Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Amphiphilic Polymethacrylate Model Co-Networks:  Synthesis by RAFT Radical Polymerization and Characterization of the Swelling Behavior

View Author Information
Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
Cite this: Macromolecules 2006, 39, 7, 2467–2473
Publication Date (Web):March 10, 2006
https://doi.org/10.1021/ma051747i
Copyright © 2006 American Chemical Society

    Article Views

    1186

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Reversible addition−fragmentation chain transfer (RAFT) controlled radical polymerization was employed, for the first time, to prepare well-defined (model) amphiphilic polymer co-networks based on n-butyl methacrylate (BuMA, hydrophobic monomer) and 2-(dimethylamino)ethyl methacrylate (DMAEMA, hydrophilic ionizable monomer) cross-linked with ethylene glycol dimethacrylate (EGDMA) and bearing elastic chains having the following comonomer distributions:  BuMA-b-DMAEMA-b-BuMA and DMAEMA-b-BuMA-b-DMAEMA triblock and BuMA-co-DMAEMA statistical copolymers. Two randomly cross-linked (not model) amphiphilic co-networks were also synthesized, the one by RAFT and the other by conventional free radical polymerization. The amphiphilic triblock copolymer-based model co-networks were obtained by stepwise synthesis in three stages:  (1) the synthesis of linear homopolymers bearing two active ends by using a bifunctional chain transfer agent (CTA), (2) the sequential addition of the second monomer on the macro-CTAs (homopolymers) to yield linear ABA or BAB triblock copolymers, and (3) the inter-linking of the linear copolymer chains at both ends using EGDMA cross-linker to form the final model co-networks. The homopolymer and copolymer precursors to the networks were characterized using gel permeation chromatography and 1H NMR spectroscopy. The swelling behavior of the networks was investigated in tetrahydrofuran and water. The co-networks swelled more in acidic than in neutral water due to the ionization of their DMAEMA units. The low pH aqueous swelling of the statistical co-network was higher than those of its triblock counterparts due to the lack of microphase separation with the statistical copolymer chains.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     E-mail:  [email protected].

    *

     To whom correspondence should be addressed. E-mail:  costasp@ ucy.ac.cy.

    Cited By

    This article is cited by 84 publications.

    1. Fotios Mpekris, Petri Ch. Papaphilippou, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Antonia Charalambous, Mariyan Marinov Dinev, Anna Katsioloudi, Marianna Prokopi-Demetriades, Andreas Anayiotos, Horacio Cabral, Theodora Krasia-Christoforou, Triantafyllos Stylianopoulos. Pirfenidone-Loaded Polymeric Micelles as an Effective Mechanotherapeutic to Potentiate Immunotherapy in Mouse Tumor Models. ACS Nano 2023, 17 (24) , 24654-24667. https://doi.org/10.1021/acsnano.3c03305
    2. Gamal Zain, Larissa Alena Ruppitsch, Thomas Koch, Helena Švajdlenková, Robert Liska, Jaroslav Mosnáček. Investigation of Polymer Networks for Dental Fillings Formed by Photochemically Induced Atom Transfer Radical Polymerization of Bifunctional Methacrylates. ACS Applied Polymer Materials 2023, 5 (12) , 10158-10169. https://doi.org/10.1021/acsapm.3c01973
