolypeptide Amphiphiles with Copper Rubeanate Hydrates in Water and Their Electrooxidation Reaction. ChemNanoMat 2020, 6 (11) , 1635-1640. https://doi.org/10.1002/cnma.202000481
    67. Thomas Leigh, Paco Fernandez-Trillo. Helical polymers for biological and medical applications. Nature Reviews Chemistry 2020, 4 (6) , 291-310. https://doi.org/10.1038/s41570-020-0180-5
    68. Ruimeng Zhang, Zebin Su, Xiao‐Yun Yan, Jiahao Huang, Wenpeng Shan, Xue‐Hui Dong, Xueyan Feng, Zhiwei Lin, Stephen Z. D. Cheng. Discovery of Structural Complexity through Self‐Assembly of Molecules Containing Rodlike Components. Chemistry – A European Journal 2020, 26 (30) , 6741-6756. https://doi.org/10.1002/chem.201905432
    69. Thai Thanh Hoang Thi, Le Hoang Sinh, Dai Phu Huynh, Dai Hai Nguyen, Cong Huynh. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00019
    70. Hongyu Zhu, Meng Zhu, Shirong Shuai, Cong Zhao, Yu Liu, Yuan Liu, Xiaohong Li, Zikun Rao, Yang Li, Jianyuan Hao. Effect of polypeptide block length on nano-assembly morphology and thermo-sensitivity of methyl poly (ethylene glycol)-poly (L-valine) copolymer aqueous solutions. Journal of Sol-Gel Science and Technology 2019, 92 (3) , 618-627. https://doi.org/10.1007/s10971-019-05095-z
    71. Jasmina Gačanin, Jana Hedrich, Stefanie Sieste, Gunnar Glaßer, Ingo Lieberwirth, Corinna Schilling, Stephan Fischer, Holger Barth, Bernd Knöll, Christopher V. Synatschke, Tanja Weil. Autonomous Ultrafast Self‐Healing Hydrogels by pH‐Responsive Functional Nanofiber Gelators as Cell Matrices. Advanced Materials 2019, 31 (2) https://doi.org/10.1002/adma.201805044
    72. Daichi Yokota, Arihiro Kanazawa, Sadahito Aoshima. Precise synthesis of UCST-type amphiphilic diblock copolymers with pendant imidazolium ionic liquid segments and their thermosensitive physical gelation at extremely low concentrations in water. Polymer Chemistry 2018, 9 (41) , 5080-5085. https://doi.org/10.1039/C8PY01139G
    73. David Ulkoski, Carmen Scholz. Impact of Cationic Charge Density and PEGylated Poly(amino acid) Tercopolymer Architecture on Their Use as Gene Delivery Vehicles. Part 1: Synthesis, Self‐Assembly, and DNA Complexation. Macromolecular Bioscience 2018, 18 (8) https://doi.org/10.1002/mabi.201800108
    74. Xuan-You Shen, Chen-Chi Tang, Jeng-Shiung Jan. Synthesis and hydrogelation of star-shaped poly(l-lysine) polypeptides modified with different functional groups. Polymer 2018, 151 , 108-116. https://doi.org/10.1016/j.polymer.2018.07.051
    75. Evelina Liarou, Spyridon Varlas, Dimitrios Skoulas, Chrisida Tsimblouli, Evangelia Sereti, Konstantinos Dimas, Hermis Iatrou. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Progress in Polymer Science 2018, 83 , 28-78. https://doi.org/10.1016/j.progpolymsci.2018.05.001
    76. Juan Wang, Xuehai Yan. Peptide-Based Hydrogels/Organogels: Assembly and Application. 2018, 205-226. https://doi.org/10.1007/978-981-10-7787-6_6
    77. Lindsay Avolio, Darren Sipes, Nicholas Stephanopoulos, Shantanu Sur. Recreating stem-cell niches using self-assembling biomaterials. 2018, 421-454. https://doi.org/10.1016/B978-0-08-102015-9.00021-6
