Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Self-Assembly and Molecular Dynamics of Peptide-Functionalized Polyphenylene Dendrimers

View Author Information
Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
University of Ioannina, Department of Physics, P.O. Box 1186, 451 10 Ioannina, Greece, and Foundation for Research and Technology-Hellas (FORTH), Biomedical Research Institute (BRI)
Cite this: Macromolecules 2006, 39, 26, 9605–9613
Publication Date (Web):December 6, 2006
https://doi.org/10.1021/ma0621270
Copyright © 2006 American Chemical Society

    Article Views

    720

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The self-assembly mechanism and the associated molecular dynamics are studied for a series of poly-l-lysine-functionalized polyphenylene dendrimer melts as a function of the core size (generation), functionality, and polypeptide length using X-rays, solid-state NMR, calorimetry, and dielectric spectroscopy. A striking dependence of the polyphenylene self-assembly on the poly-l-lysine length is shown. In addition, the type (α-helix/β-sheet) of peptide secondary structure is controlled by the packing restrictions imposed by the polyphenylene core. We show that constrained poly-l-lysines can adopt different secondary structures from their linear analogues. The dynamic investigation revealed significant mobility associated solely with the polypeptide through three processes:  a glass transition, a slower process associated with the relaxation of α-helical segments, and a glassy mode whose origin could be resolved by site-specific solid-state NMR techniques. Solid-state NMR studies further indicated a mobility gradient in going from the rigid peptide backbone to the side chains.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 32 publications.

