ACS Publications. Most Trusted. Most Cited. Most Read
Free-Radical Polymerization Kinetics of 2-Acrylamido-2-methylpropanesulfonic Acid in Aqueous Solution
My Activity
    Article

    Free-Radical Polymerization Kinetics of 2-Acrylamido-2-methylpropanesulfonic Acid in Aqueous Solution
    Click to copy article linkArticle link copied!

    • Sabine Beuermann*
      Sabine Beuermann
      Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, D-37077, Göttingen, Germany, and Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic
       Corresponding author. E-mail:  [email protected].
    • Michael Buback
      Michael Buback
      Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, D-37077, Göttingen, Germany, and Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic
    • Pascal Hesse
      Pascal Hesse
      Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, D-37077, Göttingen, Germany, and Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic
      More by Pascal Hesse
    • Tanja Junkers
      Tanja Junkers
      Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, D-37077, Göttingen, Germany, and Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic
    • Igor Lacík
      Igor Lacík
      Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, D-37077, Göttingen, Germany, and Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic
      More by Igor Lacík
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2006, 39, 2, 509–516
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma051187n
    Published December 21, 2005
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The SP−PLP−NIR technique, which combines pulsed laser polymerization (PLP) initiated by a single pulse (SP) with time-resolved monitoring of the resulting monomer conversion via near-infrared (NIR) spectroscopy, was used to investigate the kinetics in aqueous solution of 2-acrylamido-2-methylpropanesulfonic acid (AMPS). For initial AMPS concentrations of 2.79 mol·L-1 (50 wt % AMPS) and 1.04 mol·L-1 (20 wt % AMPS), the ratio of (chain length averaged) termination and propagation rate coefficients, 〈kt〉/kp, was measured up to almost complete monomer conversion at temperatures between 10 and 40 °C and ambient pressure. Up to 80% monomer conversion, 〈kt〉/kp is only slightly lowered, whereas there is a clear decrease upon further increasing conversion. Variation of temperature and of pH does not significantly affect 〈kt〉/kp. For estimating individual rate coefficients, 〈kt〉 and kp, in addition chemically initiated polymerizations have been carried out, in which AMPS conversion was monitored via in-line FT-NIR spectroscopy. The resulting 〈kt〉 and kp values, for 40 °C and an initial AMPS concentration of 2.79 mol·L-1, are 2 × 107 L·mol-1·s-1 and 1 × 105 L·mol-1·s-1, respectively. Both rate coefficients are significantly higher at the lower AMPS content of 1.04 mol·L-1. 〈kt〉 at this lower AMPS content may be understood in terms of termination occurring under reaction diffusion control. The lowering in rate coefficients measured at the higher AMPS content is indicative of a reduced poly(AMPS) chain mobility.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Francisco Léniz-Pizarro, Holly E. Rudel, Nicolas J. Briot, Julie B. Zimmerman, Dibakar Bhattacharyya. Membrane Functionalization Approaches toward Per- and Polyfluoroalkyl Substances and Selected Metal Ion Separations. ACS Applied Materials & Interfaces 2023, 15 (37) , 44224-44237. https://doi.org/10.1021/acsami.3c08478
    2. Mu Wang, Junliang Zhang, Carlos Guerrero-Sanchez, Ulrich S. Schubert, Anchao Feng, San H. Thang. Enzyme Degassing for Oxygen-Sensitive Reactions in Open Vessels of an Automated Parallel Synthesizer: RAFT Polymerizations. ACS Combinatorial Science 2019, 21 (10) , 643-649. https://doi.org/10.1021/acscombsci.9b00082
    3. Esra Su, Mine Yurtsever, Oguz Okay. A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules 2019, 52 (9) , 3257-3267. https://doi.org/10.1021/acs.macromol.9b00032