    3. Gaoyuan Wang, Marcus Müller. Phase Separation of Regular, Quasi-Two-Dimensional AB Copolymer Networks. Macromolecules 2022, 55 (4) , 1279-1294. https://doi.org/10.1021/acs.macromol.1c02108
    4. Constantina K. Varnava, Costas S. Patrickios. Model Amphiphilic Polymer Conetworks in Water: Prediction of Their Ability for Oil Solubilization. ACS Omega 2019, 4 (3) , 4721-4738. https://doi.org/10.1021/acsomega.8b03658
    5. Maria Rikkou-Kalourkoti, Elina N. Kitiri, Costas S. Patrickios, Epameinondas Leontidis, Marios Constantinou, Georgios Constantinides, Xiaohan Zhang, and Christine M. Papadakis . Double Networks Based on Amphiphilic Cross-Linked Star Block Copolymer First Conetworks and Randomly Cross-Linked Hydrophilic Second Networks. Macromolecules 2016, 49 (5) , 1731-1742. https://doi.org/10.1021/acs.macromol.5b02490
    6. Chao Zhou, Linhong Deng, Fang Yao, Liqun Xu, Jian Zhou, and Guo Dong Fu . A Well-Defined Amphiphilic Polymer Conetwork from Sequence Control of the Cross-Linking in Polymer Chains. Industrial & Engineering Chemistry Research 2014, 53 (49) , 19239-19248. https://doi.org/10.1021/ie503649t
    7. Kyriaki S. Pafiti, Marios Elladiou, and Costas S. Patrickios . “Inverse Polyampholyte” Hydrogels from Double-Cationic Hydrogels: Synthesis by RAFT Polymerization and Characterization. Macromolecules 2014, 47 (5) , 1819-1827. https://doi.org/10.1021/ma500084c
    8. Maria Rikkou-Kalourkoti and Costas S. Patrickios . Synthesis and Characterization of End-Linked Amphiphilic Copolymer Conetworks Based on a Novel Bifunctional Cleavable Chain Transfer Agent. Macromolecules 2012, 45 (19) , 7890-7899. https://doi.org/10.1021/ma3012416
    9. Petri Papaphilippou, Maria Christodoulou, Oana-Maria Marinica, Alina Taculescu, Ladislau Vekas, Konstantinos Chrissafis, and Theodora Krasia-Christoforou . Multiresponsive Polymer Conetworks Capable of Responding to Changes in pH, Temperature, and Magnetic Field: Synthesis, Characterization, and Evaluation of Their Ability for Controlled Uptake and Release of Solutes. ACS Applied Materials & Interfaces 2012, 4 (4) , 2139-2147. https://doi.org/10.1021/am300144w
    10. Maria Rikkou-Kalourkoti, Krzysztof Matyjaszewski, and Costas S. Patrickios . Synthesis, Characterization and Thermolysis of Hyperbranched Homo- and Amphiphilic Co-Polymers Prepared Using an Inimer Bearing a Thermolyzable Acylal Group. Macromolecules 2012, 45 (3) , 1313-1320. https://doi.org/10.1021/ma202021y
    11. Kyriaki S. Pafiti, Zelina Philippou, Elena Loizou, Lionel Porcar, and Costas S. Patrickios . End-Linked Poly[2-(dimethylamino)ethyl Methacrylate]–Poly(methacrylic acid) Polyampholyte Conetworks: Synthesis by Sequential RAFT Polymerization and Swelling and SANS Characterization. Macromolecules 2011, 44 (13) , 5352-5362. https://doi.org/10.1021/ma200668v
    12. Kyriaki S. Pafiti, Elena Loizou, Costas S. Patrickios and Lionel Porcar . End-Linked Semifluorinated Amphiphilic Polymer Conetworks: Synthesis by Sequential Reversible Addition−Fragmentation Chain Transfer Polymerization and Characterization. Macromolecules 2010, 43 (12) , 5195-5204. https://doi.org/10.1021/ma100552v
    13. Maria D. Rikkou, Elena Loizou, Lionel Porcar, Paul Butler and Costas S. Patrickios . Degradable Amphiphilic End-Linked Conetworks with Aqueous Degradation Rates Determined by Polymer Topology. Macromolecules 2009, 42 (24) , 9412-9421. https://doi.org/10.1021/ma902099c