    1. Toktam Nezakati, Amelia Seifalian, Aaron Tan, Alexander M. Seifalian. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews 2018, 118 (14) , 6766-6843. https://doi.org/10.1021/acs.chemrev.6b00275
    2. Brenton A. G. Hammer and Klaus Müllen . Dimensional Evolution of Polyphenylenes: Expanding in All Directions. Chemical Reviews 2016, 116 (4) , 2103-2140. https://doi.org/10.1021/acs.chemrev.5b00515
    3. Michael Ryan Hansen, Robert Graf, and Hans Wolfgang Spiess . Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chemical Reviews 2016, 116 (3) , 1272-1308. https://doi.org/10.1021/acs.chemrev.5b00258
    4. Jing Wang, Hongwei Xia, Yanfeng Zhang, Hua Lu, Ranjan Kamat, Andrey V. Dobrynin, Jianjun Cheng, and Yao Lin . Nucleation-Controlled Polymerization of Nanoparticles into Supramolecular Structures. Journal of the American Chemical Society 2013, 135 (31) , 11417-11420. https://doi.org/10.1021/ja402757e
    5. Jing Wang, Hua Lu, Yuan Ren, Yanfeng Zhang, Martha Morton, Jianjun Cheng, and Yao Lin . Interrupted Helical Structure of Grafted Polypeptides in Brush-Like Macromolecules. Macromolecules 2011, 44 (22) , 8699-8708. https://doi.org/10.1021/ma201833b
    6. Jing Wang, Hua Lu, Ranjan Kamat, Sai V. Pingali, Volker S. Urban, Jianjun Cheng, and Yao Lin . Supramolecular Polymerization from Polypeptide-Grafted Comb Polymers. Journal of the American Chemical Society 2011, 133 (33) , 12906-12909. https://doi.org/10.1021/ja202268t
    7. A. Gitsas and G. Floudas, M. Mondeshki, I. Lieberwirth and H. W. Spiess, H. Iatrou and N. Hadjichristidis, A. Hirao. Hierarchical Self-Assembly and Dynamics of a Miktoarm Star chimera Composed of Poly(γ-benzyl-l-glutamate), Polystyrene, and Polyisoprene. Macromolecules 2010, 43 (4) , 1874-1881. https://doi.org/10.1021/ma902631e
    8. A. Gitsas, G. Floudas, M. Mondeshki, H. W. Spiess, T. Aliferis, H. Iatrou and N. Hadjichristidis. Control of Peptide Secondary Structure and Dynamics in Poly(γ-benzyl-l-glutamate)-b-polyalanine Peptides. Macromolecules 2008, 41 (21) , 8072-8080. https://doi.org/10.1021/ma801770b
    9. A. Gitsas and G. Floudas, M. Mondeshki, H.-J. Butt and H. W. Spiess, H. Iatrou and N. Hadjichristidis. Effect of Chain Topology on the Self-Organization and Dynamics of Block Copolypeptides: From Diblock Copolymers to Stars. Biomacromolecules 2008, 9 (7) , 1959-1966. https://doi.org/10.1021/bm800221n
    10. A. Gitsas and, G. Floudas, , M. Dietz,, M. Mondeshki,, H. W. Spiess, and, G. Wegner. Self-Assembly and Molecular Dynamics of Copolymers of γ-Methyl-l-glutamate and Stearyl-l-glutamate. Macromolecules 2007, 40 (23) , 8311-8322. https://doi.org/10.1021/ma070792i
    11. K. Koynov,, G. Mihov,, M. Mondeshki,, C. Moon,, H. W. Spiess,, K. Müllen, and, H-J. Butt, , G. Floudas. Diffusion and Conformation of Peptide-Functionalized Polyphenylene Dendrimers Studied by Fluorescence Correlation and 13C NMR Spectroscopy. Biomacromolecules 2007, 8 (5) , 1745-1750. https://doi.org/10.1021/bm0702760
    12. Longjie Li, Yukai Deng, Yonghui Zeng, Bei Yan, Yulian Deng, Ziyang Zheng, Siqi Li, Yuhang Yang, Jinwei Hao, Xianjin Xiao, Xinyu Wang. The application advances of dendrimers in biomedical field. VIEW 2023, 4 (6) https://doi.org/10.1002/VIW.20230023
    13. Navid Nasajpour-Esfahani, Davoud Dastan, As'ad Alizadeh, Pouria Shirvanisamani, Mohammadreza Rozati, Eden Ricciardi, Bo Lewis, Ashish Aphale, Davood Toghraie. A critical review on intrinsic conducting polymers and their applications. Journal of Industrial and Engineering Chemistry 2023, 125 , 14-37. https://doi.org/10.1016/j.jiec.2023.05.013
    14. Monika Tomczykowa, Marta Plonska-Brzezinska. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers 2019, 11 (2) , 350. https://doi.org/10.3390/polym11020350
    15. Brenton A. G. Hammer, Klaus Müllen. Expanding the limits of synthetic macromolecular chemistry through Polyphenylene Dendrimers. Journal of Nanoparticle Research 2018, 20 (10) https://doi.org/10.1007/s11051-018-4364-6