    4. Hendrik Kattner, Patrick Drawe, and Michael Buback . Chain-Length-Dependent Termination of Sodium Methacrylate Polymerization in Aqueous Solution Studied by SP-PLP-EPR. Macromolecules 2017, 50 (4) , 1386-1393. https://doi.org/10.1021/acs.macromol.6b02641
    5. Johannes Barth and Michael Buback . SP-PLP-EPR Study into the Termination Kinetics of Methacrylic Acid Radical Polymerization in Aqueous Solution. Macromolecules 2011, 44 (6) , 1292-1297. https://doi.org/10.1021/ma102278n
    6. Marek Stach, Igor Lacík, Dušan Chorvát, Jr., Michael Buback, Pascal Hesse, Robin A. Hutchinson and Lina Tang. Propagation Rate Coefficient for Radical Polymerization of N-Vinyl Pyrrolidone in Aqueous Solution Obtained by PLP−SEC. Macromolecules 2008, 41 (14) , 5174-5185. https://doi.org/10.1021/ma800354h
    7. Sabine Beuermann, Michael Buback, Pascal Hesse, Robin A. Hutchinson, Silvia Kukučková and Igor Lacík. Termination Kinetics of the Free-Radical Polymerization of Nonionized Methacrylic Acid in Aqueous Solution. Macromolecules 2008, 41 (10) , 3513-3520. https://doi.org/10.1021/ma7028902
    8. Xiaoqin Cao, Yujun Feng, Hongyao Yin. Facile access to highly functionalized polyacrylamide with ultra-high molecular weight: Multicomponent initiators-based free radical polymerization. Polymer 2024, 315 , 127825. https://doi.org/10.1016/j.polymer.2024.127825
    9. Ian D. Conrod, Baris Topcuoglu, Alexander Penlidis, Alison J. Scott. Impact of Ionic Strength (Sodium Chloride Concentration) on Homopolymerization and Copolymerization Kinetics of Acrylamide and 2‐Acrylamido‐2‐Methylpropane Sulfonic Acid. Macromolecular Reaction Engineering 2024, 18 (3) https://doi.org/10.1002/mren.202300058
    10. Maria Stehle, Torben Lemmermann, Fabian Grasser, Claudia Adolfs, Marco Drache, Uwe Gohs, Armin Lohrengel, Ulrich Kunz, Sabine Beuermann. Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF. Journal of Polymer Engineering 2024, 44 (3) , 233-242. https://doi.org/10.1515/polyeng-2023-0216
    11. Zohreh Jomeh Farsangi, Xuedong Song, Kaiyuan Yang, Todd Hoare. Design and optimization of superabsorbent hydrogels based on acrylic acid/ 2‐acrylamido‐2‐methylpropane sulfonic acid copolymers. Journal of Applied Polymer Science 2022, 139 (36) https://doi.org/10.1002/app.52849
    12. Hina Shoukat, Fahad Pervaiz, Sadia Rehman. Pluronic F127-co-poly (2 acrylamido-2-methylpropane sulphonic acid) crosslinked matrices as potential controlled release carrier for an anti-depressant drug: in vitro and in vivo attributes. Chemical Papers 2022, 76 (5) , 2917-2933. https://doi.org/10.1007/s11696-022-02077-4
    13. Ayatzhan Akhmetzhan, Nurgeldi Abeu, Sotirios Nik. Longinos, Ayezkhan Tashenov, Nurbala Myrzakhmetova, Nurgul Amangeldi, Zhanar Kuanyshova, Zhanar Ospanova, Zhexenbek Toktarbay. Synthesis and Heavy-Metal Sorption Studies of N,N-Dimethylacrylamide-Based Hydrogels. Polymers 2021, 13 (18) , 3084. https://doi.org/10.3390/polym13183084
    14. Jonas Mätzig, Marco Drache, Sabine Beuermann. Self-Initiated Butyl Acrylate Polymerizations in Bulk and in Solution Monitored By In-Line Techniques. Polymers 2021, 13 (12) , 2021. https://doi.org/10.3390/polym13122021
    15. Hina Shoukat, Fahad Pervaiz, Sobia Noreen, Mehwish Nawaz, Rubina Qaiser, Maryam Anwar. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polymer Bulletin 2020, 77 (4) , 1869-1891. https://doi.org/10.1007/s00289-019-02837-5
    16. Alison J. Scott, Thomas A. Duever, Alexander Penlidis. The role of pH, ionic strength and monomer concentration on the terpolymerization of 2-acrylamido-2-methylpropane sulfonic acid, acrylamide and acrylic acid. Polymer 2019, 177 , 214-230. https://doi.org/10.1016/j.polymer.2019.06.006
    17. Xi Ke, Yufei Zhang, Uwe Gohs, Marco Drache, Sabine Beuermann. Polymer Electrolyte Membranes Prepared by Graft Copolymerization of 2-Acrylamido-2-Methylpropane Sulfonic Acid and Acrylic Acid on PVDF and ETFE Activated by Electron Beam Treatment. Polymers 2019, 11 (7) , 1175. https://doi.org/10.3390/polym11071175
    18. XiongLi Liu, An Wang, ChunPing Wang, JiaLei Qu, YangBing Wen, Bin Chen, ZhongGuang Wang, BinBin Wu, ZhaoYang Yuan, Bing Wei. Preparation and Performance of Salt Tolerance and Thermal Stability Cellulose Nanofibril Hydrogels and Their Application in Drilling Engineering. Paper and Biomaterials 2019, 4 (2) , 10-19. https://doi.org/10.26599/PBM.2019.9260010