    78. Carmen M. González-Henríquez, Mauricio A. Sarabia-Vallejos, Juan Rodríguez-Hernández. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers 2017, 9 (11) , 551. https://doi.org/10.3390/polym9110551
    79. Yan Xiao, Jianqiang Wang, Jun Zhang, Andreas Heise, Meidong Lang. Synthesis and gelation of copolypept(o)ides with random and block structure. Biopolymers 2017, 107 (10) https://doi.org/10.1002/bip.23038
    80. Kruti S. Soni, Fan Lei, Swapnil S. Desale, Luis A. Marky, Samuel M. Cohen, Tatiana K. Bronich. Tuning polypeptide-based micellar carrier for efficient combination therapy of ErbB2-positive breast cancer. Journal of Controlled Release 2017, 264 , 276-287. https://doi.org/10.1016/j.jconrel.2017.08.038
    81. David Limón, Claire Jiménez‐Newman, Mafalda Rodrigues, Arántzazu González‐Campo, David B. Amabilino, Ana C. Calpena, Lluïsa Pérez‐García. Cationic Supramolecular Hydrogels for Overcoming the Skin Barrier in Drug Delivery. ChemistryOpen 2017, 6 (4) , 585-598. https://doi.org/10.1002/open.201700040
    82. Pengxiang Xu, Jiaping Lin, Liquan Wang, Liangshun Zhang. Shear flow behaviors of rod-coil diblock copolymers in solution: A nonequilibrium dissipative particle dynamics simulation. The Journal of Chemical Physics 2017, 146 (18) https://doi.org/10.1063/1.4982938
    83. Keita Kuroiwa. Supramolecular Metal Complex Nanoarchitectures via Various Amphiphiles. 2017, 147-177. https://doi.org/10.1007/978-981-10-2463-4_9
    84. Michihiro Iijima, David Ulkoski, Shunya Sakuma, Daisuke Matsukuma, Nobuhiro Nishiyama, Hidenori Otsuka, Carmen Scholz. Synthesis of PEGylated poly(amino acid) pentablock copolymers and their self‐assembly. Polymer International 2016, 65 (10) , 1132-1141. https://doi.org/10.1002/pi.5159
    85. Parvaiz Ahmad Bhat, Oyais Ahmad Chat, Yongliang Zhang, Aijaz Ahmad Dar. An unprecedented dual responsive gelation of Carbopol induced by Pluronic P123 triblock copolymer. Polymer 2016, 102 , 153-166. https://doi.org/10.1016/j.polymer.2016.09.013
    86. Yi Li, Feihu Wang, Honggang Cui. Peptide‐based supramolecular hydrogels for delivery of biologics. Bioengineering & Translational Medicine 2016, 1 (3) , 306-322. https://doi.org/10.1002/btm2.10041
    87. Yi-Xuan Zhang, Yu-Fon Chen, Xuan-You Shen, Jin-Jia Hu, Jeng-Shiung Jan. Reduction- and pH-Sensitive lipoic acid-modified Poly(l-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 2016, 86 , 32-41. https://doi.org/10.1016/j.polymer.2016.01.030
    88. Santu Biswas, Sujit Sarkar, Prithvi Raj Pandey, Sudip Roy. Transferability of different classical force fields for right and left handed α-helices constructed from enantiomeric amino acids. Physical Chemistry Chemical Physics 2016, 18 (7) , 5550-5563. https://doi.org/10.1039/C5CP06715D
    89. Christophe Chassenieux, Constantinos Tsitsilianis. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter 2016, 12 (5) , 1344-1359. https://doi.org/10.1039/C5SM02710A
    90. Kausik Bag, Pradip Kumar Sukul, Dines Chandra Santra, Arkapal Roy, Sudip Malik. Proton induced aggregation of water soluble isophthalic acid appended arylene diimides: justification with perylene derivative. RSC Advances 2016, 6 (40) , 34027-34037. https://doi.org/10.1039/C6RA03277J