    14. Chang-Yun Quan, De-Qun Wu, Cong Chang, Guo-Bing Zhang, Si-Xue Cheng, Xian-Zheng Zhang and Ren-Xi Zhuo. Synthesis of Thermo-Sensitive Micellar Aggregates Self-Assembled from Biotinylated PNAS-b-PNIPAAm-b-PCL Triblock Copolymers for Tumor Targeting. The Journal of Physical Chemistry C 2009, 113 (26) , 11262-11267. https://doi.org/10.1021/jp902637n
    15. Demetris Kafouris, Michael Gradzielski and Costas S. Patrickios . Semisegmented Amphiphilic Polymer Conetworks: Synthesis and Characterization. Macromolecules 2009, 42 (8) , 2972-2980. https://doi.org/10.1021/ma802859d
    16. Maria D. Rikkou and Costas S. Patrickios. Well-Defined Networks with Precisely Located Cleavable Sites: Structure Optimization and Core Functionality Determination. Macromolecules 2008, 41 (16) , 5957-5959. https://doi.org/10.1021/ma801154x
    17. Kyle B. Guice, Stephen R. Marrou, Sudershan R. Gondi, Brent S. Sumerlin and Yueh-Lin Loo. pH Response of Model Diblock and Triblock Copolymer Networks Containing Polystyrene and Poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate). Macromolecules 2008, 41 (12) , 4390-4397. https://doi.org/10.1021/ma8003746
    18. Theoni K. Georgiou and Costas S. Patrickios. Synthesis, Characterization, and DNA Adsorption Studies of Ampholytic Model Conetworks Based on Cross-Linked Star Copolymers. Biomacromolecules 2008, 9 (2) , 574-582. https://doi.org/10.1021/bm701123s
    19. Ye-Zi You,, Qing-Hui Zhou,, Devika Soundara Manickam,, Lei Wan,, Guang-Zhao Mao, and, David Oupický. Dually Responsive Multiblock Copolymers via Reversible Addition−Fragmentation Chain Transfer Polymerization:  Synthesis of Temperature- and Redox-Responsive Copolymers of Poly(N-isopropylacrylamide) and Poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 2007, 40 (24) , 8617-8624. https://doi.org/10.1021/ma071176p
    20. Gergely Kali,, Theoni K. Georgiou,, Béla Iván,, Costas S. Patrickios,, Elena Loizou,, Yi Thomann, and, Joerg C. Tiller. Synthesis and Characterization of Anionic Amphiphilic Model Conetworks of 2-Butyl-1-Octyl-Methacrylate and Methacrylic Acid:  Effects of Polymer Composition and Architecture. Langmuir 2007, 23 (21) , 10746-10755. https://doi.org/10.1021/la7012478
    21. Mariliz Achilleos,, Theodora Krasia-Christoforou, and, Costas S. Patrickios. Amphiphilic Model Conetworks Based on Combinations of Methacrylate, Acrylate, and Styrenic Units:  Synthesis by RAFT Radical Polymerization and Characterization of the Swelling Behavior. Macromolecules 2007, 40 (15) , 5575-5581. https://doi.org/10.1021/ma070614p
    22. Theoni K. Georgiou and, Costas S. Patrickios, , Peter Werner Groh and, Béla Iván. Amphiphilic Model Conetworks of Polyisobutylene Methacrylate and 2-(Dimethylamino)ethyl Methacrylate Prepared by the Combination of Quasiliving Carbocationic and Group Transfer Polymerizations. Macromolecules 2007, 40 (7) , 2335-2343. https://doi.org/10.1021/ma062307+
    23. Márton Haraszti,, Edina Tóth, and, Béla Iván. Poly(methacrylic acid)-l-Polyisobutylene:  A Novel Polyelectrolyte Amphiphilic Conetwork. Chemistry of Materials 2006, 18 (20) , 4952-4958. https://doi.org/10.1021/cm061119v
    24. Gabriel Jaramillo-Soto, Samuel Alejandro Sarracino-Silva, Eduardo Vivaldo-Lima. Kinetics of Polymer Network Formation by Nitroxide-Mediated Radical Copolymerization of Styrene/Divinylbenzene in Supercritical Carbon Dioxide. Processes 2022, 10 (11) , 2386. https://doi.org/10.3390/pr10112386