    19. Chuang-Chao Sun, Ming-Yong Zhou, Na-Chuan Wang, Xue Yin, Jia-Jia Yuan, You-Zhi Song, Li-Ping Zhu, Bao-Ku Zhu. An effective approach towards endowing membranes with tunable charge characteristics and large nanopores. Separation and Purification Technology 2019, 210 , 159-166. https://doi.org/10.1016/j.seppur.2018.04.008
    20. Takahiro Matsuda, Runa Kawakami, Ryo Namba, Tasuku Nakajima, Jian Ping Gong. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 2019, 363 (6426) , 504-508. https://doi.org/10.1126/science.aau9533
    21. Esra Su, Oguz Okay. Hybrid cross-linked poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels with tunable viscoelastic, mechanical and self-healing properties. Reactive and Functional Polymers 2018, 123 , 70-79. https://doi.org/10.1016/j.reactfunctpolym.2017.12.009
    22. Yangbing Wen, Bing Wei, Dong Cheng, Xinye An, Yonghao Ni. Stability enhancement of nanofibrillated cellulose in electrolytes through grafting of 2-acrylamido-2-methylpropane sulfonic acid. Cellulose 2017, 24 (2) , 731-738. https://doi.org/10.1007/s10570-016-1182-9
    23. Patrick Drawe, Hendrik Kattner, Michael Buback. Kinetics and Modeling of the Radical Polymerization of Trimethylaminoethyl methacrylate chloride in Aqueous Solution. Macromolecular Chemistry and Physics 2016, 217 (24) , 2755-2764. https://doi.org/10.1002/macp.201600362
    24. Hamideh Ahmadloo, Ricardo Losada, Christine Wandrey. Effect of Very High Charge Density and Monomer Constitution on the Synthesis and Properties of Cationic Polyelectrolytes. Polymers 2016, 8 (6) , 234. https://doi.org/10.3390/polym8060234
    25. Hendrik Kattner, Patrick Drawe, Michael Buback. Novel Access to Propagation Rate Coefficients of Radical Polymerization by the SP-PLP-EPR Method. Macromolecular Chemistry and Physics 2015, 216 (16) , 1737-1745. https://doi.org/10.1002/macp.201500191
    26. P. Drawe, M. Buback, I. Lacík. Radical Polymerization of Alkali Acrylates in Aqueous Solution. Macromolecular Chemistry and Physics 2015, 216 (12) , 1333-1340. https://doi.org/10.1002/macp.201500075
    27. Chetan Prakash, Manoj Achalpurkar, Ramesh Uppuluri. Evaluation of Fracturing Fluid for Extreme Temperature Applications. 2015https://doi.org/10.2118/172726-MS
    28. Rasoul Shahabadi, Mahdi Abdollahi, Alireza Sharif. Preparation, characterization and properties of polymer electrolyte nanocomposite membranes containing silica nanoparticles modified via surface-initiated atom transfer radical polymerization. International Journal of Hydrogen Energy 2015, 40 (9) , 3749-3761. https://doi.org/10.1016/j.ijhydene.2015.01.090
    29. Chetan Prakash, Manoj P. Achalpurkar, Ramesh Uppuluri. Performance Evaluation of High Temperature Fracturing Fluid. 2014https://doi.org/10.2118/171710-MS
    30. Jens Schrooten, Igor Lacík, Marek Stach, Pascal Hesse, Michael Buback. Propagation Kinetics of the Radical Polymerization of Methylated Acrylamides in Aqueous Solution. Macromolecular Chemistry and Physics 2013, 214 (20) , 2283-2294. https://doi.org/10.1002/macp.201300357
    31. Kanarat Nalampang, Rachanida Panjakha, Robert Molloy, Brian J. Tighe. Structural effects in photopolymerized sodium AMPS hydrogels crosslinked with poly(ethylene glycol) diacrylate for use as burn dressings. Journal of Biomaterials Science, Polymer Edition 2013, 24 (11) , 1291-1304. https://doi.org/10.1080/09205063.2012.755601
    32. Nils F. G. Wittenberg, Michael Buback, Robin A. Hutchinson. Kinetics and Modeling of Methacrylic Acid Radical Polymerization in Aqueous Solution. Macromolecular Reaction Engineering 2013, 7 (6) , 267-276. https://doi.org/10.1002/mren.201200089
    33. Nils F. G. Wittenberg, Michael Buback, Marek Stach, Igor Lacík. Chain Transfer to 2‐Mercaptoethanol in Methacrylic Acid Polymerization in Aqueous Solution. Macromolecular Chemistry and Physics 2012, 213 (24) , 2653-2658. https://doi.org/10.1002/macp.201200484