    91. Jie Wang, Zhiqiang Qiu, Yiming Wang, Li Li, Xuhong Guo, Duc-Truc Pham, Stephen F Lincoln, Robert K Prud’homme. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation. Beilstein Journal of Organic Chemistry 2016, 12 , 50-72. https://doi.org/10.3762/bjoc.12.7
    92. M. Hamed Misbah, Luis Quintanilla, M. Alonso, J. Carlos Rodríguez-Cabello. Evolution of amphiphilic elastin-like co-recombinamer morphologies from micelles to a lyotropic hydrogel. Polymer 2015, 81 , 37-44. https://doi.org/10.1016/j.polymer.2015.11.013
    93. David Limón, Ezhil Amirthalingam, Mafalda Rodrigues, Lyda Halbaut, Berenice Andrade, María Luisa Garduño-Ramírez, David B. Amabilino, Lluïsa Pérez-García, Ana C. Calpena. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. European Journal of Pharmaceutics and Biopharmaceutics 2015, 96 , 421-436. https://doi.org/10.1016/j.ejpb.2015.09.007
    94. David Ulkoski, Annette Meister, Karsten Busse, Jörg Kressler, Carmen Scholz. Synthesis and structure formation of block copolymers of poly(ethylene glycol) with homopolymers and copolymers of l-glutamic acid γ-benzyl ester and l-leucine in water. Colloid and Polymer Science 2015, 293 (8) , 2147-2155. https://doi.org/10.1007/s00396-015-3632-6
    95. Michael C. Koetting, Jonathan T. Peters, Stephanie D. Steichen, Nicholas A. Peppas. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports 2015, 93 , 1-49. https://doi.org/10.1016/j.mser.2015.04.001
    96. Ali Ghoorchian, Joseph R. Simon, Bhuvnesh Bharti, Wei Han, Xuanhe Zhao, Ashutosh Chilkoti, Gabriel P. López. Bioinspired Reversibly Cross‐linked Hydrogels Comprising Polypeptide Micelles Exhibit Enhanced Mechanical Properties. Advanced Functional Materials 2015, 25 (21) , 3122-3130. https://doi.org/10.1002/adfm.201500699
    97. April R. Rodriguez, Uh‐Joo Choe, Daniel T. Kamei, Timothy J. Deming. Blending of Diblock and Triblock Copolypeptide Amphiphiles Yields Cell Penetrating Vesicles with Low Toxicity. Macromolecular Bioscience 2015, 15 (1) , 90-97. https://doi.org/10.1002/mabi.201400348
    98. Sameer Sathaye, Armstrong Mbi, Cem Sonmez, Yingchao Chen, Daniel L. Blair, Joel P. Schneider, Darrin J. Pochan. Rheology of peptide‐ and protein‐based physical hydrogels: Are everyday measurements just scratching the surface?. WIREs Nanomedicine and Nanobiotechnology 2015, 7 (1) , 34-68. https://doi.org/10.1002/wnan.1299
    99. Yong Shen, Shusheng Zhang, Yaoming Wan, Wenxin Fu, Zhibo Li. Hydrogels assembled from star-shaped polypeptides with a dendrimer as the core. Soft Matter 2015, 11 (15) , 2945-2951. https://doi.org/10.1039/C5SM00083A
    100. B.C. Baker, A.L. Acton, G.C. Stevens, W. Hayes. Bis amide-aromatic-ureas—highly effective hydro- and organogelator systems. Tetrahedron 2014, 70 (44) , 8303-8311. https://doi.org/10.1016/j.tet.2014.09.017
    Load all citations

    Macromolecules

    Cite this: Macromolecules 2004, 37, 10, 3943–3953
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma049885f
    Published April 24, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    3022

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.