    25. Chris William Anderson Bainbridge, Andika Wangsadijaya, Neil Broderick, Jianyong Jin. Living polymer networks prepared by controlled radical polymerization techniques. Polymer Chemistry 2022, 13 (11) , 1484-1494. https://doi.org/10.1039/D1PY01692J
    26. Patricia Pérez‐Salinas, Porfirio López‐Domínguez, Alberto Rosas‐Aburto, Julio César Hernández‐Ortiz, Eduardo Vivaldo‐Lima. RAFT Crosslinking Polymerization. 2021, 873-932. https://doi.org/10.1002/9783527821358.ch19
    27. Graeme Moad. Dithioesters in RAFT Polymerization. 2021, 223-358. https://doi.org/10.1002/9783527821358.ch8
    28. Qingshan Wu, Shuanhu Qi, Tianyi Zhao, Hao Yan, Mingjie Liu. Multiple network organohydrogels with high strength and anti-swelling properties in different solvents. Giant 2021, 6 , 100058. https://doi.org/10.1016/j.giant.2021.100058
    29. Lena Benski, Ismail Viran, Frank Katzenberg, Joerg C. Tiller. Small‐Angle X‐Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. Macromolecular Chemistry and Physics 2021, 222 (1) https://doi.org/10.1002/macp.202000292
    30. Rikito Takashima, Masashi Ohira, Hirogi Yokochi, Daisuke Aoki, Xiang Li, Hideyuki Otsuka. Characterization of N -phenylmaleimide-terminated poly(ethylene glycol)s and their application to a tetra-arm poly(ethylene glycol) gel. Soft Matter 2020, 16 (48) , 10869-10875. https://doi.org/10.1039/D0SM01658F
    31. Alaleh Dabbaghi, Sohrab Rahmani. Synthesis and characterization of biodegradable multicomponent amphiphilic conetworks with tunable swelling through combination of ring‐opening polymerization and “click” chemistry method as a controlled release formulation for 2,4‐dichlorophenoxyacetic acid herbicide. Polymers for Advanced Technologies 2019, 30 (2) , 368-380. https://doi.org/10.1002/pat.4474
    32. Amir Roointan, Javad Farzanfar, Soliman Mohammadi-Samani, Abbas Behzad-Behbahani, Fatemeh Farjadian. Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. International Journal of Pharmaceutics 2018, 552 (1-2) , 301-311. https://doi.org/10.1016/j.ijpharm.2018.10.001
    33. Georgia Papaparaskeva, Chrysovalantis Voutouri, Vasiliki Gkretsi, Mariliz Achilleos, Ivo Safarik, Kristyna Pospiskova, Triantafyllos Stylianopoulos, Theodora Krasia‐Christoforou. Tuning the Mechanical Properties of BIEE‐Crosslinked Semi‐Interpenetrating, Double‐Hydrophilic Hydrogels. Macromolecular Materials and Engineering 2018, 303 (6) https://doi.org/10.1002/mame.201700643
    34. Rafaella Ilia, Ioanna Liatsou, Ioanna Savva, Eugenia Vasile, Ladislau Vekas, Oana Marinica, Fotios Mpekris, Ioannis Pashalidis, Theodora Krasia-Christoforou. Magnetoresponsive polymer networks as adsorbents for the removal of U(VI) ions from aqueous media. European Polymer Journal 2017, 97 , 138-146. https://doi.org/10.1016/j.eurpolymj.2017.10.005
    35. Kyriakos Christodoulou, Epameinondas Leontidis, Mariliz Achilleos, Christiana Polydorou, Theodora Krasia-Christoforou. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring. Polymers 2016, 8 (12) , 411. https://doi.org/10.3390/polym8120411