    34. E. Nadim, H. Bouhendi, F. Ziaee, A. Nouri. Kinetic study of the aqueous free‐radical polymerization of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid via an online proton nuclear magnetic resonance technique. Journal of Applied Polymer Science 2012, 126 (1) , 156-161. https://doi.org/10.1002/app.36379
    35. Oleg A. Kazantsev, Konstantin V. Shirshin, Alexey P. Sivokhin, Alexandr V. Igolkin, Olga S. Goncharova, Denis M. Kamorin. Copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate with acrylamide and acrylonitrile in water: an effect of conditions on the compositional heterogeneity. Journal of Polymer Research 2012, 19 (6) https://doi.org/10.1007/s10965-012-9886-5
    36. Jens Schrooten, Michael Buback, Pascal Hesse, Robin A. Hutchinson, Igor Lacík. Termination Kinetics of 1‐Vinylpyrrolidin‐2‐one Radical Polymerization in Aqueous Solution. Macromolecular Chemistry and Physics 2011, 212 (13) , 1400-1409. https://doi.org/10.1002/macp.201100021
    37. Jeremy Holtsclaw, Gary P. Funkhouser. A Crosslinkable Synthetic-Polymer System for High-Temperature Hydraulic-Fracturing Applications. SPE Drilling & Completion 2010, 25 (04) , 555-563. https://doi.org/10.2118/125250-PA
    38. Fabrice Leroux, Abdallah Illaik, Thomas Stimpfling, Anne-Lise Troutier-Thuilliez, Solenne Fleutot, Hervé Martinez, Joël Cellier, Vincent Verney. Percolation network of organo-modified layered double hydroxide platelets into polystyrene showing enhanced rheological and dielectric behavior. Journal of Materials Chemistry 2010, 20 (42) , 9484. https://doi.org/10.1039/b926978a
    39. Susann Wiechers, Gudrun Schmidt‐Naake. The Influence of Reaction Conditions on the Copolymer Composition in Inverse Miniemulsion. Macromolecular Symposia 2009, 281 (1) , 47-53. https://doi.org/10.1002/masy.200950706
    40. Bolong Yao, Caihua Ni, Mingqing Chen, Hongchang Song. Self-assembly and solid-state photo polymerization of acrylamide crystal film. Colloid and Polymer Science 2009, 287 (1) , 73-79. https://doi.org/10.1007/s00396-008-1955-2
    41. Narimi Kubota, Atsushi Kajiwara, Per B. Zetterlund, Mikiharu Kamachi, Jeanne Treurnicht, Matthew P. Tonge, Robert G. Gilbert, Bunichiro Yamada. Determination of the Propagation Rate Coefficient of Vinyl Pivalate Based on EPR Quantification of the Propagating Radical Concentration. Macromolecular Chemistry and Physics 2007, 208 (22) , 2403-2411. https://doi.org/10.1002/macp.200700185
    42. Sabine Beuermann, Michael Buback, Pascal Hesse, Silvia Kukučková, Igor Lacík. Propagation Rate Coefficient of Non‐ionized Methacrylic Acid Radical Polymerization in Aqueous Solution. The Effect of Monomer Conversion. 2007, 41-49. https://doi.org/10.1002/9783527610860.ch5
    43. O. V. Kalyazina, T. G. Murzabekova, T. F. Lelyukh, I. A. Gritskova. Copolymerization of the poly(N,N-dimethyl-N,N-diallylammonium chloride) macromonomer with acrylamide. Russian Chemical Bulletin 2007, 56 (3) , 535-539. https://doi.org/10.1007/s11172-007-0085-1
    44. Sabine Beuermann, Michael Buback, Pascal Hesse, Silvia Kukučková, Igor Lacık. Propagation Rate Coefficient of Non‐ionized Methacrylic Acid Radical Polymerization in Aqueous Solution. The Effect of Monomer Conversion. Macromolecular Symposia 2007, 248 (1) , 41-49. https://doi.org/10.1002/masy.200750205
    45. Joung Eun Yoo, Jennifer L. Cross, Tracy L. Bucholz, Kwang Seok Lee, Matthew P. Espe, Yueh-Lin Loo. Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. Journal of Materials Chemistry 2007, 17 (13) , 1268. https://doi.org/10.1039/b618521e
    46. Bo-long Yao, Hong-chang Song, Lu-de Lu, Ming-qing Chen, Tatsuo Kaneko, Mitsuru Akashi. Giant Spherulite Formation in Amorphous Polyanion Membrane by Photopolymerization on Gelatin Matrix. Chemistry Letters 2006, 35 (11) , 1228-1229. https://doi.org/10.1246/cl.2006.1228

    Macromolecules

    Cite this: Macromolecules 2006, 39, 2, 509–516
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma051187n
    Published December 21, 2005
    Copyright © 2006 American Chemical Society

    Article Views

    1748

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.