    16. Brenton A. G. Hammer, Ralf Moritz, René Stangenberg, Martin Baumgarten, Klaus Müllen. The polar side of polyphenylene dendrimers. Chemical Society Reviews 2015, 44 (12) , 4072-4090. https://doi.org/10.1039/C4CS00245H
    17. Xiaokang Li, Feng Huang, Tao Jiang, Xiaohua He, Shaoliang Lin, Jiaping Lin. Phase behaviors of side chain liquid crystalline block copolymers. RSC Advances 2015, 5 (2) , 1514-1521. https://doi.org/10.1039/C4RA11585F
    18. Ali Nazemi, Elizabeth R. Gillies. Dendrimer Bioconjugates: Synthesis and Applications. 2014, 146-183. https://doi.org/10.1002/9781118775882.ch5
    19. Byungcheol Ahn, Wonsang Kwon, Heesoo Kim, Moonhor Ree. Cooperative and selective self-assembly behaviors of diblock copolypeptides in nanoscale thin films. Polym. Chem. 2014, 5 (6) , 1912-1922. https://doi.org/10.1039/C3PY01214J
    20. Kurt Binder, Hans-Jürgen Butt, George Floudas, Holger Frey, Hsiao-Ping Hsu, Katharina Landfester, Ute Kolb, Angelika Kühnle, Michael Maskos, Klaus Müllen, Wolfgang Paul, Manfred Schmidt, Hans Wolfgang Spiess, Peter Virnau. Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. 2013, 115-210. https://doi.org/10.1007/12_2013_230
    21. Gunther Brunklaus, Hans‐Wolfgang Spiess, Hellmut Eckert. Solid State NMR: A Versatile Tool in Solid State Chemistry and Materials Science. 2012, 85-158. https://doi.org/10.1002/9783527636839.ch4
    22. David Türp, Thi-Thanh-Tam Nguyen, Martin Baumgarten, Klaus Müllen. Uniquely versatile: nano-site defined materials based on polyphenylene dendrimers. New J. Chem. 2012, 36 (2) , 282-298. https://doi.org/10.1039/C1NJ20449A
    23. Hui Shao, Nicholas A. Bewick, Jon R. Parquette. Intramolecular chiral communication in peptide–dendron hybrids. Organic & Biomolecular Chemistry 2012, 10 (12) , 2377. https://doi.org/10.1039/c2ob07014f
    24. Anne‐Marie Caminade. Methods of Characterization of Dendrimers. 2011, 35-66. https://doi.org/10.1002/9781119976530.ch2
    25. M. Mondeshki, H.W. Spiess, T. Aliferis, H. Iatrou, N. Hadjichristidis, G. Floudas. Hierarchical self-assembly in diblock copolypeptides of poly(γ-benzyl-l-glutamate) with poly poly(l-leucine) and poly(O-benzyl-l-tyrosine). European Polymer Journal 2011, 47 (4) , 668-674. https://doi.org/10.1016/j.eurpolymj.2010.10.011
    26. George Floudas, Marian Paluch, Andrzej Grzybowski, K. L. Ngai. Polypeptide Dynamics. 2011, 149-168. https://doi.org/10.1007/978-3-642-04902-6_6
    27. N. V. Tsvetkov, L. N. Andreeva, S. V. Bushin, I. A. Strelina, M. A. Bezrukova, N. V. Girbasova, A. Yu. Bilibin. Structure and properties of macromolecules with side dendrons based on L-aspartic acid. Polymer Science Series C 2010, 52 (1) , 3-16. https://doi.org/10.1134/S1811238210010029
    28. N. V. Tsvetkov, L. N. Andreeva, S. K. Filippov, S. V. Bushin, M. A. Bezrukova, I. A. Marchenko, I. A. Strelina, V. P. Alyab’eva, N. V. Girbasova, A. Yu. Bilibin. Hydrodynamic, optical, and electrooptical properties of macromolecules of third-generation cylindrical dendrimers in chloroform and dichloroacetic acid. Polymer Science Series A 2010, 52 (1) , 8-18. https://doi.org/10.1134/S0965545X10010025
    29. Steven P. Brown. Recent Advances in Solid‐State MAS NMR Methodology for Probing Structure and Dynamics in Polymeric and Supramolecular Systems. Macromolecular Rapid Communications 2009, 30 (9-10) , 688-716. https://doi.org/10.1002/marc.200800816
    30. George Floudas, Hans Wolfgang Spiess. Self‐Assembly and Dynamics of Polypeptides. Macromolecular Rapid Communications 2009, 30 (4-5) , 278-298. https://doi.org/10.1002/marc.200800700
    31. George R. Newkome, Carol D. Shreiner. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49 (1) , 1-173. https://doi.org/10.1016/j.polymer.2007.10.021
    32. Robert A. Pascal, Christina M. Kraml, Neal Byrne, Frederick J. Coughlin. Computational and experimental studies of the conformational reactions of 1,3,5-tris(pentaphenylphenyl)benzene. Tetrahedron 2007, 63 (48) , 11902-11910. https://doi.org/10.1016/j.tet.2007.09.021