    36. Andreas S. Kalogirou, Mariliz Achilleos, Constantina Procopiou, Eugenia Vasile, Panayiotis A. Koutentis, Theodora Krasia-Christoforou. Structure-Defined 3D Nanocomposite Polymer Networks: Versatile Heterogeneous Catalytic Platforms in Organic Synthesis. ChemistrySelect 2016, 1 (11) , 2635-2641. https://doi.org/10.1002/slct.201600318
    37. Cui‐Wei Wang, Chao Liu, Xiao‐Wei Zhu, Zi‐Ying Yang, Hong‐Fan Sun, De‐Ling Kong, Jing Yang. Synthesis of well‐defined star‐shaped poly(ε‐caprolactone)/poly(ethylbene glycol) amphiphilic conetworks by combination of ring opening polymerization and “click” chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (3) , 407-417. https://doi.org/10.1002/pola.27790
    38. Mariliz Achilleos, Fotios Mpekris, Triantafyllos Stylianopoulos, Theodora Krasia-Christoforou. Structurally-defined semi-interpenetrating amphiphilic polymer networks with tunable and predictable mechanical response. RSC Advances 2016, 6 (49) , 43278-43283. https://doi.org/10.1039/C6RA07376J
    39. Elina N. Kitiri, Maria Rikkou-Kalourkoti, Manolia Sophocleous, Costas S. Patrickios. Synthesis and characterization of robust double-networks based on end-linked, pH-responsive first networks. European Polymer Journal 2015, 69 , 573-583. https://doi.org/10.1016/j.eurpolymj.2015.02.002
    40. Saliza Asman, Sharifah Mohamad, Norazilawati Sarih. Effects of RAFT Agent on the Selective Approach of Molecularly Imprinted Polymers. Polymers 2015, 7 (3) , 484-503. https://doi.org/10.3390/polym7030484
    41. Graeme Moad. RAFT (Reversible addition-fragmentation chain transfer) crosslinking (co)polymerization of multi-olefinic monomers to form polymer networks. Polymer International 2015, 64 (1) , 15-24. https://doi.org/10.1002/pi.4767
    42. Fotios Mpekris, Mariliz Achilleos, Eugenia Vasile, Eugeniu Vasile, Theodora Krasia-Christoforou, Triantafyllos Stylianopoulos. Mechanical properties of structurally-defined magnetoactive polymer (co)networks. RSC Advances 2015, 5 (26) , 20011-20019. https://doi.org/10.1039/C4RA16260A
    43. Demetris E Apostolides, Costas S Patrickios, Epameinondas Leontidis, Michelle Kushnir, Chrys Wesdemiotis. Synthesis and characterization of reversible and self‐healable networks based on acylhydrazone groups. Polymer International 2014, 63 (9) , 1558-1565. https://doi.org/10.1002/pi.4724
    44. Jules Zeuna Nguendia, Weiheng Zhong, Alexandre Fleury, Guillaume De Grandpré, Armand Soldera, Ribal Georges Sabat, Jerome P. Claverie. Supramolecular Complexes of Multivalent Cholesterol‐Containing Polymers to Solubilize Carbon Nanotubes in Apolar Organic Solvents. Chemistry – An Asian Journal 2014, 9 (5) , 1356-1364. https://doi.org/10.1002/asia.201301687
    45. Daiki Yoshimura, Shinji Yamada, Akinori Takasu. A polyester–polystyrene hybrid connected by dynamic covalent bonds prepared via radical polymerization of styrene in a “RAFT gel”. Polym. Chem. 2014, 5 (11) , 3689-3696. https://doi.org/10.1039/C4PY00052H
    46. Mariliz Achilleos, Maria Demetriou, Oana Marinica, Ladislau Vekas, Theodora Krasia-Christoforou. An innovative synthesis approach toward the preparation of structurally defined multiresponsive polymer (co)networks. Polymer Chemistry 2014, 5 (14) , 4365. https://doi.org/10.1039/c4py00217b
    47. Miguel A. D. Gonçalves, Virgínia D. Pinto, Rolando C. S. Dias, Julio C. Hernándes‐Ortiz, Mário Rui P. F. N. Costa. Dynamics of Network Formation in Aqueous Suspension RAFT Styrene/ D ivinylbenzene Copolymerization. Macromolecular Symposia 2013, 333 (1) , 273-285. https://doi.org/10.1002/masy.201300046
    48. Vishal D. Salian, Mark E. Byrne. Living Radical Polymerization and Molecular Imprinting: Improving Polymer Morphology in Imprinted Polymers. Macromolecular Materials and Engineering 2013, 298 (4) , 379-390. https://doi.org/10.1002/mame.201200191
    49. Miguel A. D. Gonçalves, Virgínia D. Pinto, Rolando C. S. Dias, Mário Rui P. F. N. Costa, Leandro G. Aguiar, Reinaldo Giudici. Gel Formation in Aqueous Suspension Nitroxide‐Mediated Radical Co‐Polymerization of Styrene/Divinylbenzene. Macromolecular Reaction Engineering 2013, 7 (3-4) , 155-175. https://doi.org/10.1002/mren.201200058
    50. Negar Ghasdian, Emma Church, Andrew P. Cottam, Karl Hornsby, Mei-Yee Leung, Theoni K. Georgiou. Novel “core-first” star-based quasi-model amphiphilic polymer networks. RSC Advances 2013, 3 (41) , 19070. https://doi.org/10.1039/c3ra42836b
    51. Jamie Dziczkowski, Uma Chatterjee, Mark Soucek. Route to co-acrylic modified alkyd resins via a controlled polymerization technique. Progress in Organic Coatings 2012, 73 (4) , 355-365. https://doi.org/10.1016/j.porgcoat.2011.03.003
    52. Maria Demetriou, Theodora Krasia‐Christoforou. Well‐defined diblock copolymers possessing fluorescent and metal chelating functionalities as novel macromolecular sensors for amines and metal ions. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (1) , 52-60. https://doi.org/10.1002/pola.24977
    53. M. Rikkou-Kalourkoti, C.S. Patrickios, T.K. Georgiou. Model Networks and Functional Conetworks. 2012, 293-308. https://doi.org/10.1016/B978-0-444-53349-4.00166-7
    54. Gabriel Jaramillo-Soto, Eduardo Vivaldo-Lima. RAFT Copolymerization of Styrene/Divinylbenzene in Supercritical Carbon Dioxide. Australian Journal of Chemistry 2012, 65 (8) , 1177. https://doi.org/10.1071/CH12291
    55. Xince Sui, Zhifeng Fu, Yan Shi. Synthesis of degradable copolymer networks containing hemiacetal components and well‐defined backbones. Journal of Applied Polymer Science 2011, 121 (3) , 1860-1865. https://doi.org/10.1002/app.33589
    56. Petri C. Papaphilippou, Antonis Pourgouris, Oana Marinica, Alina Taculescu, George I. Athanasopoulos, Ladislau Vekas, Theodora Krasia-Christoforou. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate. Journal of Magnetism and Magnetic Materials 2011, 323 (5) , 557-563. https://doi.org/10.1016/j.jmmm.2010.10.009
    57. S. Rimmer. Synthesis of hydrogels for biomedical applications: control of structure and properties. 2011, 51-62. https://doi.org/10.1533/9780857091383.1.51
    58. M. Roa‐Luna, G. Jaramillo‐Soto, P. V. Castañeda‐Flores, E. Vivaldo‐Lima. Copolymerization Kinetics of Styrene and Divinylbenzene in the Presence of S ‐Thiobenzoyl Thioglycolic Acid as RAFT Agent. Chemical Engineering & Technology 2010, 33 (11) , 1893-1899. https://doi.org/10.1002/ceat.201000257
    59. Weijie Zhao, Ming Fang, Junpo He, Junyu Chen, Wei Tang, Yuliang Yang. Amphiphilic polymer conetworks prepared by controlled radical polymerization using a nitroxide cross‐linker. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (19) , 4141-4149. https://doi.org/10.1002/pola.24156
    60. Jamie Dziczkowski, Mark D. Soucek. A new class of acrylated alkyds. Journal of Coatings Technology and Research 2010, 7 (5) , 587-602. https://doi.org/10.1007/s11998-009-9237-6
    61. Maria D. Rikkou, Maria Kolokasi, Krzysztof Matyjaszewski, Costas S. Patrickios. End‐linked amphiphilic polymer conetworks: Synthesis by sequential atom transfer radical polymerization and swelling characterization. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (9) , 1878-1886. https://doi.org/10.1002/pola.23951
    62. Jun Tu, Li Chen, Yuan Fang, Caifeng Wang, Su Chen. Facile synthesis of amphiphilic gels by frontal free‐radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (4) , 823-831. https://doi.org/10.1002/pola.23830
    63. Marli L.T. Sordi, Izabel C. Riegel, Marco A. Ceschi, Axel H.E. Müller, Cesar L. Petzhold. Synthesis of block copolymers based on poly(2,3-epithiopropylmethacrylate) via RAFT polymerization and preliminary investigations on thin film formation. European Polymer Journal 2010, 46 (2) , 336-344. https://doi.org/10.1016/j.eurpolymj.2009.09.017
    64. Xin-Ce Sui, Yan Shi, Zhi-Feng Fu. Novel Degradable Polymer Networks Containing Acetal Components and Well-Defined Backbones. Australian Journal of Chemistry 2010, 63 (10) , 1497. https://doi.org/10.1071/CH10207
    65. Gergely Kali, Theoni K. Georgiou, Béla Iván, Costas S. Patrickios. Anionic amphiphilic end‐linked conetworks by the combination of quasiliving carbocationic and group transfer polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (17) , 4289-4301. https://doi.org/10.1002/pola.23481
    66. Cancan Li, Ling Xu, Maolin Zhai, Jing Peng, Chao Yang, Jiuqiang Li, Genshuan Wei. Swelling behavior of amphiphilic gels based on hydrophobically modified dimethylaminoethyl methacrylate. Polymer 2009, 50 (20) , 4888-4894. https://doi.org/10.1016/j.polymer.2009.08.018
    67. Julio C. Hernández‐Ortiz, Eduardo Vivaldo‐Lima, Liliane M. F. Lona, Neil T. McManus, Alexander Penlidis. Modeling of the Nitroxide‐Mediated Radical Copolymerization of Styrene and Divinylbenzene. Macromolecular Reaction Engineering 2009, 3 (5-6) , 288-311. https://doi.org/10.1002/mren.200900007
    68. Natalie A. Hadjiantoniou, Costas S. Patrickios, Yi Thomann, Joerg C. Tiller. Amphiphilic Conetworks Based on End‐Linked Multiblock Copolymers of Different Numbers of Blocks and Constant Molecular Weight and Composition. Macromolecular Chemistry and Physics 2009, 210 (11) , 942-950. https://doi.org/10.1002/macp.200800627
    69. Demetris Kafouris, Michael Gradzielski, Costas S. Patrickios. Synthesis and Characterization of Large‐Core Star Polymers and Polymer Networks: Effects of Arm Length and Composition of the Cross‐Linking Mixture. Macromolecular Chemistry and Physics 2009, 210 (5) , 367-376. https://doi.org/10.1002/macp.200800464
    70. Demetris Kafouris, Costas S. Patrickios. Synthesis and characterization of shell-cross-linked polymer networks and large-core star polymers: Effect of the volume of the cross-linking mixture. European Polymer Journal 2009, 45 (1) , 10-18. https://doi.org/10.1016/j.eurpolymj.2008.09.014
    71. Laetitia Mespouille, James L. Hedrick, Philippe Dubois. Expanding the role of chemistry to produce new amphiphilic polymer (co)networks. Soft Matter 2009, 5 (24) , 4878. https://doi.org/10.1039/b910041p
    72. Jun Ma, Chong Cheng, Karen L. Wooley. The Power of RAFT for Creating Polymers Having Imbedded Side-Chain Functionalities: Norbornenyl-Functionalized Polymers and their Transformations via ROMP and Thiol-ene Reactions. Australian Journal of Chemistry 2009, 62 (11) , 1507. https://doi.org/10.1071/CH09243
    73. Mariliz Achilleos, Thomas M. Legge, Sébastien Perrier, Costas S. Patrickios. Poly(ethylene glycol)‐based amphiphilic model conetworks: Synthesis by RAFT polymerization and characterization. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (22) , 7556-7565. https://doi.org/10.1002/pola.23061
    74. Maria Demetriou, Theodora Krasia‐Christoforou. Synthesis and characterization of well‐defined block and statistical copolymers based on lauryl methacrylate and 2‐(acetoacetoxy)ethyl methacrylate using RAFT‐controlled radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (16) , 5442-5451. https://doi.org/10.1002/pola.22863
    75. Laetitia Mespouille, Olivier Coulembier, Dilyana Paneva, Philippe Degée, Iliya Rashkov, Philippe Dubois. Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and “Click chemistry”. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (15) , 4997-5013. https://doi.org/10.1002/pola.22827
    76. Demetris Kafouris, Michael Gradzielski, Costas S. Patrickios. Hydrophilic, cationic large‐core star polymers and polymer networks: Synthesis and physicochemical characterization. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (12) , 3958-3969. https://doi.org/10.1002/pola.22736
    77. Qiang Yu, Yongshu Zhu, Yonghong Ding, Shiping Zhu. Reaction Behavior and Network Development in RAFT Radical Polymerization of Dimethacrylates. Macromolecular Chemistry and Physics 2008, 209 (5) , 551-556. https://doi.org/10.1002/macp.200700464
    78. Arnaud Favier, Bertrand de Lambert, Marie‐Thérèse Charreyre. Toward New Materials Prepared via the RAFT Process: From Drug Delivery to Optoelectronics?. 2008, 483-535. https://doi.org/10.1002/9783527622757.ch13
    79. Ling Xu, Maolin Zhai, Ling Huang, Jing Peng, Jiuqiang Li, Genshuan Wei. Specific stimuli‐responsive antipolyelectrolyte swelling of amphiphilic gel based on methacryloxyethyl dimethyloctane ammonium bromide. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (2) , 473-480. https://doi.org/10.1002/pola.22398
    80. Maria Vamvakaki, Costas S. Patrickios. Synthesis and characterization of the swelling and mechanical properties of amphiphilic ionizable model co-networks containing n-butyl methacrylate hydrophobic blocks. Soft Matter 2008, 4 (2) , 268-276. https://doi.org/10.1039/B710926A
    81. Natalie A. Hadjiantoniou, Costas S. Patrickios. Synthesis and characterization of amphiphilic conetworks based on multiblock copolymers. Polymer 2007, 48 (24) , 7041-7048. https://doi.org/10.1016/j.polymer.2007.09.041
    82. Yozo Miura, Hiroyuki Dote, Hiroyuki Kubonishi, Kenichi Fukuda, Tomoko Saka. Syntheses and characterization of 16‐arm star and star diblock copolymer and AB 8 9‐miktoarm star copolymer via NMRP and ROP from dendritic multifunctional macroinitiators. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6) , 1159-1169. https://doi.org/10.1002/pola.21885
    83. Alexandra Muñoz-Bonilla, Marta Fernández-García, David M. Haddleton. Synthesis and aqueous solution properties of stimuli-responsive triblock copolymers. Soft Matter 2007, 3 (6) , 725-731. https://doi.org/10.1039/B616426A
    84. Graeme Moad, Ezio Rizzardo, San H. Thang. Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry 2006, 59 (10) , 669. https://doi.org/10.1071/CH06250